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Abstract Let G be a graph with vertex set V(G) and edge set E(G), and
let A be an abelian group. A labeling f: V(G) — A induces an edge
labeling * : E(G) — A defined by [*(xy) = f(x) + f(y), for each edge xy
€ E(G). Forie A, let v(i) = card{v e V(G) : f(v) = i} and e(i) = card{e
€ E(G) : f*(e) = i}. Let c(f) = {| edi) — e(j)] : (ij) e Ax A}. A labeling f
of a graph G is said to be A-fiendly if | vi(i) — vi(j) 1< 1 for all (ij) € Ax
A If ¢(f) is a (0,1)-matrix for an A-friendly labeling f, then f is said to be
A-cordial. When A = Z,, the friendly index set of the graph G, FI(G), is
defined as {|e(0) — e{1)| : the vertex labeling f is Z,-friendly}. In this
paper, we determine the friendly index set of cycles, complete graphs and
some bipartite graphs.
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1. Introduction.

Let G be a graph with vertex set V(G) and edge set E(G), and let A be an
abelian group. A labeling f: V(G) — A induces an edge labeling £* : E(G) - A

defined by t“'(xy) = f(x) + f(y), for each edge xy € E(G). Fori e A, let v(i) =
card{v e V(G): f(v) = i} and (i) = card{e € E(G) : f*(e) = i}. Let c()= {| ei)
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—edj) |: (ij) € Ax A}. Alabeling f of a graph G is said to be A-friendly if | v((i)
- v()) | € 1 for all (i,j) € Ax A. If c(f) is a (0,1)-matrix for an A-friendly
labeling f, then f is said to be A-cordial.

The notion of A-cordial labelings was first introduced by Hovey [10], who
generalized the concept of cordial graphs of Cahit [2]. Cahit considered A = Z,
and he proved the following: every tree is cordial; K, is cordial if and only if n <
3; K. is cordial for all m and n; the wheel W, is cordial if and only if n # 3
(mod 4); C, is cordial if and only if n # 2 (mod 4); and an Eulerian graph is not
cordial if its size is congruent to 2 (mod 4). Benson and Lee [1] showed a large
class of cordial regular windmill graphs. Lee and Liu [12] investigated cordial
complete k-partite graphs. Kuo, Chang and Kwong [11] determined all m and n
for which mK, is cordial. Cordial generalized Petersen graphs are completely
characterized in [9]. Ho, Lee and Shee [8] investigated the construction of
cordial graphs by Cartesian product and composition. Seoud and Abdel [15]
proved certain cylinder graphs are cordial. Several constructions of cordial
graphs were proposed in [14, 16, 17, 18, 19, 20]. For more details of known
results and open problems on cordial graphs, see [4 and 7].

In this paper, we will exclusively focus on A = Z,, and drop the reference
to the group. In [6] the triendly index set FI(G) of the graph G is introduced. The
set FI(G) is defined as {|e(0) — e(1)] : the vertex labeling f is friendly ;. When
the context is clear, we will drop the subscript f.

Note that if 0 or 1 is in FI(G), then G is cordial. Thus the concept of friendly
index sets could be viewed as a generalization of cordiality. Cairnie and
Edwards [5] have determined the computational complexity of cordial labeling
and Zg-cordial labeling. They proved that to decide whether a graph admits a
cordial labeling is NP-complete. Even the restricted problem of deciding
whether a connected graph of diameter 2 has a cordial labeling is NP-complete.
Thus it is difficult to determine the friendly index sets of graphs. This paper
could be regarded as a first focused effort at this difficult problem. We will
determine the friendly index sets of a few classes of graphs, in particular,
complete bipartite graphs and cycles.

We begin with a useful result on the friendly index set of a general graph.
Theorem_1. For any graph with q edges, the friendly index set FI(G) ¢ {0, 2, 4,
....q}ifqisevenand FI(G) c {1,3, ... , q} if qis odd.

Proof. Since ¢(0) +e(1) = q, we see that ¢(0) —e(1) = q - 2¢(1) is odd or even
according to whether ¢ is odd or even. Obviously |e(0) — e(1)| < q, the number
of edges in the graph.

