The Vertex Linear Arboricity of Claw-Free Graphs with Small Degree

Jian-Liang Wu *
School of Mathematics, Shandong University, Jinan, 250100, China

Yu-Liang Wu

Department of Computer Science and Engineering The Chinese University of Hong Kong, Hong Kong

Abstract

The vertex linear arboricity vla(G) of a graph G is the minimum number of subsets into which the vertex set V(G) can be partitioned so that each subset induces a subgraph whose connected components are paths. It is proved here that $\lceil \frac{\omega(G)}{2} \rceil \le vla(G) \le \lceil \frac{\omega(G)+1}{2} \rceil$ for a claw-free connected graph G having $\Delta(G) \le 6$, where $\omega(G)$ is the clique number of G.

Key words: claw-free graph; vertex linear arboricity; linear forest; linear arboricity

MR(1991) Subject Classification 05C05, 05C15

Throughout this paper, all graphs are finite, simple and undirected. For a real number x, $\lceil x \rceil$ is the least integer not less than x. For a graph G, we use V(G), E(G), $\Delta(G)$ and $\omega(G)$ to denote the vertex set, the edge set, the maximum degree and the clique number of G. A graph is called claw-free if it does not contain $K_{1,3}$ as an induced subgraph.

A linear forest is a graph in which each component is a path. A coloring φ from V(G) to $\{1,2,\cdots,t\}$ is called a linear t-coloring if for any color $i(1 \le i \le t)$, the set $\{v : \varphi(v) = i\}$ induces a linear forest. The vertex linear arboricity vla(G) of a graph G is the minimum number t such that G has a linear t-coloring. Matsumoto [6] proved the following theorem.

^{*}This work was partially supported by National Natural Science Foundation of China(10471078) and Doctoral Foundation of the Education committee of China(No. 20040422004).

Theorem A. For a graph G, $vla(G) \leq \lceil \frac{\Delta(G)+1}{2} \rceil$, moreover, if $\Delta(G)$ is even, then $vla(G) = \lceil \frac{\Delta(G)+1}{2} \rceil$ if and only if G is the complete graph of order n+1 or a cycle.

Goddard [4] and Poh [7] proved that the vertex linear arboricity of a planar graph is at most 3. Akiyama etc. [1] proved that the vertex linear arboricity of an outerplanar graph is at most 2. In this note, we prove the following theorem.

Theorem 1. Let G be a claw-free connected graph having $\Delta(G) \leq 6$. Then

 $\lceil \frac{\omega(G)}{2} \rceil \leq vla(G) \leq \lceil \frac{\omega(G)+1}{2} \rceil.$

The linear arboricity la(G) of a graph G as defined by Harary [5] is the minimum number of linear forests which partition the edges of G. Akiyama, Exoo and Harary [1] conjectured that $\lceil \frac{\Delta(G)}{2} \rceil \leq la(G) \leq \lceil \frac{\Delta(G)+1}{2} \rceil$ for any graph G and they proved the conjecture is true for graphs with $\Delta=3,4[2][3]$. Since the line graph of a graph is claw-free and the linear arboricity of a graph is equal to the vertex linear arboricity of its line graph, the result of Akiyama, Exoo and Harary is generalized.

Proof. The lower bound that $vla(G) \geq \lceil \frac{\omega(G)}{2} \rceil$ is obvious and it suffices to prove $vla(G) \leq \lceil \frac{\omega(G)+1}{2} \rceil$. If $\Delta(G)=1,2$ or 3, then $\Delta(G)=\omega(G)$. If $\Delta(G)=4$, then $3 \leq \omega(G) \leq 5$, moreover, $\omega(G)=5$ if and only if $G=K_5$. If $\Delta(G)=6$, then $4 \leq \omega(G) \leq 7$, moreover, $\omega(G)=7$ if and only if $G=K_7$. So it follows from Theorem A that the theorem is true for $\Delta(G)=1,2,3,4,6$. If $\Delta(G)=5$, then $3 \leq \omega(G) \leq 5$. it follows from Theorem A that the theorem is also true for $\Delta(G)=5$ and $\omega(G)\geq 4$. So it suffices to prove the case $\Delta(G)=5$ and $\omega(G)=3$, that is, to prove that if a claw-free graph G has a linear 2-coloring if $\Delta(G)\leq 5$ and $\omega(G)=3$.

