Eccentricity sequences and
eccentricity sets in digraphs

Joan Gimbert*

Departament de Matematica
Universitat de Lleida, 25001 Lleida, Spain
e-mail: joangim@matematica.udl.es

Nacho Lépez

Departament de Matematica
Universitat de Lleida, 25001 Lleida, Spain
e-mail: nlopez@matematica.udl.es

Abstract

The eccentricity e(v) of a vertex v in a strongly connected digraph
G is the maximum distance from v. The eccentricity sequence of a
digraph is the list of eccentricities of its vertices given in nondecreas-
ing order. A sequence of positive integers is a digraphical eccentric
sequence if it is the eccentricity sequence of some digraph. A set of
positive integers S is a digraphical eccentric set if there is a digraph
G such that S = {e(v), v € V(G)}. In this paper, we present some
necessary and sufficient conditions for a sequence S to be a digraph-
ical eccentric sequence. In some particular cases, where either the
minimum or the maximum value of S is fixed, a characterization is
derived. We also characterize digraphical eccentric sets.

Keywords: eccentricity, eccentric sequence, eccentric set.

1 Introduction

Given a graph [resp., digraph] G it is ‘easy’ to compute the list of its eccen-
tricities. Nevertheless, the converse problem, which consists to determine
if given a sequence S there is a graph [resp., digraph] G such that S is the
eccentricity sequence of G, seems to be difficult. Lesniak [4] investigated
eccentricity sequences of graphs and obtained some necessary and sufficient
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conditions for a sequence to be eccentric. Moreover, Lesniak (4] character-
ized eccentricity sequences of trees (see also Behzad and Simpson [1] for
a simpler proof). In the directed case, Harminc and Ivanéo [3] character-
ized eccentricity sequences of tournaments. However, the general problem
of finding a ‘constructive characterization’ of eccentric sequences (either
in the undirected or in directed case) remains open. Besides, Behzad and
Simpson [1] studied eccentricity sets in graphs, which are constituted by all
the different values of an eccentric sequence, and derived a characterization
of such sets (see also Mao and Liu [5]).

The main purpose of this paper is to investigate eccentricity sequences
and sets in digraphs. Several necessary and sufficient conditions for a se-
quence to be the eccentricity sequence of a digraph are presented in Section
2. A characterization of eccentric sets in digraphs is also given in Section
3.

Definitions and terminology

A directed graph or digraph G consists of a finite nonempty set V(G) of
objects called vertices and a set E(G) of ordered pairs of vertices called
arcs. The order of G is the cardinality of V(G). If (u,v) is an arc, it is
said that u is aedjacent to v and also that v is adjacent from u. The set of
vertices which are adjacent from [to] a given vertex v is denoted by N*(v)
[N~ (v)]. A path of length h from a vertex u to a vertex v (4 — v path) in
G is a sequence of h + 1 distinct vertices ¥ = ug, ¥y, ..., Ur-1, Up = v such
that each pair (u;—;,u;) is an arc of G. A digraph G is (strongly) connected
if there is a © — v path for any pair of vertices u and v of G. The length
of a shortest u — v path is the distance from u to v, denoted by dist(u, v).
If there is no path from u to v, we write dist(u, v) = co. The set of vertices
at distance ! from [to] u is denoted by I'}f (u) [[; (v)]. The eccentricity of a
vertex u, denoted by e(u), is the maximum distance from u to any vertex
in G. The radius of G, rad(G), is the minimum eccentricity of the vertices
in G; the diameter, diam(G), is the maximum eccentricity of the vertices
in G.

From here on, by a sequence we will always mean a finite nondecreasing
sequence of positive integers. A sequence S : 81,92,...,3p, where p > 2,
is a digraphical eccentric sequence [resp., (graphical) eccentric sequence] if
there exists a digraph [resp., graph] G of order p whose vertices can be
labelled vy, vs,...,vp so that e(v;) = s;.

