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Abstract

In this paper, several constructions are presented for balanced
incomplete block designs with nested rows and columns. Some of
them refine theorems due to Hishida and Jimbo [6] and Uddin and
Morgan [17], and some of them give parameters which have not been
available before.
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1. Introduction

We assume that the reader is familiar with balanced incomplete block
(BIB) designs. For any terms used undefined in this article, we refer the
reader to (3] and (4] for example. In what follows, the notation B(v,k, \)
stands for a BIB design with v points, block size k and index A.

Let V be a set of v points and .A be a collection of b subsets, called blocks,
of V, each of which is represented as a k) x ko array. Further define Ag(%, 7)
to be the number of rows in blocks in which a pair of distinct points ¢ and j
occurs together. Ac(4,7) and Ag(4, j) are defined similarly for columns and
blocks. The pair (V,.A) is called a balanced incomplete block design with
nested rows and columns if the following conditions are satisfied:

(i) no point occurs more than once in any block of A (said to be binary),
(ii) each point occurs in exactly r = bk, k2 /v blocks of A, and
(iii) for any pair of distinct points i and j,
A = k1Ar(i, §) + k2Ac (i, 5) — AB (4, 5) (1.1)
is constant not depending on the choice of ¢ and j.

A balanced incomplete block design with nested rows and columns (BIBRC
for short) with parameters v, b, , k1, k2, A is denoted by BIBRC(v, b, 7, ki,
k2, A). Furthermore, if the following condition (iv) holds, then the BIBRC
is especially said to be completely balanced (see Morgan [8]).

(iv) Each of indices Ag(%, ), Ac(,7) and Ag(3, j) is constant not depend-
ing on the choice of pairs (3, j), simply denoted by Agr, Ac and Ag.

The condition (iv) implies that the sets of rows, columns and blocks form
a B(v, k1, R), & B(v,k2,Xc) and a B(v, k1 k2, Ag), respectively. A simple
counting argument shows that the indices Ag, Ac and Ap are uniquely
determined by k;, k2 and X\ as follows:

1 1 kiks — 1
A = ————/\, A = —'—‘A, A = .
R T k1" BT -1k 1)

kp —1
If v = kyk2, then (V, A) is called a balanced complete block design with
nested rows and columns (BCBRC for short), denoted by BCBRC(v, b, , k1,
k2, A).
The concept of nested incomplete block designs was first introduced by
Preece [12] in 1967 and several related concepts have been derived from
(12]. The notion of a balanced incomplete block design with nested rows
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and columns was formalized by Singh and Dey [13] in 1979. They gave
a construction together with some examples. After that, constructions
for BIBRC have been investigated by Agrawal and Prasad [1, 2], Cheng
[5], Jimbo and Kuriki (7], Mukerjee and Gupta [10], Sreenath [14], Street
[15], Uddin [16], etc. Uddin and Morgan [17] presented constructions for
BIBRC which cover most of the known direct constructions before them,
and they also put a table of the designs for v < 101 and 3 < k; < k2
constructed by themselves together with the fewest number r of replications
that have ever been known in the literature. The statistical analysis of
BIBRC was given by Morgan and Uddin [9). They showed that a BIBRC is
universally optimum within the class of binary designs for a random effect
model. Morgan surveyed the statistical analysis and known direct and
recursive constructions in (8]. Hishida and Jimbo [6] have generalized some
constructions due to Uddin and Morgan [17] for BIBRC having completely
balanced property. In Nasu et al. [11], we can find some series of BIBRC
obtained through affine geometries.

In this paper, several constructions are presented for BIBRC, some of
which are the refinement of theorems due to Hishida and Jimbo [6] and
Uddin and Morgan [17], and some of which have not been known before.

2. Constructions for BIBRC having completely balanced prop-
erty

This section is devoted to direct constructions for BIBRC having com-
pletely balanced property. For simplicity, a BIBRC having completely bal-
anced property is referred to just as a BIBRC, unless otherwise specified.

To present our constructions, the following lemma is needed, which is
a well-known result by Wilson [18]. Throughout this article, « stands for
a primitive element of a Galois field of prime power order v, denoted by
GF(v) = V, and H} = {o* | i = 0 (mod n)} denotes a multiplicative
subgroup of GF(v) \ {0}. Then H? is defined as a coset of HE, i.e., H? =
ot HE.

