The Classification of Regular Graphs on f-colorings !
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Abstract: An f-coloring of a graph G is a coloring of edges
of E(G) such that each color appears at each vertex v € V(G)
at most f(v) times. The minimum number of colors needed to
f-color G is called the f-chromatic index of G and denoted
by x}(G). Any simple graph G has the f-chromatic index

equal to As(G) or Af(G) + 1, where A(G) = max{ [0}

If x+(G) = Af(G), then G is of Cy 1; otherwise G is of Cy 2.
In tils paper two sufficient conditions for a regular graph to be
of Cs 1 or Cy 2 are obtained and two necessary and sufficient
conditions for a regular graph to be of C; 1 are also presented.
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1. INTRODUCTION

Our terminology and notation will be standard. Readers are referred
to [1] for undefined terms. Throughout this paper, the graph refers to a
simple graph. A multigraph may have multiple edges but no loops. Let
G be a multigraph with a finite vertex set V and a finite and nonempty
edge set £. In the proper edge-coloring, each vertex has at most one edge
colored with a given color. Hakimi and Kariv [5] generalized the proper
edge-coloring and obtained many interesting results. The degree d(v) of
vertex v is the number of edges incident with v in the multigraph G. Let
f be a function which assigns a positive integer f(v) to each vertex v € V
in G. An f-coloring of G is a coloring of edges such that each vertex v
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has at most f(v) edges colored with the same color. The minimum number
of colors needed to f-color G is called the f-chromatic indez of G, and
denoted by x};(G).

The f—colorlng problem is to find x;(G) of a given multigraph G, which
arises in many applications, including the network design problem, the file
transfer problem in a computer network, scheduling problems, and so on
[3,4,7]). The file transfer problem is modelled as follows. Assume that each
computer v has a limited number of communication ports f(v) and it takes
an equal amount of time to transfer each file. Under these assumptions,
the scheduling to minimize the total time for the overall transfer process
corresponds to an f-coloring of a multigraph with minimum number of
colors. If f(v) =1 for all v € V, then the f-coloring problem is reduced to
the proper edge-coloring problem. Since the proper edge-coloring problem
is NP-complete [6], the f-coloring problem is also NP-complete. Hakimi
and Kariv [5] studied the f-coloring problem and obtained some upper
bounds on x(G). Nakano et al. [8] obtained another upper bound on
X7(G). Zhang and Liu [10,11] studied the classification of graphs on f-
colorings.

The remainder of the paper is organized as follows. In Section 2 we give
some lemmas which will be used in the proofs of main results. In Section
3 we present two sufficient conditions for a regular graph to be of Cy 1 or
Ct 2 and two necessary and sufficient conditions for a regular graph to be
of Cy 1. Furthermore, an open problem is presented.

2. SOME LEMMAS

Let G be a multigraph and let f be a positive integer function defined
on V. Set
d(v)

fv)
d(v

in where [%3%] is the minimum integer not less than ﬁ;} It is easy
to verify that x;(G) > Ay. The multiplicity p(u,v) of a pair of » and
v of distinct vertlces is the number of edges of G joining u and v. Let
() = Tea‘.}{p(v u)}. Vizing [9] proved that A(G) < x'(G) < A(G)+1 for
a graph G. Graphs for which A(G) = x/(G) are said to be Class 1, and
otherwise they are said to be Class 2. In [10] and [11] we considered the

classification of graphs on f-colorings.
The following lemma was given by Hakimi and Kariv [5)].

A= max{d(v)} and Af—max{l' 1}
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Lemma 2.1. Let G be a multigraph. Then

d(v) + p(v) ) + u(v),y

If G is a graph, we have u(v) = 1 for all v € V. Therefore the following
corollary holds.

Corollary 2.2, Let G be a graph. Then

d(v) +1
fv)

A < x5(G) < max{[ 1}<Ar+1.

From the above corollary we can see that the f-chromatic index of any
graph G must be Ay or Ay + 1. This result naturally partitions all graphs
into two classes for f-colorings, and we say that G is of Cy 1if x}(G) = Ay;
and that G is of Cy 2 if x}(G) = &y + 1.

Hakimi and Kariv [5] obtamed the following two results.

Lemma 2.3. Let G be a bipartite graph. Then x}(G) =

Lemma 2.4. Let G be a graph and f(v) be even for allv € V. Then
xy(G) =

Let
fr= min{f(‘v)},
={v|Ay = l'?gv;],v eV}, and

Vg = {vldy = f§§ eV},

In [10] and [11], we obtained the following results.

Lemma 2.5. Let G be a graph. If f(v) t d(v) for all v € V*, then G
isofCy 1

Lemma 2.6. Let G be a regular graph of degree d(G) = A. If there
ezist positive integers k and p such that G has a k-factorization, f* | A
and f* = pk, then G is of Cy 1

Lemma 2.7. Let G be a complete graph K,. If k and n are odd inte-
gers, f(v) =k and k | (n — 1), then G is of Cy 2. Otherwise, G is of Cy 1.
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Lemma 2.8. Let G be a graph and let G} be the subgraph of G induced by
the vertices of V. Then G is of Cy 1 if Gj is a forest.