A finite nonempty set S of positive integers is a digraphical eccentric
set [resp., (graphical) eccentric set] if there exists a digraph [resp., graph]
G such that S = {e(v), v € V(G)}; that is, the eccentricity of each vertex
of G belongs to the set S and each element in S is the eccentricity of some
vertex of G.
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Reader is referred to Chartrand and Lesniak [2] for additional graph
concepts.

2 Digraphical eccentric sequences

In the undirected case, some necessary conditions for a sequence to be an
eccentric sequence were established by Lesniak {4].

Theorem 2.1 ([4]). If S : 81,52,.-.,3p i3 a graphical eccentric sequence
then the following properties hold:

(i) s1 <p/2;

(4) If k is an integer such that sy < k < s,, then 8; = 8;41 = k for some
i(2<i<p-1);

(%) sp < min{p —1,2s;}.

Taking into account that in the directed case the ‘distance function’
is not longer a metric, since the symmetry property does not hold, we
determine which of the previous conditions are necessary for a sequence to
be a digraphical eccentric sequence.

Proposition 2.1. If S : sy,s2,...,8, %3 a digraphical ecceniric sequence
then the following properties hold:

(i) sis1 <si+1lforalli 1<i<p-1);
(i) sp <p-—1.

Proof. Let G be a strongly connected digraph of order p whose vertices
can be labelled v1,v2,...,v, so that e(v;) = s;, 4 = 1,2,...,p. Since the
diameter of G is at most p — 1, we have sp, = diam(G) <p—1.

To prove (i), let us assume that there are two consecutive terms of the
(nondecreasing) sequence S, s; and 8;41, such that s;;; > s; + 2. Let us
consider the vertex v; of G with e(v;) = s; and let us partition the set of
vertices of G according to their distance to v;; that is V(G) = U_oT (v),
where k = max{dist(v,v;), v € V(G)}. Applying the triangular law of
distance, for every vertex v € I'; (v;) we have e(v) < e(v;) + 1. Since by
assumption there is no vertex with eccentricity equal to s; + 1, e(v) < s;
for all vertices v € I'] (v;). Similarly, if all vertices in I7(w),1<j<k-1,
have eccentricity < s; then all vertices in I';41(v) have also eccentricity
< sy, since any vertex in I';,,(v;) is adjacent to at least one vertex in
I'; (vi). As a consequence of this inductive argument, all vertices in V(G)
have eccentricity < s;, which contradicts the fact that e(v;41) > s;+2. O
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We point out that the proof of condition (%) is similar to the one pro-
vided by Mao and Liu [5] for the undirected case. We also remark that
Proposition 2.1 can be extended to the case where S is the eccentricity
sequence of a non strongly connected digraph, S : s1,...,8p,8p/+1,-.-,5p,
with 8; < --- < sy < 00 and 8pr4y = --- = s, = 00. In such a case,
sp <p—landsiyy <s;+1(1<i<p —1).

The conditions given in Proposition 2.1 are necessary for a sequence to
be digraphical eccentric but, as we will see, they are not sufficient (e.g. the
sequence 4,4, 5,6, 6,6, 6 is not a digraphical eccentric sequence).

In the undirected case, Lesniak [4] proved that a sequence S is eccentric
if and only if some subsequence S’ (with the same distinct values) is eccen-
tric. However, since S’ may be the full sequence S, such a result does not
provide an algorithm to determine whether a given sequence S is eccentric.

Next we prove that Lesniak’s result also holds in the directed case.

Theorem 2.2. A sequence S : 81, 82,...,5p, with m distinct values, is a
digraphical eccentric sequence if and only if some subsequence of S, with m
distinct values, is a digraphical eccentric sequence.

Proof. If S is a digraphical eccentric sequence then S can be considered as
the desired subsequence.