Lemma 2.1 Let v = nk + 1 be a prime power, S,, be a system of distinct
representatives for the cosets of V \ {0} modulo H} and L be a g-subset of
Shn.

(i) Let B = Uee H? and
B={sB+z|s€S,zeV}

where sB+z = {sb+z | b € B}. Then (V,B) is a B(v, gk, g(gk — 1)).
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(i) Moreover, if n is even and k is odd, then for B' = {sB+z | s €
Sn/2rx eV}, (V,\B)isa B(v, gk, 9(gk — 1)/2).

(ii) Let B= {0} UB and
B={sB+z|s€SnzeV}
Then (V,B) is a B(v, gk + 1, g(gk + 1)).
(ii) Moreover, if n is even and k is odd, then for B = {sB+z | s €
Sns2:z €V}, (V,B') is a B(v, gk + 1,9(9k + 1)/2).

The next theorem is the refinement of Theorems 3.1 and 3.2 in (6].
Actually, the range of i for u; in those theorems is redundant. Note that
Theorem 2.2(a)’ and (b)’ with m even covers Theorem 3.2 in {6].

Theorem 2.2 Let v = mpgf + 1 be a prime power with ged(p,q) = 1.
Write a4 = 1—a™ %49 for0 < i < pf and0 < j < gf but (4,5) # (0,0),
where 0 < u; <v—1.
(8) If f < m and there ezists an integer u such that u # mpqf/2,u;; —
u_io (modm) foranyl <i<pfandl <j<yg, where u_;o =
Upf—i,0, then there exists a BIBRC with parameters

v=mpgf+1, b=mqu, r=~Fkkemg,
k1=Pf, k2=Qfs A=q.f(pf—l)(qjl_1)

(b) If f < m and there exists an integer u such thatu # mpqf/2, —uio, usj—
u—;,0 (mod m) for any 1 <i < pf and 1< j < g, then there ezisis a
BIBRC with parameters

v=mpgf+1, b=mgu, r=kikemg,

ky=pf, ke=qf+1, A=gqf(pf-1)(af +1).
Moreover, if mq is even and pf is odd, then there exist BIBRC with the
following parameters corresponding to (a) and (b):

(a) v=mpgf +1, b=mqv/2, r = kikamq/2, ky = pf, k2 = qf,
A=qf(pf - 1)(af —1)/2.

(b)Y v=mpqf +1, b=mqu/2, r = krkamq/2, k1 = pf, ka=qf + 1,
A=gf(pf —1)(af +1)/2.
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Proof. (a) Define a pf x ¢gf array A by the (¢, j)th entry as follows:
A = [q™ai+pi) 4 gmeity] 0 <i<pf, 0<j<qf, (2.1)
and a collection A of mqu arrays by
A={sA+z|3€ Smq, z€V}, (2.2)

where V = GF(v). Then (V, .A) is the desired BIBRC of (a). In order
to prove this, we firstly show that the entries of A are distinct from each
other.

It is easy to see that the ith row R; and the jth column C; of the array
A can be regarded as the following sets:

R; =a™%(a" + Hy'?) and C; = (a* + o™P)HJY.
0 0

By flattening out the array A into a block B of size pgf2, we have

pf-1 af-1 af-1 )
B= | Ri=J Ci= | (a* +a™)H".
i=0 =0 =0

This means that we need to prove that the elements of U‘}i;l(a“ + a™Pd)
are relatively distinct over Sp,q. Clearly, a* + o™P¥ # 0 (mod v) for 0 <
J < gf is an indispensable prerequisite, which leads to the condition u #
mpqf/2 (mod m) since a™P4f/2 = 1.