If f(v) =1 for all v € V, our problem of classification on f-colorings is
reduced to the problem of classification on proper edge-colorings.

3. MAIN RESULTS

Throughout this section, G always denotes a simple graph. In [10]
we solved the problem of classification for complete graphs on f-colorings
completely (see Lemma 2.7). Therefore, in this paper we only consider the
regular graphs which are not complete graphs. Note that for any subgraph
G’ of G we have fg/(v) = fe(v) for all v € V(G').

The following theorem is very important for our classification of regular
graphs on f-colorings.

Theorem 3.1. Let G be a regular graph of degree d(G) = A. Then G
isof Cy 1 if f*{A or f* is even.

Proof. For a regular graph G, we have Ay = [%]. Thus V* = {v|Ay =
1w € VY2 {vlf(v) = f*,v € V}. If f* 1 A, it is easy to verify that
f(v) t A for any v € V*. Then, by Lemma 2.5, G is of Cy 1.

If f* is even, we consider two cases. If f(v) = f* for allv € V, by
Lemma 2.4, there always exists an f-coloring Cy. of G with Ay colors. If
f(v) > f* for some vertices v € V, the coloring C;- is still an f-coloring of
G with Ay colors, as desired. So, G is of Cy 1 when f* is even. 0

A k-factor of a graph G is a k-regular spanning subgraph. Let G be
an mk-regular graph. If Hq, Hs,..., H,, are edge-disjoint k-factors of G,
then {Hy, Ha,...,Hy} is called a k- factorization of G. By Theorem 3.1,
we have the following result.

Corolary 3.2. Let G be an even regular graph of degree d(G) = A. If
k is even and k | A, then G has o k-factorization.

We denote by C the set of colors available to color the edges of a graph
G. An edge colored with color ¢ € C is called a c-edge. Denote by d(v,c)
the number of c-edges of G incident with the vertex v. Now, we present a
sufficient condition for a regular graph to be of Cy 2.
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Theorem 3.3. Letn > 1. Let G be a regular graph of order 2n + 1
and degree d(G) = A. Then G is of Cy 2 if f(v) = f* is odd for allve V
and f* | A.

Proof. By contradiction. We suppose that G is of C; 1 and now G is
f-colored with Ay colors. Thus d(v,¢) = f* for each ¢ € C and each

v € V. The number of edges colored with a color in C is -(2“—*;12L Obvi-

ously, @zﬂﬁ is not an integer. This contradicts our assumption. So G is
of Cy 2 when f(v) = f*isodd forallv€ V and f*|A. O

Next, we will give two necessary and sufficient conditions for a regular
graph to be of C; 1. Before that, we need some preliminary concepts in
8].

Define m(v,c) = f(v) — d(v,c). G is f-colored if and only if d(v,c) <
f(v) for every v € V and ¢ € C. Color ¢ is available at vertex v if
m(v,c) > 1. Define M(v) = {c € C|m(v,c) 2 1}. A walk W is a sequence
of distinct edges vovy, v1v2,. .., Vk—1Vk, Where the vertices vg, v1, ..., v are
not necessarily distinct. Walk W is often denoted simply by wv; ... vk.
We call vy the start vertex of W and vy, the end vertex. The length of W
is k, the number of edges in W, and denoted by |W|. If vy = v, then W is
called a closed walk. For two distinct colors a,b € C, a walk W of length
one or more is called an ab-alternating walk if W satisfies the following
conditions:

(a) The edges of W are colored alternately with a and b, and the first
edge of W is colored with b;

(b) m(v,a) > 1if v # vy,
m(vo,a) > 2 if vo = v and |W] is odd;

(¢) m(vk,b) 2 1 if vg # vi and |W| is even,
m(vk, a) 2> 1 if vg # v and |W] is odd.

Note that any closed walk W of even length whose edges are colored
with a and b alternately is an ab-alternating walk. If G is f-colored and
W is an ab-alternating walk, then interchanging the colors a and b of the
edges in walk W preserves an f-coloring of G. This operation is called
switching W. When W is switched, m(v;,a) and m(v;,b) remain as they
were if ¢ # 0,k, while m(vp,b) > 1 if W is not a closed walk of even
length. Obviously, W is switched into a ba-alternating walk. We denote by
W (e, b; vp) an ab-alternating walk which starts with vertex vgy. If confusions
may occur, we write d(v, ¢; G), m(v,¢c; G) and M(v;G) for d(v,c), m(v,c)
and M(v) of graph G, respectively.
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Theorem 3.4. Let G be a regular graph of order n and degree d(G) = A,
and let G # K,,. Let w € V be the only vertex such that f(w) > f*. Then
G is of Cy 1if and only if G\ w is of Cy 1.

Proof. Since G # K, we have Ay(G \ w) = Ay(G). Obviously, G\ w is
of C; 1if G is of Cy 1.