To prove the converse, let us consider a digraph G’ whose eccentricity
sequence is S’, where S’ is a subsequence of S with the same m distinct
values, ¢;,%2,...,tm. For each of these values t;, let us take a vertex v;
of G’ with e(v;) = t; and let us define n; as the number of occurrences
(multiplicity) of ¢; in S less the number of occurrences of ¢; in S’. In order
to preserve the eccentricity sequence of G’, while adding vertices in G’,
we ‘replace’, in turn, each vertex v; by a complete digraph K,,;; of order
n; + 1, as Lesniak did for the undirected case (see [4, Theorem 1]).

Thus, in G’ we replace v; by a copy of K,,+1 in such a way that each
vertex of Ky, +1 becomes adjacent to every vertex in NZ,(v1) and adjacent
from every vertex in Ng,(v1). The resulting digraph G, has as many ver-
tices with eccentricity ¢; as indicates the multiplicity of ¢; in S. Following
the same procedure, we can construct a chain of digraphs G1,Ga,...,Gm,
where G;4, is obtained from G; by ‘replacing’ the vertex v; by a copy of
Kp. 41 (i=1,2,...,m—1). The final digraph G, has S as its eccentricity
sequence. O

To illustrate, with an example, how to apply Theorem 2.2, let us con-
sider the sequence S : 1,1,2,2,3,4, 4,4 and the subsequence S’ :1,1,2,3,4.
Figure 1 shows two digraphs, G’ and G, with eccentricity sequence S’ and
S, respectively, where G has been constructed from G’ by following the
proof of this theorem.
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Figure 1: An example of application of Theorem 2.2. (Numbers in brackets
indicate vertex eccentricities).

We point out that Theorem 2.2 also holds in the case where max(S) =
co. Besides, we notice that if a sequence S : s,.. ., 8p, with max(S) < oo,
is a digraphical eccentric sequence, then S : s, ... ) 8p,00,.™., 00 is a di-
graphical eccentric sequence too. Thus, given a digraph G with eccentricity
sequence S, we can consider the digraph GU N,;, with additional arcs from
each vertex of G to each vertex of the null graph N;,.

Corollary 2.1. A constant sequence S of lengthp > 2, S : s,8,.2.,s, with
8 € Z*, is a digraphical eccentric sequence if and only if s <p — 1.

Proof. From Proposition 2.1, if S is a digraphical eccentric sequence then
sp=8<p-—1

To proof the converse, we take any subsequence S’ of length s+1 (< p),
which represents the eccentricity sequence of a directed cycle of order s+1,
and we apply Theorem 2.2. O

Next, we derive the digraphical eccentric character of some particular
types of sequences.

Proposition 2.2. Let s, and m be positive integers. All the following
sequences are digraphical eccentric sequences:

(1) sys1+1,...,5+i—1,8+4,2F 81 +4,8,+i+1,...,50+m,
where 0 < 7 < m;

(2) s,,81+1,...,81+i—1,8 +14,5.,8 +1,
3i+i+1:"°$31+j"1131+ja31+j131+j+17-°':31+ma
where 0 <i < j<m;

) susai+l,...,s1+j—-1,8+5,8+7]
s1+ji+1,.. ., +i—-1,81+% 8,81 +4i,81+i+1,...,81 +m,
where 0 < j < max{i+1-s;,m—i—1}.

Proof. In each case we will construct a digraph with the given eccentricity
sequence. Let us consider the auxiliary digraph G; with vertex set V(G;) =
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{1,2,...,81 + m + 1} and arc set

EG:)) = {(k+1,k),1<k<si+m}U
{(1,k), 2<k<it+lors +i+1<k<s;+m+1}

(see Figure 2). It can be checked that
dist(k,i+2)=s1+k—-1, if 1<k<i+],

(k) = dist(k, k +1) = s, +1, if i+2<k<si+i-1,
T dist(k,k+1) =k, if s1+i<k<si+m,
dist(k,1) = sy + m, if k=s1+m+1L

Therefore, the eccentricity sequence of G; is
81,81+1,...,81+i—1, 81+, 21, 81 +4, 8i+i+1,...,81+m—1,814+m, 81 +m,

which coincides with sequence (2) when j =m and 0 <i < m.

