TRIBONACCI SEQUENCES WITH CERTAIN INDICES
AND THEIR SUMS

EMRAH KILIG

ABSTRACT. In this paper, we derive new recurrence relations and
generating matrices for the sums of usual Tribonacei numbers and
4n subscripted Tribonacei sequences, {T.m}, and their sums. We
obtain explicit formulas and combinatorial representations for the
sums of terms of these sequences. Finally we represent relationships
between these sequences and permanents of certain matrices.

1. INTRODUCTION

The Tribonacci sequence is defined by for n > 1
L1 =Tn+Tho1 + Ths
where Tp = 0,7} = 1,T, = 1. The few first terms are
0,1,1,2,4,7,13,24,44,81,149,....

We define T;, = 0 for all n < 0. The Tribonacci sequence is a well known
generalization of the Fibonacci sequence. In (see page 527-536, (3]), one
can find some known properties of Tribonacci numbers. For example, the
generating matrix of {7}, } is given by

11 17" Trti Tn+Thno1 Tn
Q"=11 00 = T Tac1+Th_a Thy
010 Tn—l Tn.—2 + Tn—3 Tn—2

For further properties of Tribonacci numbers, we refer to [1, 4, 5).
Let

Sn =Y o Tk (1.1)
In this paper, we obtain generating matrices for the sequences {T},},{Tun},
{Sr} and {S4n}. (The second result follows from a third order recurrence
for Ty,.) We also obtain Binet-type explicit and closed-form formulas for
Sn and Sy,. Further on, we present relationships between permanents of
certain matrices and all the above-mentioned sequences.
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2. ON THE TRIBONACCI SEQUENCE {T,}

In this section, we give two new generating matrices for Tribonacci num-
bers and their sums. Then we derive an explicit formula for the sums.
Considering the matrix @, define the 4 x 4 matrices A and B, as shown:

1 000 1 0 0 0

_ 1 111 _ Sn Tn+1 To +Thot Tn
A=lg 1 00| 2Be=| g5 | T Tui4+Tes Tau
0010 Sn—2 Tno1 Th2+Th-z Tho2

where S, is given by (1.1).
Lemma 1. Ifn >3, then Sp =1+ Sn—1 + Sn—2 + Sn—3

Proof. Induction on n. O

Theorem 1. Ifn > 3, then A® = B,,.

Proof. Using Lemma 1 and direct computation, we have B, = AB,_i,
from which it follows that B, = A"~3Bs. By direct computation, By = 43
from which the conclusion follows. O

By the definition of matrix B, we write Bpym = BnBm = BnpBy, for
all n,m > 3. From a matrix multiplication, we have the following Corollary
without proof.

Corollary 1. Forn >0 and m > 3,
Spam = Sp + Tns1Sm + (T, + T, _1) Sm—1+ TnSm-2.

The roots of characteristic equation of Tribonacci numbers, z3 — 2% -
z—1=0, are

(1+ i19+3v33+ ‘{/19—3\/%) /3,

a =
B = (1+w\“/19+3\/3_3'+w2“ 19—3\/3_3)/3,

Y = (1+w2{/5+3¢3—3+w</19_3¢3‘3)/3

where w = (1+ z\/ﬁ) /2 is the primitive cube root of unity.
The Binet formula of Tribonacci sequence is given by

(e 3| ﬂv-+l 1

Th = oHe= T Brap=7 T G=aG=A)

Computing the eigenvalues of matrix A, we obtain «, 8,7,1.
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Define the diagonal matrix D and the matrix V as shown, respectively:

1 0 00 1 0 0 0
_ 10 a0 0 _ | -1/2 o B2 42
D=1¢g o g o|emdV= -1/2 a B =«
00 0 5 -1/2 1 1 1
One can check that AV = V D. Since the roots o, 3, v are distinct, it follows

that det V # 0.
Theorem 2. Ifn >0, then S, = (Tpy2 + Tn ~ 1) /2.