Now, for some 1 < i < pf and 0 < j1 # j2 < qf, suppose that

o™ (a* + ampjl) = a® + o™Pi2,
This can readily be transformed into

amqi+u(1 _ a—mqi) — ampjz(l _ amqi'i'ml’(jl—j?))’

which is written as follows by using u;;:

aMBtual-i0 — MPI2 o Uig) —5p

Then we have

' u= m(pjz - qz') + Ui; — U—-4,0 (2.3)
for1 <i<pfandl <j < qf, where j = j; — jo. Since u;; = upy if
pi+qj = ph+ql (mod pqf), it is sufficient to check for (2.3) in the range of
1<i<pfandl<j<gq. However, (2.3) readily proves to be impossible
from the condition on u. Therefore the entries of A are relatively distinct.
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Next, we examine the respective designs generated from sR;’s, sC;’s and
sB'sfor 0 <i<pf,0<j<qf and s € Spq. It follows straightforward
from Lemma 2.1(i) that for each j, {sC; + z | 8 € Smq, = € V} forms
a B(v,pf,pf —1). Thus {sC; +z |0< j < qf, 8 € Spng, T € V}isa
B(v,pf,qf(pf — 1)). Similarly, it can easily be proved from Lemma 2.1(i)
that {sB+ x| 8 € Spnq, T € V} forms a B(v,pqf?,qf(paf? — 1)).

As for the design generated from sR;’s, by letting R, = a™%H{'?, we
have only to examine if

{sR;+z|0<i<pf, s€ Smq, z€V} (2.4)

forms a BIB design. This is the same thing as examining {sR; + z | 0 <
i < pf, 8 € Smq, = € V} since the differences from R] are the same as
those from R;. Note that {gi (mod p) | 0 < i < p} = Z, holds because of
the assumption ged(p,g) = 1. Then it follows that

{sa™ |0<i<p, s€8m}={3a™|0<i<p, 3$ESmn}=SCmp,
whence (2.4) can be regarded as ¢f copies of
{tHy? +z |t € Smp, z€ V}. (2.5)

Lemma 2.1(i) guarantees that (2.5) forms a B(v, ¢f, gf —1). Therefore (2.4)
becomes a B(v, ¢f,¢f(¢f — 1))

For case (a)’, we take A = {sA+ T | 5 € Spq2, = € V}, instead of
(2.2). Then it can readily be proved from Lemma 2.1(i)’ that the respective
designs generated by sCj's and sB’s for 0 < j < ¢f and s € Spyq/2 are a

B(v,pf,qf(pf — 1)/2) and a B(v, pf?, ¢f (paf* — 1)/2).
As for the design formed by the rows, i.e.,

{sR,+2|0<i<pf, € Spg2, TEV} (2.6)
we need to consider two cases depending on the parity of g.
(i) When g is odd (thus m is even and pgf is odd). In this case, since
Sms2 = Sm/{1,—1} C Smp/{1, 1} = Smp/2,

by replacing the range of ¢ in (2.5) with ¢ € Sp,p/2, the set (2.6) of
rows is proved to be a B(v, qf,qf(af — 1)/2).

(ii) When ¢ is even. In this case, the parity of m does not make any
difference. Since Sy = Sp/{1,—1} C Smq/{1,—1} = Smgqs2, (2.6)
can be considered as gf/2 copies of (2.5). Then it turns out that
(2.6) is a B(v,qf,qf(af — 1)/2).
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(b) Using A of (2.1), we newly define a pf x (gf + 1) array by A* =
[a®p|A], where uT = H3*, and a collection A* of mgqv arrays by A* =
{8A* +z | s € Spq, z € V}. Then, in a manner similar to case (a), we can
prove that (V,.4*) is the desired BIBRC of (b). It is easy to see that the
further condition u # —u;p (mod m) is required for the elements of a®pu
and those of A to be distinct from each other. Case (b)’ can also be proved
in the same way as (a)'.

Remark. By counting the number of no-good values as an integer u, it
is easy to see that there does exist the required u for Theorem 2.2(a) and
(a)’ as long as m > pgf2. Similarly, if m > pf(¢f + 1), an integer u for
Theorem 2.2(b) and (b)’ definitely exists. Of course, there are still a number
of designs generated by Theorem 2.2 which do not fulfill these sufficient
conditions for existence. For example, when (p,q,m, f;a) = (3,2,3,1;2),
we can take u = 2 for any cases of Theorem 2.2, and when (p,gq,m, f;a) =
(3,2,8,2;5), u = 2 is admissible for any cases of the theorem.

Here is another refinement of a theorem in [6]. By replacing m with
2m, Theorem 2.3 becomes Theorem 3.3 in [6].

