A Note on Combinatorial Identities arising from the Lagrange-Waring Interpolation Formula

H. W. Gould

Department of Mathematics
West Virginia University, PO Box 6310
Morgantown, WV 26506-6310
email: gould@math.wvu.edu

The Lagrange Interpolation Formula may be stated in two ways as follows:

$$f(x + y) = \sum_{k=0}^{n} f(x_k + y) \prod_{i=0}^{n} \frac{x - x_i}{x_k - x_i},$$

$$i \neq k$$
(1)

$$f(x + y) = g(x) \sum_{k=0}^{n} \frac{f(x_k + y)}{(x - x_k)g'(x_k)},$$
 (2)

where

$$g(x) = \prod_{i=0}^{n} (x - x_i),$$
 (3)

and where $x_0, x_1, x_2, \dots, x_n$ is a sequence of n+1 distinct values of x,

i.e.
$$x_i = x_j$$
 if and only if $i = j$.

The expansion is given as formula (Z.1) in my book [1].

The expansion is exact when f(x) is a polynomial of degree $\le n$. For other functions there will be a remainder term, which is of concern only when one studies numerical approximations.

Remarks. The Lagrange formula is a specialization of Newton's Divided

Difference Formula. Also, Waring [4] published the formula (1) sixteen years before Lagrange [3, Œuvres, p. 286].

Melzak [4] posed the formula

$$f(x + y) = y {y + n \choose n} \sum_{k=0}^{n} (-1)^{k} {n \choose k} \frac{f(x - k)}{y + k},$$
 (4)

and this follows directly from the Lagrange formula when we choose

 $x_{k} = -k$ and apply the Lagrange formula to get

$$f(x + y) = \sum_{k=0}^{n} f(y - k) \prod_{\substack{i=0 \ i \neq k}}^{n} \frac{x + i}{i - k}$$

and then note that

$$\prod_{i=0}^{n} (x+i) = n! \ x \begin{pmatrix} x+n \\ n \end{pmatrix}, \tag{5}$$

and

$$\frac{n!}{n} = (-1)^{k} \binom{n}{k}.$$

$$\prod_{i=0}^{k} (i - k)$$

$$\lim_{i \neq k} (i - k)$$

My unpublished (but mentioned) proof [4] of the Melzak formula is exactly what we have just exhibited. Melzak's formula is listed as (Z.5) in [1].

The Melzak formula figured widely in obtaining a number of the combinatorial identities in my book [1].

Our purpose here is to show the proofs of a few of those identities and to exhibit some other novel identities that follow easily from the Lagrange-Waring interpolation formula.

The simplest case of Melzak's formula is when we choose f(x) = 1 identically:

$$y {y + n \choose n} \sum_{k=0}^{n} (-1)^{k} {n \choose k} \frac{1}{y+k} = 1$$
 (7)

and this is tabulated in my book as formula (1.41). Also listed in the book as formula (1.42) is the natural inverse of this:

$$\sum_{k=0}^{n} (-1)^{k} \binom{n}{k} \binom{y+k}{k}^{-1} = \frac{y}{y+n}.$$
 (8)

Both of these, as well as the original Lagrange-Waring expansion, may be considered as partial-fraction expansions. One solution [4] obtained Melzak's formula in this manner.

Natural inverses follow because of the simple binomial inverse pair:

$$A_{n} = \sum_{k=0}^{n} (-1)^{k} {n \choose k} B_{k}$$
 (9)

if and only if

$$B_{n} = \sum_{k=0}^{n} (-1)^{k} {n \choose k} A_{k}.$$
 (10)

Relations (7) and (8) have appeared numerous times in the vast mathematical literature.

Just a few of the initial identities in [1] that follow from the

Lagrange or Melzak formulas are: (1.43), (1.44), (1.45), (1.46), (1.47), and the reader is challenged to determine just how many of the 550 identities in [1] can be seen as consequences of the Lagrange formula. We will discuss some of the more curious ones here.

Differentiation of the Melzak formula with respect to y gives

$$f(x+y) \sum_{k=0}^{n} \frac{1}{y+k} - D_{y} f(x+y)$$

$$= y {y+n \choose n} \sum_{k=0}^{n} (-1)^{k} {n \choose k} \frac{f(x-k)}{(y+k)^{2}}, \qquad (11)$$

and this is expansion (Z.6) in [1]. By repeated differentiation with respect to y and using f(x) = 1 one can sum the series

$$\sum_{k=0}^{n} (-1)^{k} \binom{n}{k} \frac{1}{(y+k)^{p+1}},$$
(12)

in terms of the reciprocal power sums

$$S_p = \sum_{k=0}^n \frac{1}{(y+k)^p}.$$

which uses Riordan's cycle indicator, and this will be discussed in [2].