We use induction on |G|. Since G is claw-free and $\omega(G)=3$, neighbors of any vertex of degree 5 induces a cycle. Let $v\in V(G)$ be a vertex of degree 5 and the cycle induced by N(v) be $v_0v_1v_2v_3v_4v_0$. It is obvious that H=G-v is also claw-free. So by the induction hypothesis, H has a linear 2-coloring φ . Let $V_i=\{u:\varphi(u)=i,u\in V(H)\}, i=1,2$. Then $V_1\cup V_2\cup \{v\}=V(G)$. A vertex $w\in V(H)$ is said to be a spanning vertex of V_i if $w\in V_i$ and $d_{G[V_i]}(w)\leq 1$ for some $i(1\leq i\leq 2)$. In the following, we shall extend φ to a linear 2-coloring of G.

Claim A. For some $v_i(0 \le i \le 4)$, if $\varphi(v_{i-1}) = \varphi(v_{i+1}) \ne \varphi(v_i)$ where the subscripts are taken modulo 5, then v_i must be a spanning vertex.

Suppose, to the contrary, that v_i has two neighbors w', w'' such that $w', w'' \notin \{v, v_4, v_0, v_1, v_2, v_3\}$ and $\varphi(w') = \varphi(w'') = \varphi(v_i)$. Then $d(v_i) = 5$.

Since G is claw-free, w', w'', v_i form a cycle of length 3, a contradiction. So the contradiction proves Claim A.

By Claim A, if there are four vertices in N(v) receiving the same color, without loss of generality, assume $\{v_0, v_1, v_2, v_3\} \subseteq V_2$, then v_4 must be a spanning vertex of V_1 . We may color v with 1 to extend φ to a linear 2-coloring of G. So without loss of generality, assume that $|N(v) \cap V_1| = 2$ and $|V_2 \cap N(v)| = 3$.

Case 1 Two vertices in $V_1 \cap N(v)$ are not adjacent.

Without loss of generality, assume that $\{v_1, v_4\} \subseteq V_1$ and $\{v_0, v_2, v_3\} \subseteq V_1$ V_2 . It follows from Claim A that v_1 and v_4 are spanning vertices of V_1 , and v_0 is the spanning vertex of V_2 . Since G is claw-free, $\max\{|N(v_0)\cap$ $|V_2|, |N(v_1) \cap V_1|, |N(v_4) \cap V_1| \le 1$. If $N(v_1) \cap V_1 = \emptyset$ or $N(v_4) \cap V_1 = \emptyset$, then we may color v with 1 to extend φ to a linear 2-coloring of G. So in the following, assume that $|N(v_1) \cap V_1| = |N(v_4) \cap V_1| = 1$.

Subcase 1.1 $N(v_1) \cap V_1 = N(v_4) \cap V_1 = \{v_5\}$. Since G is claw-free, $|\{v_0v_5, v_2v_5, v_3v_5\} \cap E(G)| \ge 1$, moreover, $|\{v_0v_5, v_2v_5, v_3v_5\} \cap E(G)| \ge 2$ if $\{v_3v_5, v_2v_5\} \cap E(G) \neq \emptyset$.