It can be seen that the addition to G; of any subset of arcs incident from
vertex s; +m + 1 to vertices of the set {s; + 4,81 +i+1,...,s1 +m—1}
only changes the eccentricity of vertex s; +m + 1. Thus, if we add to G;
the set of arcs

E;={(an+m+1,k), s +j<k<si+m-—1}, where0<i<j<m,

we get a digraph G whose eccentricity sequence coincides with (2), if i < j,
and is equal to (1), if i = j, since eg(s1 + m +1) =distg(s) + m +1,1) =
81 + j. Analogously, in the case 0 < j < max{i+1—s8;,m—i— 1}, if we
add to G; the set of arcs E; j» Where

Ejj={(g+m+Lk), ss+j<k<i+lorsi+i+1l<k<s;+m-1},
ifj<i+1-—s,and
Ej;={(s1+m+1k), ssi+j+i+1<k<si+m-—lork=i+1)},

otherwise, we get a digraph G whose eccentricity sequence coincides with
(3)- 0

[y . PPN . ¢ —— @i ° yt—— P, Y

3 4 ] j+2 ]+3 tz+i t2+j+2 t2+j+3 t2+ k-2 t2+k tz+k+z t24+n t24n+2
(iz) N2+2) N2+3) Ma+j-2) Ma+§) Na+i)  Ma+)) Ra+142) Ra+)+3) N2+ k=2) Mo+ B M2+ ki2) )t2+0) Mz2+n)

R —g

Figure 2: The digraph G; and its eccentricities.

Using the previous results, we characterize eccentric sequences of di-
graphs with radius r < 3.
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Corollary 2.2. Every sequence S of lengthp > 2, S : s1,82,...,8p, sat-
isfying that 8y < 3, 841 < s;+1 (i=1,...,.p—1)andsp, <p-1lisa
digraphical eccentric sequence.

Proof. Let S be a sequence, with m distinct values, satisfying the given
conditions. We will distinguish different cases, according to the value of
81, and for each of them we will consider the ‘minimal’ subsequences of S,
with the same distinct values, and show that all of them are digraphical
eccentric sequences.

In the case s; = 1, S must contain a subsequence like

5,::1,2,...,i-1,44i+1,...,m, wherel<i<m,

since length(S) = p and max(S) = m < p— 1. From Proposition 2.2, S} ;
is a digraphical eccentric sequence, since it is a sequence of type (1) with
8 = 1.

In the case s; = 2, S must contain a subsequence like

Spi ¢ 2,8,...,i—1L,4,4,4,i+1,...,m+1 or
Sz,i,j : 2,3,...,i—1,i,i,i+1,...,j—1,j,j,j+1,...,m+1.

From Proposition 2.2, both sequences S;',- and S;’,-'j are digraphical eccen-
tric sequences, since they are sequences of type (1) and (2), respectively
(Wlth 8 = 2)

In the case s8; = 3, S must contain a subsequence like

Ssi ot 3,4,...,i-144,44i+1,...,m+2 or
345 3,4,...,i—1,4,4,4,i+1,...,5 - L,5,5,5+1,...,m+2 or

g 8,4,....5—1,4,5s5 +1,.euri=L,4,45,5+1,...,m+2 or
nigk | Sdeeni=Ligitl.,i—Lidi+1,...,k—Lkk
kE+1,...,m+2.

Proposition 2.2 guarantees that sequences S;,,. and S;,,-,j are digraphical
eccentric sequences. When j < i — 2 or j < m — i + 4, Proposition 2.2
can also be applied to sequence s;',,. j- So, it remains to consider the case
j=1i-1 and 2i > m + 5; that is,

Sa3iic1:34yennyi—2i—Li—1,4,4,4,i+1,...,m+2,

where (m +5)/2 < i < m + 2. If max{4,(m +5)/2} < i < m + 2 then
S3,-1 turns out to be the eccentricity sequence of the digraph G with
vertex set V(G) = {1,2,...,m + 3} and arc set