Proof. Since AV = VD and detV # 0, we write V-AV = D. Thus the
matrix A is similar to the matrix D. Then A®V = VD". By Theorem 1,
we write B,V = V.D". Equating the (2, 1)th elements of the equation and
since Ty41 + 2T + Ty = Tny2 + Th, the theorem is proven. O

Define the 4 x 4 matrices R and K as shown:

2 00 -1 Sn41 —Sncz =Spo1 —Sn

_ 1 00 0 _ Sn TOon-3 —In-2 —Sn-l
k= 010 0} Kn = Sn-1 —Sn—4 ~Sp-3 —=Sn-2
001 0 Sn—2 —8n_5 —Sn-q4 —Sn-3

where S,, is given by (1.1).
Theorem 3. Ifn > 4, then R™ = K,,.

Proof. Considering 25,41 — Sp—2 = Sn41+ Sny1 — Spen = Sp41+ Tt +
T +Tn_1 = Snt2, we write K, = RK,_1.Bya simple inductive argument,
we write K, = R"~1 K. By the definitions of matrices R and K, one can
see that K} = R and so we have the conclusion, K, = R™. O

Then the characteristic equations of matrix R and sequence {S,} is
zt-2234+1=0. Computing the roots of the equation, we obtain «, 3,7,
1.

Corollary 2. The sequence {S,} satisfies the following recursion, forn > 3
Sn = 2S -1 Sn—4
where So = O, S] = 1, Sz = 2, 53 =4.

Define the Vandermonde matrix V; and diagonal matrix D; as follows:

a362~,31 a 0 00
e g o s oo
=ty s 4 1| @Di=|g 5 L o

1 1 1 1 0001
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Let w; be a 4 x 1 matrix such that w; = [ o™=+ proitd yn-itd g ]T

and Vj(i) be a 4 x 4 matrix obtained from V; by replacing the jth column
of Vi by w;.

Theorem 4. Forn > 4, ki; = det (V}“) / det (V) where K, = [kij].

Proof. One can see that RV; = V1 D;. Since ¢, 3,7,1 are different and V)
is a Vandermonde matrix, V; is invertible. Thus we write Vl'lRVl =D
and so R"V; = Vi D}. By Theorem 3, K,V; = Vi D}'. Thus we have the
following equations system:

oBki + ki + akiz + kg = ot

Bkiy + BPkio + Bkiz + kg = AT

ki + Vkio + Yhkizs + kia = yniH
kia+kio+tka+ka = 1

where K, = [ki;]. By Cramer solution of the above system, the proof is
seen. a

Corollary 3. Then forn > 0,
au+‘2 ﬁ"+2 2

Sn = e + BeNE-aE= T GeDe=aGA)
Proof. Taking i = 2, j = 1 in Theorem 4, kg; = S,. Computing det V; and
det (Vlm) ,weobtaindetV; = (a-1)(8-1) (v = 1) (a-B)(a=7)(B-7)
and det (VI(Z)) = ™2 (§ — ) (1= (B +7))+By-B"* (@ - 7) (1-(a + 1)+

ay) + 712 (a - B) (1 — (@ + B) + aB), respectively. So the proof is com-
plete. a

From Corollary 3 and Theorem 2, we give the following result: For n > 0

Tu+2+Tn—l — Q"+2 + B"+2 + '1"+2
2 = @D(@=fa—7) 7 B-1D(B-a)(B-7) ' (v-D{v-a)(v-8)°
3. ON THE TRIBONACCI SEQUENCE {T4n}

In this section, we consider the 4n subscripted Tribonacci numbers. First
we define a new third-order linear recurrence relation for the 4n subscripted
Tribonacci numbers. Then we give a new generating matrix for these terms,
Tyn. We obtain new formulas for the sequence {Ty.} .

Lemma 2. Forn > 1,
Tatnt1) = 11T4n + 5T4(n-1) + Ta(n-2)
where To =0, Ty = 4, Ty = 44.
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Proof. (Induction on n) . If n = 2, then 1173 + 574 + T = 11 (44)+5(4)+
0 = 504 = Ti2. Suppose that the claim is true for n > 2. Then we show
that the claim is true for n + 1. By the definition of {T},}, we write
11Ty 1) + 5T4n + Tyin-1)
= 22Tyny2 + 11Tty + 26Ty, + 1374y + 11Ty, _»
= dMTyn41 + 37Ty + 24T4n

T4n+8-
Thus the proof is complete. O
Define the 4 x 4 matrices F' and G,, defined by

1 0 00 1 0 0 0
F=|1 11 51 Go=2L| 5 Tings  5Tin+Tiny Tsn

0 1 0 07" " T,| a1 Tan 5Tun-a+Tun-s Tin4

0 0 10 Sn-2 Tin-4 STan-8 + Tyn—12 Tan-s
where s, is given by

$n =Y oo Ta- (3.1)

Since s, = T4y, + sp—; and considering Lemma 1, we have the following
Corollary without proof.