An interesting special case of the Lagrange expansion is

$$\sum_{k=0}^{n} (-1)^{k} {2n \choose n+k} \frac{f(y+k^{2})}{2 \choose x-k^{2}}$$

$$= (1)^{n} \frac{f(x^{2} + y)}{2x(x - n)\binom{x + n}{2n}} + \frac{1}{2} \binom{2n}{n} \frac{f(y)}{x}, \tag{13}$$

and this is formula (Z.10) in [1].

An interesting alternative statement of this is as follows:

$$\sum_{k=0}^{n} (-1)^{k} {n \choose k} \frac{f(y+k^{2})}{{n+k \choose k}(x^{2}-k^{2})}$$

$$= (-1)^{n} \frac{f(x+y)}{2x(x-n){2n \choose n}{x-n \choose 2n}} + \frac{f(y)}{2x^{2}}, \qquad (14)$$

which is formula (Z.11) in [1].

The derivation of (13) from the Lagrange expansion (2) follows by

choosing $x = k^2$, and noting the following easy calculations:

$$g(x^{2}) = x(x-n)(2n)! {x+n \choose 2n},$$

and

$$g'(k^2) = \frac{1}{2}(-1)^k (n-k)!(n+k)!.$$

Formula (14) then follows by simple factorial rearrangements.

Another variation is formula (Z.14) in [1] which says that

$$\sum_{k=0}^{n} (-1)^{k} {n \choose k} \frac{f(y-k)}{(k+x)(k+z)}$$

$$= \frac{1}{(n+1)(x-z)} \left\{ \frac{f(y+z)}{\binom{z+n}{n+1}} - \frac{f(y+x)}{\binom{x+n}{n+1}} \right\}, \tag{15}$$

where now f(x) is a polynomial of degree $\leq n + 1$ in x.

The following is an easy deduction from the Lagrange formula:

$$\sum_{k=0}^{n} (-1)^{k} \binom{n}{k} \frac{f(y-k)}{\binom{k+r}{k}} = -\sum_{k=1}^{r} (-1)^{k} \binom{n}{k} \frac{f(y+k)}{\binom{k+n}{k}}, \quad (16)$$

where f(x) is a polynomial of degree $\le n + r - 1$ in x. This is formula (Z.16) in [1].

In this, set r = n. Then we have the special case [1,(Z.17)]

$$\sum_{k=0}^{n} (-1)^{k} \binom{n}{k} \frac{f(y-k) + f(y+k)}{\binom{k+n}{k}} = f(y),$$
 (17)

where f(x) is a polynomial of degree $\leq 2n - 1$ in x

Now we move to some formulas not tabulated in [1]. Recall that by choosing x = -k, we found (4) which we have called Melzak's formula.

It is then natural to choose x = k, and get a companion to Melzak. Now we

find easily that

$$\prod_{\substack{i=0\\i\neq k}}^{n} \frac{x-i}{k-i} = {x \choose k} {n-x \choose n-k} , \qquad (18)$$

so that from the Lagrange expansion (1) we get the novel formula

$$f(x + y) = \sum_{k=0}^{n} {x \choose k} {n-x \choose n-k} f(k + y),$$
 (19)

We may then use this to see that

$$f(k+y) = \sum_{j=0}^{n} {y \choose j} {n-y \choose n-j} f(j+k),$$

so that we get the second novel formula

$$f(x + y) = \sum_{k=0}^{n} \sum_{j=0}^{n} {x \choose k} {n-x \choose n-k} {y \choose j} {n-y \choose n-j} f(j + k), \qquad (20)$$

where in both (19) and (20) f(x) is a polynomial of degree $\leq n$ in x.

We note two interesting special cases of (19):

$$\sum_{k=0}^{n} {x \choose k} {n-x \choose n-k} {k+y \choose r} = {x+y \choose r}, \text{ for any } 0 \le r \le n, \quad (21)$$

and

$$\sum_{k=0}^{n} {x \choose k} {n-x \choose n-k} (k+y)^{r} = (x+y)^{r}, \text{ or any } 0 \le r \le n.$$
 (22)

From (20) we have

$$\sum_{k=0}^{n} \sum_{j=0}^{n} {x \choose k} {n-x \choose n-k} {y \choose j} {n-y \choose n-j} {j+k \choose r} = {x+y \choose r}, \qquad (23)$$

where $0 \le r \le n$.

Relations (19), (20), (21), and (23) were not listed in [1], and do not seem to be commonly known.

REFERENCES

- 1. H. W. Gould, Combinatorial Identities, Revised edition, 1972, Published by the author, Morgantown, W. Va.
- H. W. Gould, Higher order extensions of Melzak's formula, Utilitas
 Mathematica, to appear.
- 3. J. L. Lagrange, Leçons Élémentaires sur Les Mathématiques, donnés a l'École Normale en 1795. Reprinted in Œuvres de Lagrange, Paris, 1877.
- 4. Z. A. Melzak, Problem No. 4458, American Mathematical Monthly, 58(1951), p. 636; Solution, ibid. 60(1953), 53-54.
- E. Waring, Problems concerning interpolations, Philosophical
 Transactions of the Royal Society of London, Vol. 69(1779), pp. 59-67.