EG) = {(k+1,k), 1<k<m+2andk#i—3}{(G—2,i—4)}
U{(L,k), 2<k<m+3and k#i,i+1}.
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In the particular case i = 4, S:';A,a : 3,3,4,4,4 is the eccentricity sequence
of the digraph G with vertex set V(G) = {1,2,3,4,5} and arc set

E(G) = {(1: 2)’ (11 5), (2a 1)1 (37 2)a (3’ 4)’ (4a 3)! (5, 4)}’
In the other extreme case, i = m + 2, the sequence
Sg‘m“,m“ :3,4,....mm+1m+1lm+2,m+2,m+2

turns out to be the eccentricity sequence of the digraph G with vertex set
V(G) ={1,2,...,m+ 3} and arc set

EG) = {(k+1,k),1<k<m+2}J{(m-1,m),(m+1,m+2)}
UH@A,k), 2<k<m—-1lork=m+3}.

Finally, we show that the sequence S3 i,j,k is & digraphical eccentric sequence
too. We construct the digraph G with vertex set V(G)={1,2,...,m+3}
and arc set

EG) = {(I+1,0),1<i<m+2}U{(m+3,1), k<li<m+1)}
U{(1,0), 2<l<m+3andl#i-1,i,j},

ifj#i+1,and

EG) = {(+1),1<l<m+2}
WHm+3,0), i+1<I<m+1and!#k}
U{@,0), 2<ti<m+3andl#i-1,i,k},

ifj=1 + 1 In any case, it can be checked that the eccentricity sequence
of Gis Sy, gk

Hence, since S contains a subsequence, with the same distinct values,
that it is a digraphical eccentric sequence, applying Theorem 2.2 we con-
clude that S is a digraphical eccentric sequence. m}

In order to prove that certain sequences S, with max(S) = length(S)-1,
are not digraphical eccentric sequences, the following result can be of some
help.

Lemma 2.1. Let G be a digraph of order p > 2, radius r and diameter
p— 1. We assume that the vertices of G, V(G) = {1,2,...,p}, are labelled
in such a way that P:1,2,...,p is a shortest path in G

(i) If (i,1) is an arc of G, theni 2 v+ 1 or i < p—r. In addition, if
i < p then G has at most p — i + 1 vertices with eccentricity equal to
p—1.
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(ii) Suppose that (p,1) is an arc of G. If (i + g,1) is an arc of G, other
than (p,1), then g > r or g < p—1—r. In addition, G has at most
P — g vertices with eccentricity equal to p— 1.

Proof. If there is an arc incident from vertex i to vertex 1, then e(z) <
max{i — 1,p — i}. Since e(3) > r, it follows that i > r+lori < p—r.
Moreover, if i < p then e(j) < p—1, for each j = 2,...,1, and consequently
G has at most p — i + 1 vertices with eccentricity p — 1.

Now, let us assume that G contains these two cycles:

C:1,2,...,p—1,p,1 and C':4,i+1,...,i+g,i.

Then, r < e(i + g) < max{g,p — g — 1} and, consequently, g > 7 or
g < p—1—r. Moreover, if (i + g,%) # (p,1) then e(j) < p — 1, for each
j=1i+41,...,i4+ g, and consequently G has at most p — g vertices with
eccentricity p — 1. O

Theorem 2.3. Let S : s1,82,...,5p be the following sequence:
sgr=-=8=p—2 and S =:-=g=p-1,

where1 <k <p—1andp > 7. Then, S is a digraphical eccentric sequence
if and only if k < |pf2| ork=p—2,p—1.