Corollary 4. Ifn > 0, then F* = G,,.

After some computations, the eigenvalues of matrix F are o4, 8%,+* and
1.
Define the matrices A and D, as shown:

1 0 0 0 1 0 0 0
_ | -1/16 of BB 48 [0t 0 0
A=l _iy16 ot g¢ oo | 2dD2=14 Bt 0
-1/16 1 1 1 0 0 0 ~*

Theorem 5. Ifn > 0, then sp = (Tynt4 + 6T4n + Tyn—a — Ts) /T2.

Proof. Since e, and v are different, and extending to the first row, we
obtain det A # 0. One can check that FA = AD, so that F"A = ADE.
By Corollary 4, Gh,A = AD3. Equating the (2.1) elements of this matrix
equation, the theorem is proven. a

In the above, we give the generating matrix for both the terms of {Ty,}
and their sums. Now we give a new matrix to generate only the sums.
Define the 4 x 4 matrices L and P as shown:

12 -6 -4 -1

1 0 0 0
=19 1 0 o
0 0 1 0
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and
Sn+1 - (63n +4s,1 + 3n—2) - (4311 + sn—l) —Sn

P. = _]_~_ Sn - (6sn—1 +45p-2 + 3n—3) - (4511—1 + 3n—2) —8n-1

"T Ty | sn-1 —(6sn-2+45n-3+5n-4) —(45n-2+Sn-3) —Sn-2

Sp-2 — (6311—3 +4sp—q + Sn—s) - (4sn—3 + Sn—4) —Sn-3

where s, given by (3.1).

Theorem 6. Ifn > 4, then L™ = P,.

Proof. The proof follows from the induction method. O

The characteristic equation of matrix L is z# — 122® + 622 + 4z +1 =0.
Computing the roots of the equation, we obtain a, 8, and 1. Define the 4 x
4 Vandermonde matrix A; and diagonal matrix D3 as shown, respectively:

a2 g2 412 1 o 0 0 0
I L | 1o g 00
Al—— C!4 ﬂ4 74 1 and D3— 0 0 74 0
1 1 1 1 0 0 0 1

Since a, 8,7,1 are different and A; is 2 Vandermonde matrix, det Ay #0.
Theorem 7. Then for n > 4,

_ AntK ﬂdv.«)—u An+4a

sn=Ta ((u‘—l)(aa‘—ﬁ‘)(n‘—'r‘) + FEE—E— (74_1)(01_,4)(,,4_,4)) '
Proof. It can be shown that LA; = Ay D3. Since det A; # 0, the matrix A

is invertible. Thus we write A7'LA; = Dj so that L"A; = A, D3. From
Theorem 6, we know L™ = P,. Thus P,A; = A, D%. Clearly we have the
following linear equations system: '

o2p; + alpig + opis +pu = oATIFIO

B2pi + Bpi + Bpis+pia = gin—i+16

V20 + PPz + Vipiz +pia = AT
pil+Pi2+pPiz+pa = 1

where P, = [pi;] . Let u; be a 4 x 1 matrix as follows:
T )
u = [ QAr—i)+16  gUR=D+I6  a(n-i)+16 ) and Ag‘g beadx4d

matrix obtained from A; by replacing the jth column of AT by u;. By
Cramer solution of the above system and since p2; = sn /T4,

pis = det (A{")) / det (A1) and so s, = Ty det (A2) /et (A1)
Also we obtain
det (Aﬂ) = gint8 (34 -1) (v - 1) (54 — ) - gin+e (o — 1) x
(v 1) (o =) + 9"+ (o ~ 1) (B - 1) (o - A7)
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and
det (A1) = (a* = 1) (8* - 1) (v* - 1) (o* - B*) (&* = *) (B* - ") .
Thus the proof is easily seen. O
Corollary 5. Forn > 3, the sequence {s,} satisfies the following recursion
Sp=128,_1 — 68,2 — 48,3 ~ Sp_4
where sg = 0, 87 = 4, s = 48, 53 = 552, 54 = 6320.