Theorem 2.3 Let v = mpgf + 1 be a prime power and let ged(p,q) = 1.
Writea™ =1—a™® for1 <i<pf end o™ =1—o™ for1<j < qf,
where 0 < wi,u; <v-—1.
(a) If f < m and there exists an integer u such that u # mpqf/2,u; —
w; (mod m) for any i and j, then there exists a BIBRC with param-
eters

v=mpgf+1, b=mpguv, r=kikompq,
k1 =Pf’ k2 = Qf, A=qu(pf" 1)(qf_ 1)

(b) If f < m and there exists an integer u such thatu # mpqf /2, —w;, u;—
w; (mod m) for any i and j, then there exists a BIBRC with param-
eters

v= mPQ.f + 1) b= mpqu, r= k1k2mpq’
ki=pf, ke=qf+1, A=pef(pf—1)(af+1).

(c) If f < m and there exists an integer u such that u % mpqf/2,uj, —w;,
u; — w; (mod m) for any ¢ and j, then there ezists ¢ BIBRC with
parameters

v=mpgf+1, b=mpgv, r= pkle;"nQ7
=pf+1$ k2=Qf+11 A=qu(pf+1)(q‘f+1)'
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Moreover, if mpq is even and f is odd, then there ezist BIBRC with the
Jfollowing parameters corresponding to (a), (b) and (c):

(8)' v= mqu + 1: b= mpqv/Z, r= klkszQ/Z, kl = pfr k2 = in
A =paf(pf —1)(af - 1)/2.

(b) v=mpgf + 1, b=mpqu/2, r = k1kampg/2, k1 = pf, k2 =qf +1,
A =paf(pf - 1)(gf +1)/2.

(c) v=mpgf+1,b=mpqu/2, r = k1kompg/2, k1 =pf+1, k2 =qf +1,
A=paf(pf +1)(qf +1)/2.
Proof. (a) Define a pf x qf array A by the (i, j)th entry as follows:
A=[@™t o™, 0<i<pf, 0<j<gqf, 2.7

and a collection A of mpgv arrays by A = {SA+z | 3 € Smpq,z € V}. Then
the ith row R; and the jth column C; of A can be regarded respectively as

R;= o™+ L Hi® and Cj=a™ +a"Hg".
Then it is readily confirmed by Lemma 2.1(i) that
{sRi+z|0<i<pf, 8E Smpg, TEV}

and
{sC;j +z|0<i<qf, € Smpq, TEV}

become a B(v, ¢f, pgf(qf — 1)) and a B(v,pf,paf(pf — 1)), respectively.
Considering the array A as a block B of size pgf2, we can represent an

arbitrary element of B as the (pr + ¢, q(r + t) + j')th entry
oMty 4 omela(r+)+i) = gmerg, .,
of A, where firjry = @™+ 4 o™P@+T) for 0< rt < f,0< ¥ < pand

0 < j' < q. In order to prove the elements of B to be distinct from each
other, we need to show that the elements in

{Bujr |0<i <p, 0<j' <q, 0<t< f}

are relatively distinct over Sppg. Note that because of the fact that a™Pf/2
= —1 and the assumption that u # mpqf/2 (mod m), Bi ¢ # 0 is guaran-
teed for any i, j' and t. Now, suppose that two of the entries in A are in
the same coset of Hy'??, i.e.,

ampqr(amqi1+u + amp(qt1+jl)) = gmaiatu 4 omplatatia)
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With some deformations, we have
u = m{p(qgtz + j2) — par — qir} +u; — w;,

where i = i3 — 4y — pr and j = gty — t2 + 7) + j1 — jo. However this
is impossible because of the condition v # u; — w; (mod m). Thus the
elements of B (equivalently the entries of A) are relatively distinct. Since
B can be considered as a union of distinct pgf cosets of Hy'??, {sB + z |
8 € Smpq, € V} becomes a B(v, pgf?, paf(pgf? — 1)). Thus (V,.A) is the
desired BIBRC of (a).

(b) Define a pf x (gf + 1) array A* by A* = [a®u|A), where uT = Hy*?
and A is as defined by (2.7), and let A* = {sA* +x | $ € Smpq, T € V}.
Then case (b) can be proved by using Lemma 2.1(i) and (ii). The condition
on u is required for the entries of A* to be distinct from each other.

