Cyclically Decomposing the Complete Graph into Cycles with Pendent Edges

Shung-Liang Wu and Hui-Chuan Lu National United University Miaoli, Taiwan, R.O.C.

Abstract

Let C_m be a cycle on $m \geq 3$ vertices and let $\Theta_{n-m}C_m$ denote the class of graphs obtained from C_m by adding $n-m \geq 1$ distinct pendent edges to the vertices of C_m . In this paper it is proved that for every T in $\Theta_{n-m}C_m$, the complete graph K_{2n+1} can be cyclically decomposed into the isomorphic copies of T. Moreover, if m is even, then for every positive integer p, the complete graph K_{2pn+1} can also be cyclically decomposed into the isomorphic copies of T.

1 Introduction

Let G be a simple graph. A G-decomposition of $K_n = (V, E)$ is a collection C of edge-disjoint subgraphs of K_n such that each member of C is isomorphic to G, and each edge of E appears exactly once in a member of C. Here K_n is a complete graph on n vertices. A G-decomposition of K_n is also called a (K_n, G) -design [4]. In particular, if G is a cycle with m (≥ 3) vertices (namely, an m-cycle), then a (K_n, G) -design is known as an m-cycle system of order n. There have been many results considering the existence of cyclic m-cycle system of order n. See, for example, [2, 3, 6, 7, 10-14].

Throughout this paper, we consider the complete graph with odd number of vertices. Let Π be an automorphism group of a (K_n, G) -design, i.e., a group of permutations on n = |V| vertices leaving the collection C invariant. If there is an automorphism $\pi \in \Pi$ of order n, then the (K_n, G) -design is called *cyclic*. For a cyclic (K_n, G) -design, the vertex set V can be identified with Z_n , i.e., the residue group of integers modulo n. Thus the

automorphism can be represented by

$$\pi: i \to i+1 \pmod{n}$$
 or $\pi: (0,1,\ldots,n-1)$

on the vertex set $V = Z_n$.

Let Γ be a member of the collection C. By $\Gamma + k$ we mean the graph in which each vertex is renamed as the addition of the corresponding vertex in Γ and an integer $k \in Z_n$ modulo n. An orbit of Γ is a set of distinct Γ in the collection $\{\Gamma + i \mid i \in Z_n\}$. The length of an orbit is its cardinality, i.e., the minimum positive integer k such that C + k = C. An orbit of Γ with length n is said to be full and otherwise short. A base graph (or starter) of an orbit O is a member in O that is chosen arbitrarily. Any cyclic (K_n, G) -design should be generated from full or short base graphs.

Let O_j $(1 \leq j \leq r)$ be orbits of a cyclic (K_n, G) -design and $\Gamma_j \in O_j$ be a base graph of O_j . The list of differences in Γ_j is the multiset $\partial \Gamma_j = \{\pm (x-y) \mid \{x,y\} \text{ is any edge in } \Gamma_j\}$. Given a set $B = \{\Gamma_1, \ldots, \Gamma_r\}$, the list of differences from B is defined as the union of differences of $\partial \Gamma_j$ $(1 \leq j \leq r)$, i.e., $\partial B = \bigcup_{j=1}^r \partial \Gamma_j$.

It should be mentioned that any cyclic or 1-rotational graph decomposition using the method of partial differences which generalize the above differences has been introduced in [1].

Theorem 1.1. Let G be a graph and let B be a set of full base graphs, each isomorphic to G, such that $\partial B = Z_{2n+1} - \{0\}$. Then there exists a cyclic (K_{2n+1}, G) -design.

Let $\Theta_{n-m}C_m$ denote the class of graphs obtained from C_m by adding $n-m \ (\geq 1)$ distinct pendent edges to the vertices of C_m .

In this paper the main result is the following:

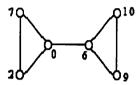
Theorem 1.2. Let m and n be any positive integers with $n > m \ge 3$. Then there exists a cyclic (K_{2n+1}, T) -design for any $T \in \Theta_{n-m}C_m$. Moreover, if m is even, then for any positive integer p, there exists a cyclic (K_{2pn+1}, T) -design for any $T \in \Theta_{n-m}C_m$.

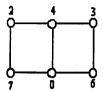
2 Definitions and Preliminaries

Let G = (V, E) be a simple graph with n edges. A proper labeling of G is an injection $f: V \to \{0, 1, ..., 2n\}$ such that the induced labeling $f^*: E \to \{1, 2, ..., n\}$ on the edges, defined through $f^*(\{u, v\}) = |f(u) - f(v)|$, sends

E bijectively onto $\{1, 2, ..., n\}$; and the proper labeling f is said to be λ -proper if there exists an integer λ such that, for each edge $\{u, v\}$ in G, either $f(v) \leq \lambda < f(u)$ or $f(u) \leq \lambda < f(v)$.