Since the recurrence relations of sequence {Ty,} and their sums, we can
give generating functions of them :
Let G(z) =Ty + Tyz + Tgx? + Tyox® + ... + Typz" +.... Then
G (z) = Toto Tunt" = tomritmr—ps-

Let W (z) = 812 + s22% + s32% + ... + 5,2™ + ..., where s, is as before.
Then

_ oo n _ 4;
W (z) =3 losna" = I s e
4. DETERMINANTAL REPRESENTATIONS

In this section, we give relationships between the sequence {T4,}, its
sums and the permanents of certain matrices. In [6], Minc derived an in-
teresting relation including the permanent of (0, 1)-matrix F' (n, k) of order
n and the generalized order-k Fibonacci numbers. According to the Minc’s
result, for k£ = 3, the n x n matrix F (n,3) takes the following form

1 1 1 0]
11 1
F(n,3)= 1 . 01|
11
K 1 1]

then perF (n,3) = Th4+1 where T}, is the nth Tribonacci number.

For n > 1, define the n x n matrix M,, = [m;;| with my; = m;; =1 for
allz’, Mit1,i = My it1 =1forl _<__1._§'n,—~1, mi,,~+2=1 for 1 <i<n-2
and 0 otherwise.

Theorem 8. Ifn > 1, then perM, = Y & ( T;.

Proof. (Induction on n) If n = 2, then perM,; = T} 4+ T, = 2. Suppose that
the equation holds for n. Then we show that the equation holds for n4-1. By
the definitions of matrices F (3,n) and M, expanding the perM,,; with
respect to the first column gives us perM,, 4, —perF (3, n) +perM,,.By our
assumption and the result of Minc, perMp 41 = Thy1+ Y 1o i = Z:‘fol
Thus the proof is complete.
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Define the n x n matrix Uy, = [u;j] withu;; =2for1 <i<n, ujyq =1
for1<i<n-—1, 443 =—-1for 1 <i<n -3 and 0 otherwise.

Theorem 9. Then for n > 4,
pETUn = Sn+l
where S, is as before and perlU, = 2, perU; = 4, perUs = 8, perlUy = 15

Proof. Expanding the perU, according to the last column four times, we
obtain

perU, = 2perU,_y — perUn_4. (4.1)
Since perly = Sy = Y2 T;, petlUz = S3 = Yo o Ti, petlUs = S =
z;oTi, petUy = S5 = Zf=01‘,-, then, by Corollary 2, the recurrence
relation in (4.1) generate the sums of Tribonacci numbers. Thus we have
the conclusion. O

Now we derive a similar relation for terms of sequence {74} . Define
the n x n matrix H, = [h;;] with hy; = 11 for 1 <4 < n, h;;4y = 5 for
1<i<n-1, hijgo=1for1<i<n—-2, hiyyifor1<i<n-—1and0
otherwise.

Theorem 10. Then forn > 1
perHy, = Tyiny1)/Ts
where perH, = Ty [T;.

Proof. Expanding the perT,+1according to the last column, by our assump-
tion and the definition of H,, we obtain

perHp4, = 11perH,, + SperH,_; + perHy 2. (4.2)

Since perH; = Tg/Ty, perHs = T12/Ty and perHz = T16/T4, by Lemma 2,
the recurrence relation in (4.2) generates the Ty(n41)/T4. The theorem is
proven. O

For n > 1, we define the n x n matrix Z, as in the compact form, by the
definition of Hy,

O e

Theorem 11. If n > 1, then perZ, = (Y 1 Tai) /Ts.
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Proof. (Induction on n) If n = 2, then perZ, = (Z?=1T4i) [Ta = 12.
Suppose that the equation holds for n. We show that the equation holds for
n+1. Thus, by the definitions of H, and Z,, expanding perZy . according
to the first column gives us perZ,4+; =perZ,+perH,. By our assumption
and Theorem 10, we have the conclusion. 0

Finally, define the 4 x 4 matrix V, = [vy] with vy = 12 for 1 < i <
Ny Vi = —6forl1<i<n-1,v,p0=-4forl1<i<n-2 Viits =
~lfor1<i<n-3, viy1i=1for 1 <i<n-1and 0 otherwise.

