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Abstract

The vertex linear arboricity vla(G) of a graph G is the minimum
number of subsets into which the vertex set V(G) can be partitioned
so that each subset induces a subgraph whose connected components
are paths. It is proved here that | 5129] < vla(G) < [ﬂ%ﬁ] for
a claw-free connected graph G having A(G) < 6, where w(G) is the
clique number of G.
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Throughout this paper, all graphs are finite, simple and undirected. For
a real number z, [z] is the least integer not less than z. For a graph G, we
use V(G), E(G), A(G) and w(G) to denote the vertex set, the edge set, the
maximum degree and the clique number of G. A graph is called claw-free
if it does not contain K, 3 as an induced subgraph.

A linear forest is a graph in which each component is a path. A
coloring ¢ from V(G) to {1,2,---,t} is called a linear t-coloring if for any
color i(1 < i < t), the set {v : p(v) = i} induces a linear forest. The vertex
linear arboricity vla(G) of a graph G is the minimum number ¢ such that
G has a linear t-coloring. Matsumoto [6] proved the following theorem.
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Theorem A. For a graph G, vla(G) < [ﬂ%)il-], moreover, if A(G)

is even, then vla(G) = [icz)il] if and only if G is the complete graph of
order n + 1 or a cycle.

Goddard [4] and Poh (7] proved that the vertex linear arboricity of a
planar graph is at most 3. Akiyama etc. [1] proved that the vertex linear
arboricity of an outerplanar graph is at most 2. In this note, we prove the
following theorem.

Theorem 1. Let G be a claw-free connected graph having A(G) < 6.

Then a
[w(G’).|< l(G)<[w( )+1

1.

The linear arboricity la(G) of a graph G as deﬁned by Harary [5] is the
minimum number of linear forests which partition the edges of G. Akiyama,
Exoo and Harary [1] conjectured that [5(2,9] < la(G) < [ﬂ%ﬁ-‘-] for
any graph G and they proved the conjecture is true for graphs with A =
3,4[2][3]. Since the line graph of a graph is claw-free and the linear arboric-
ity of a graph is equal to the vertex linear arboricity of its line graph, the
result of Akiyama, Exoo and Harary is generalized.

Proof. The lower bound that vla(G) > [%9] is obvious and it suffices
to prove vla(G) < [4SH]. If A(G) = 1,2 or 3, then A(G) = w(G).
If A(G) = 4, then 3 < w(G) < 5, moreover, w(G) = 5 if and only if
G = Ks. If A(G) = 6, then 4 < w(G) < 7, moreover, w(G) = 7 if and
only if G = K. So it follows from Theorem A that the theorem is true
for A(G) = 1,2,3,4,6. If A(G) = 5, then 3 < w(G) < 5. it follows from
Theorem A that the theorem is also true for A(G) = 5 and w(G) > 4. So
it suffices to prove the case A(G) = 5 and w(G) = 3, that is, to prove that
if a claw-free graph G has a linear 2-coloring if A(G) < 5 and w(G) =

We use induction on |G|. Since G is claw-free and w(G) = 3, neighbors
of any vertex of degree 5 induces a cycle. Let v € V(G) be a vertex of
degree 5 and the cycle induced by N(v) be vovivavsvsve. It is obvious
that H = G — v is also claw-free. So by the induction hypothesis, H has
a linear 2-coloring . Let V; = {u : p(u) = i,u € V(H)},i = 1,2. Then
ViuVa U {v} = V(G). A vertex w € V(H) is said to be a spanning vertex
of V; if w € V; and dgyy;)(w) < 1 for some (1 < ¢ < 2). In the following,
we shall extend ¢ to a linear 2-coloring of G.

Claim A. For some v;(0 <1 < 4), if p(vi—1) = p(vit1) # (v;) where
the subscripts are taken modulo 5, then v; must be a spanning vertex.

Suppose, to the contrary, that v; has two neighbors w’,w” such that
w',w” & {v,v4,v9,v1,v2,v3} and p(w') = p(w"”) = p(v;). Then d(v;) =5.
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Since G is claw-free, w’, w”, v; form a cycle of length 3, a contradiction. So
the contradiction proves Claim A.

By Claim A, if there are four vertices in N(v) receiving the same color,
without loss of generality, assume {vo,v1,v2,v3} C V3, then v, must be
a spanning vertex of V;. We may color v with 1 to extend ¢ to a linear
2-coloring of G. So without loss of generality, assume that [N(v) N V;| = 2
and |[VaNN(v)| =3.

Case 1 Two vertices in V; N N(v) are not adjacent.

Without loss of generality, assume that {vi,v4} C V; and {vo,ve,v3} C
V,. It follows from Claim A that v; and v4 are spanning vertices of V3,
and vp is the spanning vertex of V. Since G is claw-free, max{|N(vp) N
V2|, IN(u) VA, IN(va) N WA} < 1. EN(u)) NV =B or N(wg) V1 =0,
then we may color v with 1 to extend ¢ to a linear 2-coloring of G. So in
the following, assume that |N(v;) N Vi| = |[N(vg) N | = 1.

Subcase 1.1 N(v;)NV; = N(v4) N V) = {vs}. Since G is claw-free,
[{vovs, vovs, va3us} N E(G)| > 1, moreover, |{vouvs, v2vs,v3v5} N E(G)| > 2
if {‘03’05,’02'05} N E(G) #* 0.

