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The Lagrange Interpolation Formula may be stated in two ways as

follows:
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and where xo XprXgroeon X is a sequence of n+1 distinct values of x,

ie. X, =xj if and only if i=]j.

The expansion is given as formula (Z.1) in my book {1].

The expansion is exact when f(x) is a polynomial of degree < n. For
other functions there will be a remainder term, which is of concern only
when one studies numerical approximations.

Remarks. The Lagrange formula is a specialization of Newton's Divided
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Difference Formula. Also, Waring [4] published the formula (1) sixteen years

before Lagrange [3, Euvres, p. 286].

Melzak [4] posed the formula
n
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and this follows directly from the Lagrange formula when we choose

xk = - k and apply the Lagrange formula to get
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My unpublished (but mentioned) proof [4] of the Melzak formula is exactly
what we have just exhibited. Melzak's formula is listed as (Z.5) in [1].

The Melzak formula figured widely in obtaining a number of the
combinatorial identities in my book [1].

Our purpose here is to show the proofs of a few of those identities
and to exhibit some other novel identities that follow easily from the

Lagrange-Waring interpolation formula.
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The simplest case of Melzak's formula is when we choose f(x) = 1

identically:

y(y”)z“) (k)y+k @

and this is tabulated in my book as formula (1.41). Also listed in the book

as formula (1.42) is the natural inverse of this:

Y@ -

Both of these, as well as the original Lagrange-Waring expansion, may be
considered as partial-fraction expansions. One solution [4] obtained
Melzak's formula in this manner.

Natural inverses follow because of the simple binomial inverse

pair:
<
A = ; 1) (E) B )
if and only if
<
B = kz;d(-l) (2) A (10)

Relations (7) and (8) have appeared numerous times in the vast
mathematical literature.

Just a few of the initial identities in [1] that follow from the
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Lagrange or Melzak formulas are: (1.43), (1.44), (1.45), (1.46), (1.47), and
the reader is challenged to determine just how many of the 550 identities

in [1] can be seen as consequences of the Lagrange formula. We will discuss
some of the more curious ones here.

Differentiation of the Melzak formula with respectto y gives
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and this is expansion (Z.6) in [1]. By repeated differentiation with respect

to y and using f(x) =1 one can sum the series

()

in terms of the reciprocal power sums

(12)
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which uses Riordan's cycle indicator, and this will be discussed in [2].

An interesting special case of the Lagrange expansion is

2( D (n+k) M
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i 2 1 {2n) f
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and this is formula (Z.10) in [1].

An interesting alternative statement of this is as follows:

n
é(—l) (k)( f(““

+k)( -k

f(x +y)

= e’ ZX(X-H)(Zn)(x - n)

which is formula (Z.11) in [1].

(14)

The derivation of (13) from the Lagrange expansion (2) follows by

2
choosing xk =k , and noting the following easy calculations:

2
g) = xeemant (* 5, ").
02 _ 1, K
gk)= 5(—1) (n-k)!(n+k)!.

Formula (14) then follows by simple factorial rearrangements.

Another variation is formula (Z.14) in [1] which says that

n
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1 {f(y+z) f(y+x)} (15)

SGeD (zen) T (x e

where now f(x) is a polynomial of degree <n+1 in x.

The following is an easy deduction from the Lagrange formula:

SO -0y

where f(x) is a polynomial of degree <n +r- 1 in x. This is formula (Z.16)
in [1].

In this, set r =n. Then we have the special case [1,(Z.17)]

n
Zo’('l)k RS .

(")

where f(x) is a polynomial of degree <2n-1 inx
Now we move to some formulas not tabulated in [1]. Recall that by

choosing xk = - k, we found (4) which we have called Melzak's formula.
It is then natural to choose xk = Kk, and get a companion to Melzak. Now we

find easily that

(k) (n—k ' (18)

so that from the Lagrange expansion (1) we get the novel formula

i¢k
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n
f(x +y) = kZO (ﬁ) (gﬁ) fk +y), (19)

We may then use this to see that

n
won = H (D).

so that we get the second novel formula

n n
f(x +y) = é Jzo (ﬁ) (R) G’ )(;‘Uy) fG+k, (0

where in both (19) and (20) f(x) is a polynomial of degree <n in x.

We note two interesting special cases of (19):

n
Z (x) n-x (k+y) = ("*Y), forany 0<rs<n, (21)
kep AR r

g (i)(ﬁ:i)(kﬂ')r = (x+ y)r, orany 0<r<n. (22)

From (20) we have

53 OEOEE (). w

where 0 <r<n.
Relations (19), (20), (21), and (23) were not listed in [1], and do not

seem to be commonly known.
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