As an example, consider the graphs, shown in Figure 1, that have a proper labeling and a 3-proper labeling, respectively. It should be noted that a proper labeling is a stronger version of a ρ -labeling [9].





(1) A graph with a proper labeling

(2) A graph with a 3-proper labeling

Figure 1.

The concept of a graceful valuation and an α -valuation was first introduced by Rosa [9] (known as graceful labeling and α -labeling). A graceful labeling of G is an injection f of V(G) into the set $\{0,1,\ldots,n\}$ with the property: if for each edge $\{u,v\}$ in G, the value $f^*(\{u,v\})$ of the edge $\{u,v\}$ is defined by $f^*(\{u,v\}) = |f(u)-f(v)|$ then f^* is a bijection of E(G) onto the set $\{1,2,\ldots,n\}$. A graceful labeling is an α -labeling if there is an integer λ $(0 \le \lambda \le n-1)$ such that for each edge $\{u,v\}$, $\min\{f(u),f(v)\} \le \lambda < \max\{f(u),f(v)\}$.

Clearly, a graph admitting an α -labeling or a λ -proper labeling must be bipartite, and a graceful labeling (α -labeling) is a proper labeling (λ -proper labeling).

Proposition 2.1. If a graph G with n edges has a proper labeling, then there exists a cyclic (K_{2n+1}, G) -design.

Proof. Since the graph G has a proper labeling, the graph G itself is a full base graph with $\partial G = \{\pm 1, \pm 2, \dots, \pm n\}$. Then the assertion follows from Theorem 1.1.

Remark. The consequence in Proposition 2.1 is a special case of Theorem 7 in [9].

Let G be a bipartite subgraph of K_v with edge set $\{\{a_1,b_1\},\{a_2,b_2\},\ldots,\{a_n,b_n\}\}$, where $a_i < b_i$ for $1 \le i \le n$. By $G \oplus k$ we mean the graph with

edge set $\{\{a_1, b_1 + k\}, \{a_2, b_2 + k\}, \dots, \{a_n, b_n + k\}\}$, where the value $b_i + k$ is understood modulo v.

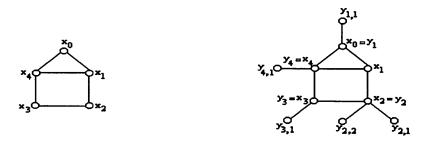
Proposition 2.2. If a graph G with n edges has a λ -proper labeling, then there exists a cyclic (K_{2pn+1}, G) -design for every positive integer $p \geq 1$.

Proof. It is clear that G is bipartite since G has a λ -proper labeling. Let $\{\{a_1,b_1\},\{a_2,b_2\},\ldots,\{a_n,b_n\}\}$ be the edge set of G satisfying $b_i-a_i=i$ for $1 \leq i \leq n$. Consider the graphs $G \oplus in$, $1 \leq i \leq p-1$. Obviously, $G \cong G \oplus in$ for $1 \leq i \leq p-1$ and $\partial(G \oplus in) = \{\pm (in+1), \pm (in+2), \ldots, \pm (i+1)n\}$. Choose the graphs $G, G \oplus n, \ldots, G \oplus (p-1)n$ as the base graphs and the proof then follows from Theorem 1.1.

Remark. Proposition 2.2 is a generalization of theorem 8 in [9].

Notice that not every graph has proper labelings. It can be proved that if G is an Eulerian graph with $|E(G)| \equiv 1$ or 2 (mod 4), then G has no proper labeling.

By $\Theta_k G$ we mean the class of graphs obtained from G by adding any $k (\geq 1)$ distinct pendent edges to the vertices of G. Let x_0, x_1, \ldots, x_s $(s \leq n)$ be the vertices of G. The vertices in $\Theta_k G$ that have additional end vertices are denoted by y_1, y_2, \ldots, y_p $(1 \leq p \leq s+1)$, and let $y_{j,1}, y_{j,2}, \ldots, y_{j,q_j}$ $(q_j \geq 1)$ be the additional end vertices adjacent to the vertex $y_j, 1 \leq j \leq p$. Clearly, $\sum_{i=1}^p q_i = k$. The graph, depicted in Figure 2, is an easy example.



(1) A graph G

(2) A member in Θ_5G

Figure 2.

Proposition 2.3. If a graph G with n edges has a graceful labeling, then there exists a cyclic $(K_{2(n+k)+1}, T)$ -design for every positive integer k and every $T \in \Theta_k G$.