2. Friendly index sets of complete bipartite graphs.

Theorem 2. Consider K., wherem <n. If m +niseven and m is even, then
FI(Kp, ) = 4m°; (m = 2)°, (m - 4)°, ..., 2°,0°}. If m + nis even and m is odd,
then FI(Km, o) = {m, (m - 2)°, (m - 4)’, ... , 3%, 1°}. If m +n is odd, then FI(K,
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W={m+Dm mm-1),(m-1)m-2),...,2.1, 1.0}.
Proof. The sct of vertices of K, can be partitioned into 2 subsets, one with m
vertices, and the other with n vertices. Two vertices are adjacent if and only if
they come from different subsets.
Case 1: m +n =2k, where Kk is a positive integer.
Consider any friendly labeling. Assume that i vertices from the first subset are
labeled 0. Then the remaining (m - i) vertices in this subset must be labeled 1.
Since v(0) = v(1) = Kk, in the second subset, (k — i) vertices must be labeled 0,
and the remaining (k — m + i) vertices must be labeled 1. It follows that ¢(0) =
ik-i)+(m-i)k-m+i)and e(1)=i(k —m +1i) + (k —i)(m —i). Thene(l)-
e(0) = i(2i - m) + (m - i)(m - 2i) = (m - 2i)>. Sincei=0,1,2, .., m, by
exhausting all the values of i, we obtain the fricndly index sets stated in the
theorem.
Case 2: m+n =2k + 1, where k is a positive integer.

We consider two subcases:
Case 2.1: v(0)=Kandv(l)=k+1.
We use reasoning similar to that in Case 1. Consider any friendly labeling. If
the first subset has i vertices labeled 0, then the remaining (m — i) vertices will
have label 1. Since v(0) = k and v(1) = k + 1, the second subset must have (k -
i) vertices labeled 0, and the remaining (k + 1 —m + i) vertices labeled 1. Then
e@=ikk-i)+(m-i1)k+1-m+i)ande(l)=ik + 1 —m +1) + (k —i)(m - 1),
givinge(l)-e(®)=iQRi-m+ 1)+ (m-1i)m -2i - 1) = (m - 2i — 1)(m - 2i).
Since i = 0, 1, 2, ... , m, by exhausting all the values of i, we verify that the
absolute difference |e(0) — e(1)| can take the values (m + 1)m, m(m - 1), (m -
Nm-2),...,2.1, 1.0
Case 2,2: v(0)=k+ 1land v(1)=k.
Again consider any friendly labeling. If the first subset has i vertices labeled 0,
then the remaining (m — i) vertices will be labeled 1. Since v(0) = k + 1 and v(1)
=K, the other subset must have (k + 1 - i) vertices labeled 0, and the remaining
(k — m +1i) vertices labeled 1. Then ¢(0) =itk + 1 —i) + (m - i)(k ~ m + i) and
e()=ik ~—m+i)+&+1-i)m-1), givinge(1)-e(0)=iRi-m—-1)+(m -
i)(m - 2i+ 1) =(m - 2i + 1)(m — 2i). By exhausting all the valuesof i =0, 1, 2,
.. » m, we verify that the absolute difference |¢(0) - €(1)| can take the values (m
+Dm,mm-1),(m-1Dm-2),...,2.1, 1.0.

The following examples show that the above result is not necessarily valid
for a bipartite graph that is not complete.

Example 1. Figure 1 shows a bipartite graph with FI(2K,) = {2}.
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Figure 1.
Example 2. Figure 2 is bipartite and has FI(K: LU K, 2) = {1, 3}.
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3. Friendly index sets of trees.
The following Corollary follows from Theorem 2.
Corollary 3. The star K, , has the following friendly index set:
FI(K,.) = {1} if nis odd, and FI(K, ,) = {0, 2} if n is even.

Figure 2.

Notation: For any n > 2, we will consider the following tree L;, where V(L,) =
{u, ua, ..., U} U vy, Ve, L, Vaband EQLY)) = {(u, vi):1=1, ... ,n-1} L
{(i, vind:ii=1, ... ,n-1}

Theorem 4. The triendly index set of FI(L,) = {0, 2, 4, ... , 2(n - 1)}.
Proof. The graph L, has 2(n — 1) edges. From Theorem 1, we know that FI(L,)
can only contain even numbers not exceeding 2(n - 1).