Proof. First, we show that the sequence S : p—2,.%.,p—2,p—1,27%,p—1,
when 1 < k < |p/2] or kK = p—1,p— 2, with p > 3, is the eccen-
tricity sequence of a digraph that can be constructed from the directed
graph cycle Z, by adding certain arcs. Let V(Z,) = {1,2,...,p} and
E(Z,) = {(1,2),...,(p — 1,p),(p,1)} be the vertex set and the arc set of
Zy, respectively. If we add the arc (1,3) to Z, we obtain a digraph G,
whose vertex eccentricities are

6(1)=p—2, 3(2)=e(3)=p—1! e(4)="'=€(P)=P—2,

which corresponds to the case k = p — 2. Moreover, if we add the arc (2,1)
to Gp—2 we get a digraph G,—; with vertex eccentricities

e(l)=e(2)=p-2,e@)=p-1, ed)=---=e(p) =p-2,
which corresponds to the case k¥ = p — 1. Furthermore, taking into account
that adding to Z, an arc of the form (i +1, %) only decreases the eccentricity
of vertex i + 1 to p — 2, we can add k < |p/2] independent arcs to Z,,

(81+1,41), (2+1,32), ..., (8x+1,%), whereijyy >ij+landj=1,...,k—1,
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and we get a digraph with k vertices with eccentricity p — 2 and p — k
vertices with eccentricity p — 1.

Next, we prove that the sequence §:p—~2,.5,p—2,p—1,275p—1,
when k£ > [p/2] and p— &k > 3 (p > 7), is not realizable as an eccentricity
sequence. Let us suppose that there is a digraph G whose eccentricity
sequence is S. Since G has order p and diameter p—1, let us list its vertices,
V(G) = {1,2,...,p}, in such a way that P : 1,2,...,p is a shortest path
in G; that is, there are no arcs of the form (3,4 + h) with A > 1. Clearly,
there must be at least one incident arc to 1, (¢,1) € E(G), which according
to Lemma 2.1 it must be incident from either i =2ori=p—1ori=p,
since G has radius p — 2.

We start by assuming that (p,1) is an arc of G. Since G has at least
one vertex with eccentricity < p — 1, there must be an arc incident from a
vertex 1 + g to a vertex ¢ in G. From Lemma 2.1 we derive that g =1 or
g = p—2. If g = p—2 then G contains either thecycleC : 1,2,...,p—1,10r
C:2,3,...,p,2. In any case, G has at most two vertices with eccentricity
p — 1, which is impossible (the multiplicity of p—1in Sisp—%k > 3).
Therefore, all remaining arcs in G must be of the form (i 4 1,%). But these
arcs must be independent, since a path of the form i + 2,7 + 1,4 it would
imply that e(i+2) < p—2. Hence, there are at most |p/2] digons (2-cycles),
each of them constituted by a unique vertex with eccentricity p — 2. This
contradicts the fact that the number of such vertices in G is k > |p/2].

It remains to consider the case when G is not hamiltonian; that is (p, 1)
is not an arc of G. So, the only arcs incident to 1 can be (2,1) or (p—1,1).
If (p — 1,1) € E(G) then the number of vertices with eccentricity p — 1 is
at most two (vertices 1 and p), which is impossible. Hence, G must contain
the digon 1,2,1. Let us consider the digraph G’ = G — 1, derived from G
by deleting vertex 1, which has diameter p — 2 and radius r > p — 3. By
applying Lemma 2.1 to G’, we know that all arcs incident to 2 must come
from vertices i € {3,4,p — 2,p — 1,p} (we keep the vertex labelling from
G). It can be checked that the cases ¢ € {3,4,p — 2,p — 1} would imply
the existence in G of a vertex with eccentricity < p — 3, which contradicts
the assumption that rad(G) = p — 2. In addition, the case i = p would
imply that G has at most two vertices with eccentricity p — 1, which is also
impossible. O

As a consequence, the sequence S : 5,5,5,5,6,6,6 is the shortest se-
quence satisfying that min(S) = max(S) — 1 = length(S) — 2, which is not
a digraphical eccentric sequence.

Theorem 2.4. Let S : s1,82,...,8p be the following sequence:

s1=:=8,=p—3, Skt1=p—2 and Spp=---=8sp=p—1,
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where 1<k <p—2andp>7. Then, S is a digraphical eccentric sequence
ifandonlyifk=1orp—-4<k<p-2.