(c) Consider a (pf + 1) x (¢f + 1) array by concatenating {0} U Hy'?,
as a new row, to A* in the proof of case (b). Then Lemma 2.1(ii) ensures
the existence of the desired BIBRC of (c).

(a)’, (b)’ and (c)’ can be proved by Lemma 2.1(i)’ and (ii)’ straightfor-
wardly. o

Remark. A sufficient condition for the existence of an integer v required
for Theorem 2.3(a) and (a) is m > (pf — 1)(¢f — 1) + 2, that for (b)
and (b)' is m > qf(pf — 1) + 2, and that for (c) and (c)’ is m > pgf? +
1. Note that there are still a number of designs generated by Theorem
2.3 even if those conditions are not satisfied. For example, when when
(p,q,m, f;a) = (5,2,5,2;2), we can take u = 3 for any cases of Theorem
2.3, when (p,q,m, f;a) = (3,4,7,4;10), u = 5 is admissible for any cases
of the theorem.

As listed below, several constructions by Uddin and Morgan [17] are
considered as special cases of Theorems 2.3.

(i) Theorem 2.3(c) with p = g =1 and f = 2t becomes Theorem 1(b) of

[17].

(ii) Theorem 2.3(b)’ with p =1, ¢ =2 and f = t becomes Theorem 3(b)
of [17].

(iii) Theorem 2.3(c) with p =1, ¢ = 2 and f = £ becomes Theorem 3(d)
of [17].

Eventually our constructions make up for designs with parameters which
cannot be obtained through the constructions due to Hishida and Jimbo
[6], and generalize Theorems 1, 2 and 3 in Uddin and Morgan [17).
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3. Constructions for BIBRC not having completely balanced
property

In this section, as an extension of Theorems 4 and 5 in {17}, two direct
constructions for BIBRC both of which are not completely balanced are
presented. Though resultant designs would not have fewer replications
than the designs which have been known previously, the constructions are
meaningful in the sense that those can provide a BIBRC(v, b, 7, k, k, A) or
a BIBRC(v,b,7',k + 1,k + 1, )’) such that v — 1 is divisible by neither k&
nor k—1.

Theorem 3.1 Let v = 4mf 4 1 be a prime power and S,, be a system of
distinct representatives for the cosets of V' \ {0} modulo HJ*.

(a) If there exist n (< \/m/f) distinct integers e;, 0 < i < n, such that
the elements in

{a® (14 a8~ Ftm+)) 10 < 4 j<n, 0Kt < f} (3.1)
are relatively distinct over Sy, then there exists ¢ BIBRC with pa-
rameters

v=4dmf+1, b=mu, r = 4mn?f?,
ki =k =2nf, A=nlf(2nf-1)%.

(b) For some integer n satisfying n(nf + 1) < m, if there exist n distinct
integers e;, 1 < it < n, such that the elements in

{a® |0 <i<n}u{a®(1+a%~%+™2+)) |0<4,j<n, 0<t < f}

are relatively distinct over S,,, then there ezists a BIBRC with pa-
rameters

v=4mf+1, b=mv, r=m2nf+1)>

ki =ko=2nf+1, A=nf(2nf+1)%

Proof. (a) Define a 2nf x 2nf array A by the (2fi + h,2fj + {)th entry
as follows:

A=[a®tmEht) 4 get2ml] - 0 <4 j<n, 0L Al <2f, (3.2)

and a collection A of mv arrays by A = {sA+z | 8 € Sm, z € V}. Then
we can represent any row and column of A by the (2fi + h)th row Rafiqn
and the (2fj + l)th column Cyy;j4; which are regarded as

n-1
2h+1 2
R2fi+h = aed-m( +1) + U Pt Hom
j=0
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and
n—1

C2fj+l = ae,+2ml + U atitm Hgm'
i=0
Note that the sets of differences from Rafin and Cag;4i are the same as
those from