ForO <k €n-1,welabel allthev ; by Oand u;by 1, where i=1,2, ...,k
Fori 2k + 1, the remaining v; vertices are alternately labeled by 0, 1,0, 1, 0, ...
and the remaining u; vertices are alternately labeled by 1,0, 1,0, ... We see that
e(0) =k and e(1) = 2n - 2 = k, and |e(0) — ¢(1)| = 2n - 2 - 2k. Letting k range
from O to n — 1, we obtain the friendly index set of {0, 2, 4, ... , 2n-2}.

Example 3. FI(Ly) = {0, 2, 4, 6}.
uy@® w©@® v
1 1 1
OO0
1v3 1wy \2
c(l) =6 ,¢(0) =0 and Ic(l) ¢(0)=6 ¢(1)=5.c00)= land Ic(l) c(0)}=4
u@® D w®
1 1
@ @ 0 v3 1 0 v; Ov,
e(1)=4 e(O) 2and le(1) - c(O)[=2 ¢(1)=3,eQ0) = 3 and le(l) e(0)=0
Figure 3.
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Given two graphs G and H, the coronation of G with H, denotedby G © H, is
the graph with base graph G, and for each vertex u in G, we disjoint union a
copy of H and join u with each vertex in H. This construction of graphs was
introduced by Frucht and Harary [7].

Theorem S. The friendly index set of P, © K, is {1, 3, ... ,2n-1}.
Proof. The set of vertices of P, © K; can be partitioned into two subsets, one
with the n vertices {v|, va, ... , va} of Py, and the other consisting of the pendant
vertices {uj, Ua, ... , u,}. The graph has (2n - 1) edges. From Theorem 1, we
know that its friendly index set can only contain odd numbers not exceeding 2n
-1

ForO<k <n-1, we label all the v;by 1 and u; by 0, wherei=1, 2, ... , k.
For i 2 k + 1, the remaining v; vertices are alternately labeled by 1,0, 1,0, ...
and the remaining u; vertices are alternately labeled by 0,1, 0, 1, ... We see that
¢(0)=k and ¢(1)=2n - 1 ~k, and |e(0) — e(1)| = 2n — 1 - 2k. Letting k range from
0ton -1, we obtain the friendly index set of {1, 3, ... ,2n-1}.

Example 4. Figure 4 shows that FIPs © K,)={1, 3,5, 7, 9}.

¢(1) =9,¢(0) =0 and |c(1) - (D)= 9 ¢(1) =8,c(0) =1 and |e(1) - (0)= 7

NOEIORNOLAOKTO
1 1 1 1 i
JOTEOSR0

vy 0wzl vs

c(l) =7,¢0) =2 and |e(l) cO)F S e(1) =6,e0) =3 and [e(1) - ¢(O)}=3

c(1) = 5,c@) =4 and [e(1) - c(0)}=1

Figure 4.
For the remainder of this scction we determine the friendly index set of full

binary trees.

Notation: Note that a full binary tree must have an even number of edges. We
say that such a tree with a friendly vertex labeling is (v, x, g), where v = v+ or
v=, depending on whether v(1) =v(0) + 1 or v(0) — 1, x = 0 or 1, depending on
whether the root is labeled 0 or 1, and g = e(1) - e(0). If the vertex labeling is
not friendly, we will use vx as the first coordinate in the triple.
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A full binary tree with depth d + 1 can be constructed by adding a vertex (the
root) above two full binary trees with depth d. We obtain equations like (v-, 0,
g1) + (v, 1, g2) + 0 = (v-, 0, g, + g2), meaning that the newly added root vertex
is labeled 0. The validity of this equation can be easily verified. Since one of
the two subtrees has one more O-labeled vertices than 1-labeled vertices, and the
other subtree has one more 1-labeled vertices than O-labeled vertices, and the
new vertex is labeled 0, we must have v(1) = v(0) — 1 in the new tree. Since the
two newly added edges have induced labels O and 1, the value of e(1) — e(0) for
the new tree must be the sum of the g values for the two subtrees.

Lemma 3.1. There is a vertex labeling (not necessarily friendly) for a full
binary tree with depth d so that g = 2! - 2.

Proof. Label the root 0, the vertices at the next level 1, the vertices at the
following level 0, etc. Obviously all induced edge labels, altogether 291 _ 2 of
them, are labeled 1. Alternatively, we can label the root 1 and the other levels
altemately by 0 and 1 to produce the same result. We will call these trees (vx, 0,
24 _ 2y and (vy, 1, 291 _2) respectively. Note that the v(0) and v(1) values of
onc of these two trees are exactly the v(1) and v(0) values respectively of the
other tree.