Proof. First, for each sequence Sk,

Sk e 33-'?')1’— 39?" 21p_ l,p—.{c.—l,p_ 1 (P > 5))

where k =1 or p— 4 < k < p — 2, we construct a digraph G} whose eccen-
tricity sequence is Si. Let us take the directed graph cycle Z, with vertex
set V(Zp) = {1,2,...,p} and arc set E(Z,) = {(1,2),...,(p—1,p), (p,1)}.
Adding the arc (3,1) to Z,, we get the digraph G; whose vertex eccentric-
ities are

e(l)=p-1,e(2)=p—-2,e(d)=p—3, e(d)=---=e(p)=p—1,

as it corresponds to the case k¥ = 1. Moreover, adding the arcs (p,3) and
(p,2) to G, we obtain the digraph G, whose vertex eccentricities are

e(l) =p—1, e(2)=p—-2, e3)=e(4)=---=¢e(p) =p-3,

which solves the case k£ = p — 2. Besides, adding the arc (p,3) to Z,, we
get the digraph G,-4 with vertex eccentricities

e(l)=e(2)=e(8)=p—1, e4)=p—2, e(5)=e(6)=---=e(p) =p—3,

which corresponds to the case k = p— 4. Adding the arc (4,2) to Gp—4, we
obtain the digraph G,_3 with vertex eccentricities

el)=e2)=p-1, e(3)=p-2, e(4) =¢(5) =---=e(p) =p—3,

which solves the case k = p — 3.
Next, we prove that the sequence S,

S:p-3,.5,p-3,p—2,p—1,P7% L p—-1, withp>7 and 1<k <p—4,

is not realizable as an eccentricity sequence. Let us suppose that there is a
digraph G whose eccentricity sequence is S. Let us list the vertices of G,
V(G) ={1,2,...,p}, in such a way that P:1,2,...,pis a shortest path in
G. Since rad(G) = p — 3, there must be an arc (3,1) € E(G), with i = 2,3
orp—2<i<p.

First, let us assume that (p,1) € E(G). Since G # Z,, there must be
an arc (i+g,1) € B(G), where (i+g,i) # (p,1). From Lemma 2.1, g = 1,2
org=p-3,p—2. If g > p— 3 then, applying Lemma 2.1, G would have at
most three vertices with eccentricity p — 1, which is impossible (k < p —4).
So,g=1,2:
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- If g = 2 then G contains the 3-cycle C : i,i + 1,i + 2,i. Taking
into account that rad(G) = p — 3, it follows that e(i +2) = p — 3.
This implies that there is no arc (i + h,i — h’) € E(G) with h > 2
and h’ > 1, apart from (p,1). We can see that e(i) = p — 1, since
otherwise dist(i,i—1) < 2 and, consequently, e(i+2) < max{3,p—4},
which is impossible (p > 7). Moreover, from e(i + 1) < p— 2 and
e(i) < e(i+1)+ 1, we conclude that e(i + 1) = p—2. So, since G has
a unique vertex with eccentricity p — 2, there is no other 3-cycle in G.

- If g = 1 then G contains the 2-cycle C : ¢, + 1,¢ and, consequently,
e(i + 1) < p — 2. Teking into account that p > 7 we can derive that
either e(i + 1) = p — 2 or e(i) = p — 2. Therefore, G has at most two
2-cycles, in which case they must share a vertex.

Hence, assuming that G is hamiltonian, the uniqueness of a vertex with
eccentricity p— 2 implies that G has a unique vertex with eccentricity p—3.
But this situation is excluded (k > 1).