Conversely, suppose that G \ w is of Cy 1, where w € V is the only
vertex such that f(w) > f*. We will show that G is of Cy 1. Clearly, we
only need to prove that if f(w) = f* + 1, then G is of C; 1. We consider
two cases.

Case 1. If f* 1 A or f* is even, by Theorem 3.1, G is of Cy 1.

Case 2. If f* | A and f* is odd, we will give an f-coloring of G with
Ag(G) colors as follows.

First, we f-color G\w with Ay colors. Note that Af(G\w) = Af(G) =
Ay. Denote by Ng(w) the set of all vertices adjacent to vertex w in G. Now
|M(v)| = 1 for each v € Ng(w) and |M(v)| = 0 for each v € V\(Ng(w)Uw).
Next, we color the edge e = wv with the color in M(v) for each v € Ng(w).
Then [M(v)| =0 for every v € V \ w. If d(w,¢;G) < f*+1for allce C,
we obtain an f-coloring of G with Ay colors. Otherwise, we can find a
color @ € C with d(w,;G) > f* + 2. Furthermore, there exists at least
one color B € C with d(w,8;G) < f* — 1. Finding a fo-alternating walk
P = W(B,a;w), we say that P must end at w (because |M(v)| = 0 for
each v € V \ w). In particular, when the walk P returns to w with a §-
edge, continue to extend P by choosing an a-edge incident with w. Since
d(w, a; G) —d(w, B; G) > 3, there exists such an a-edge which has not been
included in P so far. So we can say that P must end at w with an a-edge.
Switching P makes d(w, a; G) decrease two and d(w, 8;G) increase two.
Repeat this operation until d(w,¢;G) < f*+1forallce C.

This completes the proof. O

For regular graphs with even order, we present another necessary and
sufficient condition slightly better than Theorem 3.4 as follows.

Theorem 3.5. Let n > 1. Let G be a regular graph of order 2n and
degree d(G) = A, where G # Kay,. Let f(v) = f* forallve V. G is of Cy
1if and only if G\ w is of Cy 1, wherew € V.

Proof. Since G # Kap, we have Ay(G \ w) = Ag(G). So, G\ w is of
CrlifGisof Cy 1.

Conversely, suppose that G\ w is of Cy 1. If f* { A, then G is of Cf 1.
Otherwise, Ay = TA"" where Ay = Ap(G\ w) = Af(G). First, we f-color
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G\ w with Ay colors. Now |M(v)| =1 for each v € Ng(w) and |[M(v)| =0
for each v € V'\ (Ng(w)Uw). Next, color the edge e = wv with the color in
M (v) for each v € Ng(w). Defined = <Jmex, {Id(w,ci, G)—d(w,c;;G)|}.

Ifd=0, we obtam an f-coloring of G w1th A 7 colors. Otherwise, d > 2.
(Since Ay = f., d # 1.) Let a and § be two colors in C such that
d(w,;G) — d(w,8;G) = d. If d(w,;G) — d(w, 3;G) > 3, we can find
a Bo-alternating walk P = W (3, o; w) which ends at w with an o-edge.
Switching P makes d(w, a; G) decrease two and d(w, 8;G) increase two.
Thus |d(w,a; G) — d(w, B; G)| decreases four or two. Repeat this oper-
ation until d < 2. If d=2, without loss of generality, we assume that
d(w,0; G) — d(w, 8;G) = 2. It is easy to see that d(w,a;G) = f* + 1 and
d(w,B;G) = f*—1since Ay = %. We have known that d(v, a; G) = f* for
all v € V\ w. So the number of a-edges in G is LMLZ"'U‘—*'IZ Clearly,
it is not an integer. Therefore, d = 0. We obtain an f-coloring of G with
Ay colors. O

If f(v)=1 for all v € V, we have the following corollary which is due to
Chetwynd and Hilton [2].

Corollary 3.6. Letn > 1. Let G be a regular graph of order 2n, and
G # Kyn. Let we V. Then G is Class 1 if and only if G\ w is Class 1.

Combining Lemma 2.7 and Lemma 2.8 with Theorem 3.4 or Theorem
3.5, readers can get some regular graphs of Cy 1. In particular, we have
the following results.

Corollary 3.7. Let G be a regular graph of order 2n + 1 such that the
degree d(G) is equal to 2n or 2n — 2. Let w € V be the only vertez such
that f(w) > f*. Then G is of Cy 1

Corollary 3.8. Let G be a regular graph of order 2n such that the de-
gree d(G) is equal to 2n—1, 2n—2 or 2n—3. Then G has a 1-factorization.

It is easy to see that the f-coloring problem has close relationships with
the equitable edge-coloring problem or the factorization problem. From
above two aspects, we probably find some general methods to classify
graphs for f-colorings. Finally, we present the following open problem.

Question: Find the sufficient conditions for a reqular graph of degree
d(G) =A to be of Cy 1 or Cy 2 when f* | A and f* is odd.
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