Figure 1

Suppose that $v_0v_5 \in E(G)$ and $v_2v_5, v_3v_5 \notin E(G)$ (see Figure 1). Then $N(v_0)$ induces a cycle of length 4. So $d(v_0) = 4$. We may recolor v_2 with 1, color v with 2. Suppose that $v_2v_5, v_3v_5 \in E(G)$ and $v_0v_5 \notin E(G)$ (see Figure 2). Then $d(v_2) = d(v_3) = 4$. Recolor v_5 with 2, v_2 and v_3 with 1, and color v_5 with 2. Suppose $v_0v_5, v_2v_5, v_3v_5 \in E(G)$. Then $d_G(v_i) = 4$ for all $i(0 \le i \le i \le j)$ 4), that is, $V(G) = \{v, v_0, \dots, v_5\}$. We may recolor v_1 with 2, color v with 1. Suppose $v_0v_5 \in E(G)$ and $|\{v_2v_5, v_3v_5\} \cap E(G)| = 1$. Without loss of generality, assume that $v_2v_5 \in E(G)$ and $v_3v_5 \notin E(G)$. Then $d_G(v_0) = 4$. We also have $d_G(v_2) = 4$ (for otherwise, if there is another vertex $v_6 \in$ $N(v_2)\setminus\{v,v_1,v_3,v_5\}, \text{ then } v_6v_3,v_5v_6\in E(G). \text{ Since } v_6v_2,v_6v_3\in E(G),$ $v_6 \not\in V_2$. Since $v_6v_5 \in E(G)$, $v_6 \not\in V_1$. This is impossible). It follows that $d_G(v_5) = d_G(v_4) = 4$ and $d_G(v_3) = 3$. So $V(G) = \{v, v_0, \dots, v_5\}$. We may recolor v_1 with 2, color v with 1.

Subcase 1.2 $N(v_1) \cap V_1 \neq N(v_4) \cap V_1$, that is to say, there exist two different vertices v_5 and v_6 such that $\varphi(v_5) = \varphi(v_6) = 1$ and $v_5v_1, v_6v_4 \in$ E(G). Then $|\{v_5v_0, v_5v_2\} \cap E(G)| \ge 1$ and $|\{v_0v_6, v_3v_6\} \cap E(G)| \ge 1$.

Suppose that $v_5v_0, v_6v_0 \in E(G)$ (see Figure 3). Since $d_G(v_0) = 5, v_5v_6 \in E(G)$. If $N(v_1) \cap V_2 = \{v_0, v_2\}$, then $d(v_1) = 4, v_2$ is the spanning vertex of V_2 and $|(N(v_2)\setminus\{v_1\}) \cap V_1| \leq 1$. We can recolor v_1 with 2 and color v_1 with 1. So assume that v_1 and v_2 have a common neighbor $v_7 \in V_2$. By the same argument, assume that v_3 and v_4 have a common neighbor $v_8 \in V_2$. Note that $v_7 \neq v_8$. Thus $d(v_1) = d(v_4) = 5$ and it follows that $v_5v_7, v_6v_8 \in E(G)$. Now we may recolor v_2 with 1, color v_1 with 2.

v₀
v₁
v₂
v₃
v₂
v₃

Figure 3

Figure 4

Suppose that $v_5v_2, v_6v_3 \in E(G)$ (see Figure 4). Then v_0, v_2 and v_3 are the spanning vertices of V_2 . If $N(v_1) \cap V_2 = \{v_0, v_2\}$, then we can recolor v_1 with 2 and color v with 1. Similarly, if $N(v_4) \cap V_2 = \{v_0, v_3\}$, then we can recolor v_4 with 2 and color v with 1. Hence assume $|N(v_1) \cap V_2| = |N(v_4) \cap V_2| = 3$. This implies that v_1 and v_4 has a common neighbor $v_7 \in V_2$. It follows that we have $v_7v_0, v_7v_5, v_7v_6, v_5v_6 \in E(G), d(v_0) = d(v_2) = d(v_3) = d(v_5) = d(v_6) = 4$. So $V(G) = \{v, v_0, \dots, v_7\}$, and directly color v with 1.