It remains to consider the case (p,1) € E(G). Using Lemma 2.1 and
taking into account that G has k < p — 4 vertices with eccentricity p — 3,
we can derive that either (2,1) € E(G) or (3,1) € E(G). In both cases it
follows that e(1) =p—1,¢e(2) =p—2,e(3) =e(4)=---=e(k+2)=p-3

and
e(k+3)=---=e(p—2)=e(p—1)=e(p)=p-1,

since e(i) < e(i+1)+1 and G has p — k — 1 > 4 vertices with eccentricity
p—1
Let us analyze the possible situations:

~ If the subdigraph of G induced by the vertex set {1, 2, 3} is connected,
then there must be an arc incident from a vertex j € {4,5,...,p} toa
vertex in {1,2,3}. Notice that j > p— 2, since otherwise e(j) < p—3
(p > 7). Taking into account that e(p—2) =e(p—1) =e(p) =p-1,
we conclude that (p,1) € E(G), which is impossible.

- If (2,1) € E(G) and (3,1),(3,2) ¢ E(G), then there must be an arc
incident from {4, 5, ...,p} to {1,2}. Analogously to the previous case,
a contradiction is derived.

Hence, no digraph exists with eccentricity sequence equal to S. O

As a consequence, S : 4,4,5,6,6,6,6 is not a digraphical eccentric se-
quence. In fact, this is the first shortest sequence, given in lexicographic
order, which satisfies the necessary conditions given in Proposition 2.1 and
it is not a digraphical eccentric sequence.
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3 Digraphical eccentric sets

Behzad and Simpson [1] characterized eccentric sets of graphs.

Theorem 3.1 ([1]). A finite nonempty set S = {ay,a,...,an} of positive
integers, listed in increasing order, i3 a graphical eccentric set if and only
fm<ai+1andaiyy =ai+1foralli (1<i<m-1).

Next, we present the corresponding characterization for the directed
case.

Theorem 3.2. A finite nonempty set S = {ai,az,...,am} of positive in-
tegers, listed in increasing order, is a digraphical eccentric set if and only
tfaiv1=a;+1 foralli,1 <i<m-1.
Proof. From Proposition 2.1, we know that given a digraph G the distinct
numbers of its eccentricity sequence, listed in increasing order, are consec-
utive integers.

To prove the converse, given a set S = {a1,a:+1,...,8;+m—1}, where
a) and m are positive integers, we construct a digraph whose eccentricity
set is S. If m =1 then S = {a1} is the eccentricity set of the directed cycle
of order a; + 1. When m > 1 and a; = 1, we define G,, as the digraph
with vertex set V(Gn) = {1,2,...,m + 1} and arc set

E(Gm)={(Lj), i=2,...,m+ 1} G +1.4), §=1,...,m}.

The eccentricity sequence of Gy, is 1,2,...,m~1,m,m. So, its eccentricity
set is § = {1,2,...,m}. In the general case, where m > 1 and a; > 1, we
consider the ‘concatenation’ of the digraph G,,—; with a directed cycle of
order a; + 1 at the vertex 1. Thus, we obtain a digraph G with V(G) =
{1,2,...,a1 + m} and
E(G) = EGm-1)UH{@Gi+1),j=m+1,...,a1+m~1}
U{@,m+1),(a; + m,1)}

(see Figure 3), whose eccentricity sequence is
a,%,a,a1+ 1,61+ 1,01 +2,...,80 +m—1.
Therefore, the eccentricity set of G is S = {a1,¢; +1,...,a1 +m—1}. O

Given a digraphical [resp., graphical] eccentric set S, § = {aj,a; +
1,...,a; + m — 1}, let v(S) be the minimum order among all digraphs
[resp., graphs] whose eccentricity set is S. In the undirected case, Behzad
and Simpson [1] proved that

(S) = 2 +m-1, ifm<a —1,
7)== a1 +m, fm=aorm=a;+1.

In the directed case, we have the following result:
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Figure 3: A digraph G with eccentricity set S = {a1,a1+1,...,e1+m—1}.

Corollary 3.1. If S = {a1,a1 + 1,...,a1 + m — 1}, where a, and m are
positive integers, then v(S) = a; + m.

Proof. From the constructive proof of Theorem 3.2, we know that v(S) <
a; + m. Taking into account that a digraph with maximum eccentricity
a1 +m ~ 1 must have order at least a; + m the proof is concluded. ()
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