Proof. Let h be a graceful labeling of G. Without loss of generality, assume

that $h(x_i) < h(x_{i+1})$ and $h(y_j) < h(y_{j+1})$ for $0 \le i \le s-1$ and $1 \le j \le p-1$. Let f be a labeling of $\Theta_k G$ defined as

$$f(u) = \left\{ \begin{array}{ll} h(x_i), & \text{if } u = x_i, \ 0 \leq i \leq s; \ \text{and} \\ h(y_j) + n + t + \sum_{i=1}^{j-1} q_i, & \text{if } u = y_{j,t}, \ 1 \leq j \leq p \ \text{and} \ 1 \leq t \leq q_j, \end{array} \right.$$

where each vertex u is in T.

An easy computation shows that the labeling f is a proper labeling of T, and the proof follows from Proposition 2.1.

Proposition 2.4. Let p and k be any positive integers. If a graph G with n edges has an α -labeling, then for every $T \in \Theta_k G$, there exists a cyclic $(K_{2p(n+k)+1}, T)$ -design.

Proof. Let h be an α -labeling of G. So G is bipartite on $X = \{x_i \mid h(x_i) \leq \lambda, 0 \leq i \leq r-1\}$ and $Y = \{x_i \mid h(x_i) > \lambda, r \leq i \leq s\}$, where r is a positive integer less than or equal to s. Also, assume that $h(x_i) < h(x_{i+1})$ and $h(y_j) < h(y_{j+1})$, $0 \leq i \leq s-1$ and $1 \leq j \leq p-1$. Clearly, $h(x_0) = 0$, $h(x_{r-1}) = \lambda$, and $h(x_r) = \lambda + 1$, $h(x_s) = n$. Let $c = \min\{i \mid h(y_i) > \lambda\}$ and let $\ell = \sum_{i=c}^p q_i$, where q_i is the number of end vertices of the vertex y_i . Let us introduce a labeling f of T given by

$$f(u) = \begin{cases} h(x_i) + n + \ell - \lambda - 1, & \text{if } u = x_1, 0 \le i \le s; \\ h(y_j) + 2n + 2\ell + t - \lambda - 1 + \sum_{i=1}^{j-1} q_i, & \text{if } u = y_{j,t} \text{ and } h(y_j) \le \lambda, \\ 1 \le t \le q_j; & \text{and } h(y_j) + t - \lambda - 2 + \sum_{i=c}^{j-1} q_i, & \text{if } u = y_{j,t} \text{ and } h(y_j) > \lambda, \\ 1 \le t \le q_j, \end{cases}$$

where each vertex u is in T.

By routine computation, it can be verified that f is a $(n + \ell - 1)$ -proper labeling of T. By virtue of Proposition 2.2, the desired result follows. \square

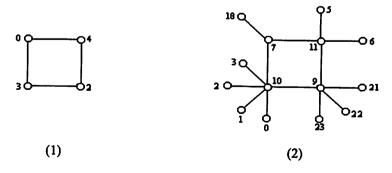


Figure 3.

As an example, consider the cycle C_4 with an α -labeling and a member T in $\Theta_{10}C_4$ with a 9-proper labeling, shown in Figure 3-(1) and 3-(2), respectively.

By a path we mean a tree with exactly two end vertices. A caterpillar is a tree with the property that the removal of its end vertices leaves a path; similarly, a lobster is a tree with the property that the removal of its end vertices leaves a caterpillar.

Since any path and caterpillar have α -labelings [9], Proposition 2.4 implies the following.

Corollary 2.5. Let T_{ℓ} be a caterpillar or lobster with n edges. Then for any positive integer p, there exists a cyclic (K_{2pn+1}, T_{ℓ}) -design.

Note that the same result as Corollary 2.5 can also be found in [5]. Moreover, in 1963, G. Ringel [8] posed the conjecture that for every tree T with n edges, there exists a (K_{2n+1},T) -design. From the fact that K_{2pn+1} can be cyclically decomposed into isomorphic copies of a caterpillar or lobster with n edges, the Ringel's conjecture seems to be further generalized to the following:

Conjecture. Suppose that T is a tree with n edges. Then for any positive integer p, there exists a cyclic (K_{2pn+1}, T) -design.

Before proving the main result, we also need a preliminary lemma.

Lemma 2.6. [9]

- (1) The m-cycle C_m has an α -labeling if and only if $m \equiv 0 \pmod{4}$.
- (2) The m-cycle C_m has a graceful labeling if and only if $m \equiv 0$ or 3 (mod 4).

3 Main result

To obtain the main result, it is sufficient to show that each m-cycle has a graceful labeling, and in particular, if m is even, that the m-cycle has an α -labeling.