Suppose that $v_5v_0, v_6v_3 \in E(G)$ (the case $v_5v_2, v_6v_0 \in E(G)$ can be settled similarly). Then v_0 and v_3 are spanning vertices of V_2 . If $N(v_1) \cap V_2 = \{v_0, v_2\}$, then we may recolor v_1 with 2 and color v with 1. If $N(v_4) \cap V_2 = \{v_0, v_3\}$, then we may recolor v_4 with 2 and color v with 1. So assume that v_0 and v_4 have a common neighbor $v_7 \in V_2$, and v_1 and v_2 have a common neighbor $v_8 \in V_2$. Since $d(v_1) = d(v_4) = 5$, $v_5v_7, v_6v_7, v_5v_8 \in E(G)$. If $N(v_2) \cap V_1 = \{v_1\}$, then we may recolor v_2 with 1 and color v with 2; otherwise, recolor v_8 with 1, v_1 with 2 and color v with 1.

Case 2 Two vertices in $V_1 \cap N(v)$ are adjacent.

Without loss of generality, assume that $\{v_0,v_4\}\subseteq V_1$ and $\{v_1,v_2,v_3\}\subseteq V_2$. Since G is claw-free, $N(v_2)\cap V_2=\{v_1,v_3\}$ and $1\leq \min\{|N(v_0)\cap V_2|,|N(v_4)\cap V_2|\}\leq 2$. Assume that $1\leq |N(v_4)\cap V_2|\leq 2$. If $|N(v_2)\cap V_1|\leq 1$, then recolor v_2 with 1, which is changed into Case 1. So assume that v_2 has two neighbors $v_5,v_6\in V_1$ (refer to Figure 5). Thus we have $v_5v_6,v_1v_5,v_3v_6\in E(G)$.

If $N(v_4) \cap V_2 = \{v_3\}$, then we may recolor v_4 with 2, color v with 1. So

assume that $|N(v_4) \cap V_2| = 2$, that is, v_4 has another neighbor $v_7 \in V_2 \setminus v_3$. If $v_7v_3 \in E(G)$ (see Figure 5), then $d(v_4) = 4$, $v_6v_7 \in E(G)$ and v_6 is the spanning vertex of V_1 . We may recolor v_3 with 1 and v_4 with 2, which is changed into Case 1. So also assume that $v_7v_0 \in E(G)$ (see Figure 6).

Suppose that $N(v_0) \cap V_2 = \{v_1, v_7\}$. Then v_7 is the spanning vertex of V_2 and we may recolor v_0 with 2, color v with 1. So assume that $|N(v_0) \cap V_2| = 3$, that is, there is a vertex $v_8 \in V_2 \cap (N(v_0) \setminus \{v, v_1, v_4, v_7\})$. Since $v_5, v_6 \in V_1$ and $v_7, v_8 \in V_2$, $v_1v_8, v_7v_8, v_5v_8 \in E(G)$ and $d(v_5) = d(v_8) = 4$. So we may recolor v_8 with 1, v_1 with 2, and color v_0 with 1.

Hence φ is extended to a linear 2-coloring of G.

References

- J. Akiyama, H. Ero, S. V. Gerracio and M. Watanabe, Path Chromatic numbers of Graph, J. Graphs Theory, 13(1989), 569-579.
- [2] J. Akiyama, G. Exoo and F. Harary, Covering and packing in graphs III: Cyclic and acyclic invariants, Math. Slovaca, 30(1980), 405-417.
- [3] J. Akiyama, G. Exoo and F. Harary, Covering and packing in graphs IV: Linear arboricity, Networks, 11(1981), 69-72.
- [4] W. Goddard, Acyclic coloring of planar graphs, Discrete Mathematics, 91(1990), 91-94.
- [5] F. Harary, Covering and packing in graphs I, Ann. N.Y. Acad. Sci. 175(1970), 198-205.
- [6] M. Matsumoto, Bounds for the vertex linear arboricity, J. Graph Theory, 14(1990), 117-126.
- [7] K. Poh, On the linear vertex-arboricity of a planar graph, J. Graph Theory, 14(1990), 73-75.