n-1 n—1
/ 2! 4 i 2
Ropen=J aH™ and Cjpy= | o*rmHZ™,
J=0 i=0

respectively. This means that examining the design generated from sRa¢i4n’s
and sCyy;4.’s for s € S, equates to examining the design generated from
SRys; '8 and sCy ;. 's. Since
{sRypisn +2|3€ Sm,z € VIU{sCop;p+ 2|5 € Sm,zeV}
= {sRypipn+ 2|8 € Som,z €V},
by using Lemma 2.1(i) it turns out that {sRafiyn +z | s € Spm,z € V} U
{sCai+n+z | 3 € S,z € V} becomes a B(v,2nf,n(2nf—1)). Thus the set
of rows and columns of sA’s for s € S, generates a B(v, 2nf,2n2f(2nf—1)).
By flattening out the array A into a block B of size 4n?f2, we have
B = {aft™2ht1) 4 gest2ml | 0 <4 5 <n, 0< h,l<2f}
= {a®2m(] 4 ot HIZ™) |0 < 4,5 < n, 0<1 < 2f}
= {a%(1+ % %*™H™) @ H{™ | 0 < 4, j < n}.
Here, by noting that for f <t < 2f,

a® (1 + ae.-—ej+m(2t+l)) = ae¢+m(2t+1)(1 + ae;—e.'+m(2t'+1))

holds, where ¢’ = 2f — ¢t — 1 (and then 0 < #’ < f), the block B can be
further transformed as follows:

B={a%(1+a% %+t @ HM |0<i,j<n, 0<t< f}. (3.3)

As obvious from (3.3), the condition on e; (0 < j < n) is necessary for the
elements of B (thus the entries of A) to be distinct from each other. Then
it is readily shown from Lemma 2.1(i) that {sB+z |s€ S,,, z€ V}isa
B(v,4n? f2,n2f(4n? 2 — 1)). Thus (V, A) is the desired BIBRC of (a).

(b) For case (b), we take a (2nf + 1) x (2nf + 1) array A* as follows:

[ 0 #T
A"[a"‘n A]’
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where pT = U7Zga® H3™ and A is as defined by (3.2). Then, in a manner
similar to case (a), we can verify that the set of rows and columns of sA*’s
for s € S,, generates a B(v,2nf +1,n(2nf + 1)3).

Now, let B* be a block of size (2nf + 1)? obtained by flattening out the
array A*. Since B* can be written as

n-1
B*={0}u(|J e=H)UB,

=0

by using Lemma 2.1(ii) it is verified that sB*’s generate a B(v,(2nf +
1)%,n(nf + 1)(2nf + 1)?). Thus case (b) has also been proved. (m]

Example. When v =53, m =13, f =1andn = 3. Take a = 2 as
a primitive element of GF(53). In this case, a system of distinct repre-
sentatives for the cosets of GF(53) \ {0} modulo H}? is given by Si3 =
{1,2,4,8,16,32,11,22,44,35,17,34,15}. In Theorem 3.1(a), if we set eg =
0, e; = 1 and e = 2, then (3.1) will be {31, 8,15, 32,9, 16,34,11,18} C Si3,
which satisfies the required condition. An array A defined by (3.2) is given

as follows: ) .
31 29 32 28 34 26

8 6 9 5 11 3
15 13 16 12 18 10
24 22 25 21 27 19
47 45 48 44 50 42
| 40 38 41 37 43 35 |

Then the design generated from sA’s for s € Si3 is a BIBRC with pa-
rameters v = 53, b = 689, r = 468, k; = k2 = 6 and )\ = 225, denoted by
BIBRC(53, 689, 468, 6, 6, 225). Furthermore, a BIBRC(53, 689,637, 7,7, 441)
can be obtained from Theorem 3.1(b) since {1, 2,4}U{31, 8,15, 32,9, 16,34,
11,18} C Si3.

There are much more parameter sets which satisfy the conditions of
Theorem 3.1(a) and (b) other than the example above, e.g., (m, f;n,a) =
(14,2;2, 3)’ (15, 3;2, 3)» (16,3;2, 5),(17,2;2, 3) with {601 el} = {01 1} in com-
mon.

Theorem 3.2 Let v =4mf + 1 be a prime power with f odd end Ssm be
a system of distinct representatives for the cosets of V \ {0} modulo H§™.