A T

Figure 1 Figure 2

Suppose that vovs € E(G) and vqus, vavs ¢ E(G)(see Figure 1). Then
N (o) induces a cycle of length 4. So d(vp) = 4. We may recolor v, with 1,
color v with 2. Suppose that vovs, v3v5 € E(G) and vovs € E(G)(see Figure
2). Then d(v2) = d(v3) = 4. Recolor v with 2, v, and v3 with 1, and color v
with 2. Suppose vyvs, vovs, v305 € E(G). Then dg(v;) =4 for all i(0 < i <
4), that is, V(G) = {v,vo,- -+ ,v5}. We may recolor v; with 2, color v with
1. Suppose vvs € E(G) and |{vaus,v3us} N E(G)| = 1. Without loss of
generality, assume that vovs € E(G) and vaus ¢ E(G). Then dg(v) = 4.
We also have dg(ve) = 4( for otherwise, if there is another vertex vs €
N(v2)\{v,v1,v3,v5}, then vgus,vsv6 € E(G). Since vevo,v6vs € E(G),
vg € Va. Since vgus € E(QG), vs ¢ V;. This is impossible). It follows that
dg(vs) = dg(vs) = 4 and dg(vs) = 3. So V(G) = {v,vp,--+ ,vs}. We may
recolor »; with 2, color » with 1.

Subcase 1.2 N(v;) NV; # N(vs) NV, that is to say, there exist two
different vertices vs and vs such that y(vs) = p(ve) = 1 and vsvy,vev4 €
E(G). Then |{vsvg, vsv2} N E(G)| > 1 and |{vove, v3v6} N E(G)] > 1.
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Suppose that vsvp, vevg € E(G)(see Figure 3). Since dg(vo) = 5, vsve €
E(G). If N(v1) N Vo = {vo, v}, then d(v1) = 4, vz is the spanning vertex
of V3 and |(N(v2)\{v1}) N V1| < 1. We can recolor v; with 2 and color
v with 1. So assume that v; and vy have a common neighbor v; € V5.
By the same argument, assume that v3 and v4 have a common neighbor
vg € Va. Note that v; # vg. Thus d(v1) = d(vs) = 5 and it follows that
vsvr, vgus € E(G). Now we may recolor v, with 1, color v with 2.

I S

Vg V3 V2 V7

Figure3 Figure 4

Suppose that vsv2, vev3 € E(G)(see Figure 4). Then v, v2 and vz are
the spanning vertices of V. If N(v;) N V2 = {vp, v2}, then we can recolor
v; with 2 and color v with 1. Similarly, if N(vs) N Vo = {vp,vs}, then we
can recolor v4 with 2 and color v with 1. Hence assume |[N(v1) N V3| =
|[N(vs) N V2| = 3. This implies that v; and v4 has a common neighbor
vy € Vo. It follows that we have vrvp, v7vs, U706, Usvs € E(G), d(vo) =
d('vz) = d(’vs) = d(’lls) = d('l)s) = 4. So V(G) = {’U,’Uo,"' ,'07}, and
directly color v with 1.

Suppose that vsvp,vevs € E(G)(the case vsv,vevp € E(G) can be
settled similarly ). Then vy and vz are spanning vertices of V2. If N(v1) N
Va = {vp, v}, then we may recolor v; with 2 and color v with 1. If N(vs) "
Va = {vp,v3}, then we may recolor v4 with 2 and color v with 1. So assume
that vp and v4 have a common neighbor v; € V2, and v; and v, have a
common neighbor vg € V2. Since d(v1) = d(vs) = 5, vsv7,v6v7,Us08 €
E(G). X N(v2) N V; = {v:1}, then we may recolor v, with 1 and color v
with 2; otherwise, recolor vg with 1, v; with 2 and color v with 1.

Case 2 Two vertices in V; N N(v) are adjacent.

Without loss of generality, assume that {vo,v4} C Vi and {v,vs,v3} C
V2. Since G is claw-free, N(v2) N Vo = {v;,v3} and 1 < min{|N(v) N
V2|, IN(vs) N V2|} < 2. Assume that 1 < [N(vg) N V2| < 2. If [N(v2) N
Va| £ 1, then recolor v, with 1, which is changed into Case 1. So assume
that v, has two neighbors vs,ve € Vi ( refer to Figure 5). Thus we have
U5Vg, V1Us, V3Vs € E(G).

If N(v4) NV = {v3}, then we may recolor v4 with 2, color » with 1. So
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assume that |V (v4) N V3| = 2, that is, v4 has another neighbor v7 € V2\vs.
If v,v3 € E(G)(see Figure 5), then d(v4) = 4, vev7 € E(G) and vg is the
spanning vertex of V3. We may recolor vs with 1 and v with 2, which is
changed into Case 1. So also assume that v7vy € E(G)(see Figure 6).

Figure § Figure 6

Suppose that N(vg)NV2 = {v1,v7}. Then vy is the spanning vertex of V2
and we may recolor vg with 2, color v with 1. So assume that |[N(u)NVa| =
3, that is, there is a vertex vg € VaN(N (vo)\{v,v1,v4, v7}). Since vs,v6 € V}
and v7,vg € V2, v1v8, v7Us, UsUg € E(G) and d(‘vs) = d(‘Ug) = 4. So we may
recolor vg with 1, v; with 2, and color v with 1.

Hence ¢ is extended to a linear 2-coloring of G. g
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