Theorem 6. A full binary tree with depth | has FI = {0, 2}. A full binary tree
with depthd > | has FI = 0,2, 4, ... , 2 -4}
Proof. For a full binary trec with depth 1, labeling the root 0 and the leaves 0
and 1, and then labeling the root 0 and the leaves 1 and 1, give the desired result.
Now consider depth d > 1. For the value (1) - €(0) to equal 2% _ 2, the vertex
labeling must be as in the proof of Lemma 3.1 above. Such a vertex labeling is
obviously not friendly. Bg Theorem 1, the only possible values in the friendly
index setare 0, 2, 4, ... , 2% —4. We will show that all of them are attainable.
We will use induction to show that for any even value of g between 0 and 241
- 4 inclusive, (v-, 0, g) and (v+, 1, g) are possible if g is divisible by 4, and (v-,
1, 2) and (v+, 0, g) are possible if g is not divisible by 4.
For d = 2, the following trees verify the desired result.
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(0) (1)

0 ! 1 0
/{ }\
0 1\ 0 1f\0
© VO O © V@ O

¢(1) =3,¢(0) =3 and e(1) - ¢(0) =0 (1) =3,¢(0) =3 and (1) - c{0) =0

(1)
t ]
0 o[\
© OO O

¢(1) =4,e(0) =2 and 1) - ¢(0) =2 (1) =4,e(0) =2 and ¢(1) - ¢(0) =2

0 1 1 0

@ Q) @ @
1 1\ 1 1 \I
O OO © O VO ©

¢(1)=5.¢0)=1and ¢1) - e(0)=4 ¢(1) =5,¢0) =1 and ¢(1) - ¢(0) =4
Figure S,

Assume that the result is true for full binary trees with depth d 2 2. Now
consider a full binary tree with depth d + 1.

Case 1: Consider any even value of g between 0 and 2**! - 4 inclusive.

If g is divisible by 4, (v-, 0, 0) + (v+, 1, g) + 0=(v-, 0, g), and (v+, 1, 0) + (v-, 0,
g)+ 1 =(v+, |, g) give the desired result.

If g is not divisible by 4, (v-,0,0) + (v-, 1, g) + 1 = (v-, 1, g), and (v+, 1, 0) +
(v+,0, g) + 0= (v+, 0, g) give the desired result.

Case 2: Consider any even value of g between 2! — 2 and 2%? - 8 inclusive.

If g is divisible by 4, (v-,0, g - 2*' = 4)) + (v+, 1,24 —4) + 0 = (v-, 0, g), and
(vt 1, g- " - 4))+(v-, 0,2 )+ 1=(v+ 1, g) give the desired result.

If gis not divisible by 4, (v-, 1, g— ™' =4) + (v-, 0, 2" — ) + 1 = (v-, 1, g),
and (v+,0, g — Q% —4) + (v+, 1, 2% - 4) + 0 = (v+, 0, g) give the desired
result.

Case 3: Consider g = 2*** -6, which is not divisible by 4.

(v-, 0, 2% — 4y + (v-,0,2 —4) + 1 = (v-, 1,2%7-6), and (v+, 1, 2% —4) +

(v+, 1, 2" —4) + 0 = (v+, 0, 2*° — 6) give the desired result.

Case 4: Consider g = 2*** - 4, which is divisible by 4.

Use the trees in Lemma 3.1 above. Then (vx, 0, 2% —2) + (wx, 1,2% -2)+0
=(v-,0,2"7—4), and (vx, 0,21 = 2) + (vx, 1, 2% =) + 1 = (v+, 1, 2%% - 4)
give the desired result.€.
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4. Friendly index sets of complete graphs and cycles.

Theorem 7. The friendly index set of the complete graph K,, is FI(K,,) = {Ln/2]}
foralln>2.
Proof. Assume n = 2k. We label k vertices with 0 and the other k vertices with
1. We see that
e(0) = 2k(k — 12 =k* =k and e(1) = k*. Thus |¢(0) — e(1)| has the value k.
Assume n = 2k + 1. We label k + 1 vertices with 0 and the other k vertices
with 1. We see that e(0) =k(k + 1)2 +k(k— 12 =k*and e(1) =k(k + N =K’ +
k. Thus |e(0) — e(1)} has the value k.
Hence FI(K,) = {Ln/2J} for all n> 2.