(a) If there exist n (< 2\/m/f) distinct integers e;, 1 < i < n, such that
the elements in

{a® +a®*™H{™ | 0 < i,j < n} (34)
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are relatively distinct over Sin,, then there exists a BIBRC with pa-
rameters

v=4dmf+1, b=mv, r=mn%f?
ky=ky =nf, A=n’f(nf-1)%/4.
(b) For some integer n satisfying n(nf+2) < 4m, if there exist n distinct
integers e;, 1 < i < n, such that the elements in
({1,a™}e{a® | 0 < i < n})U{a®+aT™HI™ | 0 < i,j < n} (3.5)

are relatively distinct over Sy, then there erists a BIBRC with pa-
ramelers
v=4Amf+1, b=mv, r=m(nf+1)?
ky=ky=nf+1, A=n’f(nf+1)%/4

Proof. (a) Define an nf x nf array A by the (fi + h, fj + l)th entry as
follows:
A=[a%tm@hl) 4 geitdml] 0<4i<n, 0<hl<f, (3.6)

and a collection A of mv arrays by A= {sA+z | s € S, € V}. In this
case, the (fi + h)th row Ry;.p and the (fj + I)th column Cyjq of A can
be regarded as

n—1 n—1
Ryipn = ootmih+l) U % H§™ and Cjjy = afitimiy U a®tm g™,
i=0 i=0

By an analogous argument to that in the proof of Theorem 3.1, we first
examine the design generated from sR},- +»'8 and sC}j 48 for s € S,
where

n-1 n—1
/ _ e 4m U — ei+m yrrdm
Rfi+h = U (4 jHO and ij+l = U 24 Ho .
j=0 i=0

It is easy to see that

{sRpipn+|8€8m,zeV}IU{sClir+2|3€ Sm,z €V}

3.7
={sRjp+2z|s€ Sam,z €V} 3.7)

With the assumption that f is odd, Lemma 2.1(i)’ assures that (3.7) (equally
{sRfpish+x | 3 € S,z € VIU{sCpish+ | 8 € Spyz € V}) is a
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B(v,nf,n(nf —1)/2). Thus the set of rows and columns of sA4’s for s € S,
generates a B(v,nf,n?f(nf — 1)/2).

Next, we examine the differences arising from a block B of size nf
which is obtained by flattening out the array A. By noting that an arbitrary
pair from A is in the same row, in the same column, or neither of the cases,
the differences are classified into nf ARp’s, nf ACp’s and the entries in
the addition table of ARy and ACy = a™ARy modulo v, where

ARp = AU} o Hy™

={a¥(1-a YH™QH™|0<j<j <mn, j#j} (38)
U{e(1- Hy™\ {1}) @ Hy™ | 0< j <n}.
Since
1- H§™\ {1} = {(1 - a*){1, -9} |1 < t < (f - 1)/2}
and —1 € o®™ H§™,
(1-H"\{1}) ® H{™ = {(1 - o™ Hg™ |1 <t < (f - 1)/2}

holds, whence (3.8) can be transformed as follows:

ARy = {a®(1 - o " SHi™Q@HI™ |0<j<j <n, j#j'}
U{a(1-o*™)Hg™\{1}) | 0<j<n, 1<t < (f-1)/2}

By letting a® — a®H4mk = ik for some integer 0 < u;jx < v—2, we have

ARy ={a"*H™ |1<i<j<n, 0<k< f—1}

U{a*“HZ™|1<i<n, 1<t < (f~1)/2} &9

Now, let L(ARg, ACq) be the list of the entriés in the addition table of
ARy and ACy. Then L(ARy, AC)p) can be considered as a collection of the
following four sets:

(i) {L(a*sHZ™, ot *mHE™) |1<i<j<m, 1<i'<j' <m,
0<kk < f-1)

(ii) {L(a“""Hgm,a“i'i'*"'mHoz"‘) | 1<i<j<n, 1< i <n,
0<k<f-1,1<t<(f-1)/2}

(iii) {L(a*¢vtHZ™ a*#+mHI™)|1<i<j<n, 1< <n,
0<k<f-1,1<t<(f-1)/2};

(iv) {L(a¥H3™, avevstmE2™) |1<i,i' <n, 1< 4,8 < (f —1)/2}.
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Note that L(e™ Hf,e™* H{) = o™ H ® (1 + o™ = H}) = o™ H{ @ (1 +

o®1~%2H¥) and a~™HE™ = o™ HZ™. Then taking a union of the sets (ii)

and (iii), we have

{absr(l 4 otvsebintmEIMy @ HM 1 <i<j<n, 1<i <n,
0<k<f-1,1<t<(f-1)/2}

On the other hand, by noting that for f <t < 2f,
a‘l.Iijk(l+au‘ljlkl—u(jk+m(2t+l)) = auiljlkt+m(21+l)(1 +aui,'k—u(ljlkl+m(2t’+l))

holds, where ¢’ = 2f —t — 1 (and then 0 < ¢’ < f), we can calculate the set
(i) as follows:

{aM* (1 4 giesw —sampdmy @ H2m |1 << j<n, 1< <f <n,
— {au(j*(l +auiljlkl_uijk+m(2t+l)) ®H6n l i< i',j #j,, 1<i< J <n,
1< <j'<n, 0<k<k<f-1,0<t<f}
Also the set (iv) is reduced to
{a®6t(1 4 qUsve—vietmgImy @ g2m | 1 < 4.4 <n, 0K 4,8 < (f-1)/2}
_ {auﬁg(l +aui1‘lll—uiil+ﬂ'l(2t+l)) ®H6n I 1 S i< i’ S n,
0<e,l < (f-1)/2, 0<t<f}
Then {sL(ARy, AC) | s € Sm} = (n2f(nf — 1)2/4)(GF(v) \ {0}) holds,

which implies that sB’s generate a B(v,n2f2,n?f(nf — 1)2/4). Thus case
(a) has been proved.

(b) For case (b), let
._[ 0 uT
4= [ a™p A ]
be an (nf + 1) X (nf + 1) array, where pT = U}"}a® H{™ and A is as

defined by (3.6). By flattening out the array A* into a block B* of size
(nf + 1), we have

n—1
B* ={0}u({1,a™}® | J e~ Hi™) UB.
3=0

Then it is turned out that the condition on e; is necessary for the elements
of B* (equivalently, the entries of A) to be distinct from each other.
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By noting that A({0} U uT) = A({0} U Ro) = FRo U ARy, where
FRo = UjZja* H3™ and ARy is given by (3.9), it is easily verified that
the set of rows and columns of sA*’s generates a B(v,nf +1,n(nf +1)%/2).

Next, we examine the design generated by sB’s. The differences arising
from B are classified into nf + 1 A({0} U Ry)’s, nf +1 A({0} U Co)’s and
the elements in the addition table of A({0} U Rp) and A({0} U Cp). Let
L(A({0} U Rp), A({0} U Cy)) be the list of the entries in the addition table
of A({0} U Ry) and A({0} U Cp). Then L(A({0} U Ro), A({0} U Cq)) can
be further divided into L(A Ry, ACp) and the following five sets:

(i) {L(a*Hi™, a%+™HE™) |1 <4,5 <n};

(i) {L(a®HZ™, a¥ivtmHI™) [1<i<n, 1<¥ <j <n,

0<K<f-1}
(iii) {L(a®t™HE™ a%'s#* HE™)|1<i<n, 1<i' <j <n,
0<K<f-1}

(iv) {L(a®Hi™, avesvetmH2™) | 1< 4,4 <n, 1<t < (f-1)/2);

(v) {L(a**™HE™, a*ee HE™) | 1< 4,4 <m, 1< < (f - 1)/2}
Taking unions of the sets (ii) and (iii), and the sets (iv) and (v), we have
{a% (1+a® ¥t HI™MQH® |1<i<n, 1<i <j <n,0<K < f-1},
and

{e%(1 +a™veetmEI™y @ H™ 1< 4,4 <n, 1 K¢ < (f —1)/2},
respectively. Meanwhile, the set (i) is just the same as (3.3). Then
{sL(A({0} U Ro), A({0}UCO)) | 8 € Sm} = (n® f(nf +1)*/4)(GF(v) \ {0})

holds, which implies that sB*’s generate a B(v,n?f2,n? f(nf+1)2/4). Thus
A* = {sA* +z | 8 € Sm, z € V} is the desired BIBRC of (b). o

The followings are examples of parameter sets which satisfy the condi-
tions of Theorem 3.2(a) and (b).

13,3;2,5) and {ep,e1} = {0,1},

(m, fin,a) = (
(14,5;2,3) and {30131} = {0, 5}‘

(m, fin,a)

Theorems 4 and 5 in [17] are considered as special cases of Theorems
3.1 and 3.2, i.e., Theorems 3.1 and 3.2 with n =1 and ¢p = 0.
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