By virtue of Lemma 2.6, the 4m- and (4m+3)-cycles have an α -labeling and a graceful labeling, respectively, but the (4m+2)- and (4m+1)-cycles do not. In order to prove that for $m \equiv 2$ (or 1) (mod 4), each member in $\Theta_{n-m}C_m$ has an α -labeling (or graceful labeling), we shall use the class Θ_1C_{4m+2} (or Θ_1C_{4m+1}) instead of C_{4m+2} (or C_{4m+1}).

Assume $\Theta_1C_{4m+2}\ni G=(u_0,v_0,u_1,v_1,\ldots,u_{2m},v_{2m};w)$ with vertex set $\{u_i,v_i,w\mid i\in Z_{2m+1}\}$ and edge set $\{\{u_i,v_i\},\{v_i,u_{i+1}\},\{u_0,w\}\mid i\in Z_{2m+1}\}$; similarly, $\Theta_1C_{4m+1}\ni G^*=(u_0,v_0,u_1,v_1,\ldots,u_{2m-1},v_{2m-1},u_{2m};w)$ with vertex set $\{u_i,v_i,u_{2m},w\mid i\in Z_{2m}\}$ and edge set $\{\{u_i,v_i\},\{v_i,u_{i+1}\},\{u_{2m},u_0\},\{u_0,w\}\mid i\in Z_{2m}\}$.

Let f and g be respectively the labelings of G and G^* defined as

$$f(x) = \begin{cases} i, & \text{if } x = u_i, 0 \le i \le 2m; \\ 4m + 1 = i, & \text{if } x = v_i, 0 \le i \le m - 2; \\ 4m - i, & \text{if } x = v_i, m - 1 \le i \le 2m - 1; \\ 4m + 3, & \text{if } x = v_{2m}; \text{ and } \\ 4m + 2, & \text{if } x = w; \end{cases}$$

and

$$g(x) = \begin{cases} i, & \text{if } x = u_i, 0 \le i \le 2m - 1; \\ 4m + 2, & \text{if } x = u_{2m}; \\ 4m - i, & \text{if } x = v_i, 0 \le i \le m - 2; \\ 4m - 1 - i, & \text{if } x = v_i, m - 1 \le i \le 2m - 1; \text{ and } \\ 4m + 1, & \text{if } x = w; \end{cases}$$

A routine verification shows that f and g are certainly an α -labeling and a graceful labeling of G and G^* , respectively.

Combining these results with Propositions 2.3 and 2.4, we have the desired result.

Acknowledgement. The authors are grateful to the referee for his/her valuable comments and suggestions.

References

- [1] M. Buratti, A description of any regular or 1-rotational design by difference methods, Booklet of the abstracts of *Combinatorics* 2000, pp. 35-52 (http://www.mat.uniromal.it/~combinat/gaeta.pdf).
- [2] M. Buratti and A. Del Fra, Existence of cyclic k-cycle systems of the complete graph, Discrete Math. 261 (2003), 113-125.
- [3] H.L. Fu and S.L. Wu, Cyclically decomposing the complete graph into cycles, *Discrete Math.* 282 (2004), 267-273.
- [4] K. Heinrich, Graph decompositions and designs, in: CRC Handbook of Combinatorial Design (C.J. Colbourn and J.H. Dinitz eds.), CRC Press, Boca Raton, FL, 1996, pp. 361-366.

- [5] C. Huang and A. Rosa, Decomposition of complete graphs into Trees, Ars Combin. 5 (1978), 23-63.
- [6] A. Kotzig, Decompositions of a complete graph into 4k-gons. (Russian) Mat. Fyz. Casopis Sloven. Akad. Vied 15 (1965), 229-233.
- [7] R. Peltesohn, Eine Lösung der beiden Hessterschen Disserenzenprobleme, Compositio Math. 6 (1938), 251-257.
- [8] G. Ringel, Problem 25, in Theory of Graphs and its Applications, Proc. Symposium Smolenice 1963, Prague (1964), 162.
- [9] A. Rosa, On certain valuations of the vertice of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966), Pordon and Breach, N.Y. and Dunod, Pairs (1967), 349-355.
- [10] A. Rosa, On cyclic decompositions of the complete graph into (4m+2)-gons, Mat. Fyz. Casopis Sloven. Akad. Vied 16 (1966), 349-352.
- [11] A. Rosa, On cyclic decompositions of the complete graph into polygons with odd number of edges (Slovak), Casopis Pest. Mat. 91 (1966), 53-63.
- [12] A. Rosa, On decompositions of the complete graph into 4k-gons. (Russian) Mat. Fyz. Casopis Sloven. Akad. Vied 17 (1967), 242-246.
- [13] A. Vietri, Cyclic k-cycle system of order 2km + k; a solution of the last open cases, J. Combin. Des. 12 (2004), 299-310.
- [14] S.L. Wu and H.L. Fu, Cyclic *m*-cycle systems of the complete graph, in preprint.