For the remainder of this section we will consider the friendly index set of
cycles.
Lemma 4.1. Any vertex labeling (not necessarily friendly) of a cycle must have
¢(1) equal to an even number.
Proof. Traverse the cycle, starting at an arbitrary vertex. At any vertex labeled
X, where x = 0 or 1, an edge labeled O leads to another vertex labeled X, while an
edpc labeled 1 leads to another vertex labeled 1 — x. Since we need the same
label when we reach the starting vertex again, the number of edges labeled 1
must be even, i.e., ¢(1) must be even.

Lemma 4.2. Any friendly vertex labeling of a cycle must have e(1) 2 2.
Proof. If not, e(1) =0, i.e,, all edge labels are 0, meaning that all vertex labels
arc the same, contradicting the definition of a friendly vertex labeling.

Theorem 8. The friendly index set of a cycle is given as follows:
M FIC:)=40,4,8, ... ,2n} if nis even.

FI(C-p) = 42,6, 10, ..., 2n} if nis odd.
(i) FI(Ca)=141,3,5,...,2n-1}.
Proof’
(i) The possible values of e(1) are 2, 4, 6, ... , 2n, and the corresponding
values of e(0) are 2n - 2,2n -4, 2n - 6, ... , O respectively. Thus the possible
values of |e(0) —e(1)| are 0, 4, 8, ... ,2nif niseven,and 2,6, 10,... , 2nifnis
odd. We will show that all these values are attainable.
Let the vertices of Ca, be vy, va, ... , van. Foreach 1=0,1,... ,n-1,letf(v))=
f(va) = ... = 1{(vaing) = 0, f(v2) = f(va) = ... = {(vy) =1, f(vain) = f(vaisa) = ... =
f(vyin) = 0, f(Viene1) = fVianea) = ... = f(vay) = 1. Then v(0) = v(1) = n, 1.e., the
verlex labeling [ is friendly. Counting the edge labels, we readily see that e(1) =
2i + 2, and ¢(0) = 2n - 2i — 2, with an absolute difference of |2n — 41 - 4|
Letting i run through all the values from O to n — 1 inclusive, we get the desired
result,
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(ii) The possible values of e(l) are 2, 4, 6, ... , 2n, and the corresponding
values of ¢(0) are 2n -1, 2n - 3, 2n -5, ... , 1 respectively. Thus the possible
values of je(0) —e(D}are 1, 3, 5, ... , 2n - 1. We will show that all these values
are attainable.

Let the vertices of Caye be vy, Va, ... , Vo, Ve, Foreach 1=0,1,... ,n~1, let
fvi) =1(v3) = ... = f(vai) =0, f(v2) = f(va) = ... = f(va) = 1, f(vain) = f(Vaisd) =
ver = f(Vien) = 0, f(Vient1) = f(Vien2) = ... = f(Van) = f(Vonn) = 1. Then v(0) =n
and v(1) =n + 1, i.e., the vertex labeling f is friendly. Counting the edge labels,
we readily see that e(1) = 2i + 2, and ¢(0) = 2n — 2i - 1, with an absolute
difference of [2n — 4i - 3|. Letting i run through all the values from O ton -1
inclusive, we get the desired result.

ExampleS. FI(Co)={1,3,5,7}.

¢(1) =6,¢(0) =3 and [e(1) - ¢(@)f=2 (1) =4,¢(0) =S and [e(1) - e(0)}= 1
Figure 6.
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Example 6. FI(Cp) = {2,6, 10}.

(1) =10 ,¢{0) =0 and [c(1) « ¢(O)}= 10 (1) =2,c(0) =8 and |¢(1) - c(0)}=6

¢(1) =4,¢(0) =6 and |e(1) - ¢(0)}=2
Figure 7.

5. Friendly index sets of P, X P,,.

In this scction we will consider the friendly index set FI(P2 x P,,). Note that
P, x P, has an even number of vertices. For a vertex labeling to be friendly, we
must have v(0) =v(1). Let g =¢e(1)—¢(0).

Lemma 5.1. If each vertex label x is changed to 1 — x, the vertex labeling
remains friendly, and the difference g = e(1) — e(0) remains the same.

Lemma 5.2. The friendly index set of P2 x P, can only contain even numbers if
n is even, and can only contain odd numbers if n is odd.

Proof. The number of edges is even or odd according to whether n is even or
odd. The result follows from Theorem 1.