Theorem 12. Then forn > 1,
perY, = s, /Ty.
where perY, = 53 /Ty, perYs = s3/Ty,perYs = s4 [Ty, perYs = s4/Ty.
Proof. Expanding the perY, according to the last column gives
perY, = 12perY,,_; — 6perY,_; — 4perY,_3 — perY;, _,. (4.3)

Since perY: = s3/Ty = 12, perY = s3/T; = 138, perYs = 512/Ty =
1580, perYy = s4/T4 = 18083 and by Corollary 5, the recurrence relation in
(4.3) generate the terms of sequence {s,}. Thus the proof is complete. O

5. COMBINATORIAL REPRESENTATIONS

In this section, we consider the result of Chen about the nth power of a
companion matrix, we give some combinatorial representations.
Let Ax be a k x k companion matrix as follows:

C C ... Ck
1 0 0
Arlenegyeye)=1| . . .

0 0 1 o0

Then one can find the following result in [2]:

Theorem 13. The (,5) entry ag') (c1,¢€2,- -, ck) in the matriz A% (cy,c2,. - . Ck)

is given by the following formula:

a (enezeya)= T ahapde e (Bt (5.1)

(h,t-g,...lk)
where the summation is over nonnegative integers satisfying t; +2ta +. ..+
ktr =n —i+j, and the coefficients in (5.1) is defined to be 1 if n =14 — j.
Corollary 6. Let S, be the sums of Tribonacci numbers. Then
Sn —_ Z (T1+T2+":4+7‘4)2r| (_1)7‘4

1,372,748,
(r1,72,73,74)

where the summation is over nonnegative integers satisfying vy +2rs +3r3+
drgy =n—1.
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Proof. In Theorem 13, if j = 1,i = 2,¢; = 2,c; = ¢3 = 0 and ¢4 = —1, the
proof follows from Theorem 3 by considering the matrices R and K. U

Corollary 7. Let T, be the nth Tribonacci number. Then

— t1+t2+t: ¢ et
Tan = (t %:f, )( lt;,t:,g‘.”)]_l 1582
1582,03

where the summation is over nonnegative integers satisfying ty +2¢2 +3t3 =
n— 1.

Proof. When j = 1,i = 2,¢c; = 11,¢; = 4,c3 = 1 in Theorem 13, the proof
follows from Corollary 4 by ignoring the first columns and rows of matrices
F and G,.. O

Corollary 8. Let s, be as before. Then
Sp = 2 (1'1+T2+T:«+r4)12r|6r24r3 (_1)T2+1'3+7‘4

T1,72,73,T4

(r1,72,7m3,71)
where the summation is over nonnegative integers satisfying r1+2ra+3r3+
dry=n-1.

Proof. When j = 1,i = 2,¢; = 12,¢p = —6,¢3 = —4,¢4 = —1 in Theorem
13, the proof follows from Theorem 6 by considering the matrices L and
P,. 0

ACKNOWLEDGEMENT

The author would like to thank to the anonymous referee for a number
of helpful suggestions.

REFERENCES

[1] K. Alladi, V.E. Hoggatt, Jr., On Tribonacci numbers and related functions, Fibonacci
Quart. 15 (1) (1977), 42-45.

[2] W.Y.C. Chen and J.D. Louck, The Combinatorial Power of the Companion Matrix,
Linear Algebra Appl. 232 (1996): 261-278.

[3] T. Koshy, Fibonacei and Lucas numbers with applications. Wiley-Interscience, New
York, 2001.

[4] P. Y. Lin, De Moivre-type identitics for the Tribonacei numbers. Fibonacci Quart.
26 (2) (1988), 131 134.

[5] C. P. McCarty, A formula for Tribonacei numbers. Fibonacci Quart. 19 (5) (1981),
391-393.

[6] H. Mine, Parmanents of (0,1)-Circulants, Canad. Math. Bull. 7 (1964), 253-263.

TOBB EcCoxoMICS AND TECHNOLOGY UNIVERSITY MATHEMATICS DEPARTMENT 06560

SOGCTOZ0 ANKARA TURKEY
E-mnail address: ekilicQetu.edu.tr

22