Lemma 5.3. I P> x P, has q edges, then q — 2 cannot be in the friendly index
sel.

Proof. If q—2isin the friendly index sel, then e(1) = 1 or €(0) = 1. Thus there
is a 4-cycle with exactly one edge labeled 1 or 0. This contradicts Lemma 4.1,

266



which states that a cycle must have an even number of edges labeled 1.

We consider two cases.
Theorem 9. FI(P2 %P2y} =£1,3,5, ... ,9-6,q-4, q}, i.e,, all odd numbers
between | and q inclusive, except q—- 2. (Note that = 6n + 1. Thus FI(P. x
Pau)={1,3,5,...,6n-56n-3,6n+1}.)
Proof. By Lemmas 5.2 and 5.3, it suffices to show that all these numbers are
attainable.
For n = 0, the following diagram venfies the result.

®
1
®

Figure 8.
For n = 1, the following diagrams verify the result.

o101 OO0 O+-0—®
Ty rn
(9/1\'-}01 01\1/01 1 1

Figure 9.
For n =2, the following diagrams verify the result.

Figure 10.

We will now use induction to show that if Py X Pay,; satisfies the theorem
with vertices of the nghtmost edge labeled O at the top and 1 at the bottom, then
P2 X Papes also satisfies the theorem with vertices of the rightmost edge labeled 0
at the top and | at the bottom. The cases n = 1 and 2 serve as base cases in the

induction.
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For cach difference g = e(1) — e(0) in FI(P2 % P24y, the same value of g can
be attained in FI(P2 % Pa,5) by adding the following.

Figure 11.
For g = q—2 =6n - 1 that does not exist in FI(P2 X Pag4), this value can be
realized in Pa X Pan.s by adding the following to the labeling of P2 x Papyy that
givesq-6=6n-5.

Figure 12,
For Pa x Pay.s, We need to provide labelings that can give g = e(1) —e(0) = 6n +
3,6n+5,6n+7,6n+9,and 6n + 13.
Start with g = 6n = 5 in P2 X P2y, the following additions realize 6n + 3 and 6n

+71in P2 X Pas.

1 ©
! 1 1 1
OO

G 0 )
R0
(0 Q 0

1 1 1
Figure 13.

Note that after the first construction, Lemma 5.1 should be applied to restore the
rightmost edge to the desired orientation.

Start with g =6n = 3 in Pz X P2y, the above two additions realize 6n + 5 and 6n
+9in P; X P:ms.

Finally, start with g = 6n + | in P2 X Py, the second addition above realizes 6n
+13in Pa x P:m.s.

Theorem 10. FI(P-xP,,) =40,2,4, ... ,q-6,q-4, q}, i.e, all even numbers
between 0 and q inclusive, except - 2. (Note that q = 6n -2. Thus FI(P; x P,)
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=10,2,4,....6n—8,6n-6,6n-2}.)

Proof. By Lemmas 5.2 and 3.3, it sulfices to show that all these numbers are
attainable.

For n = 1, the following diagrams verify the result.

[
L0
O—O OO

Figure 14.
For n = 2, the following diagrams verify the result.

O—-0O—-+-0—@

o N80

OO 050

°o° SO
1

000 OO0

O——0——©@
1

Figure 15.
For n = 3, the following dlagmms verify the result.
1 0

¢(1)=8,¢(0) =8and |e(1) - ¢(0)}=0

€(1)=9,¢(0) = 7and |e(1) - ¢(0)}= 2

¢(1)=10,¢(0) =6and je(1) - e(0)}= 4

¢(1)=11,¢(0) = 5and [e¢(1) - ¢(0)}= 6
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¢(1)=12,¢(00) =4and Je(1) - e(0)=8

¢(1)=13,¢(0) =3 and |e(1) - ¢(0)= 10

e(1)=14,¢(Q0) =2 and |¢(1) - ¢(O)}= 12

¢(1)=16,¢(0) =0 and |e(1) - e(0)}= 16

Figure 16.

We will now use induction to show that if P» x P», satisfies the theorem with
vertices of the rightmost edge labeled O at the top and 1 at the bottom, then P2 x
Pag+s also satisfics the theorem with vertices of the rightmost edge labeled O at
the top and | at the bottom. The cases n =2 and 3 serve as base cases in the
induction. The inductive proof is cssentially the same as that of Theorem 9.
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