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Abstract

Let G and H be graphs with a common vertex set V, such
that G —i = H — i, for all i € V. Let p; be the permutation of
V —i that maps G —i to H —i, and let ¢; denote the permutation
obtained from p; by mapping ¢ to i. It is shown that certain
algebraic relations involving the edges of G and the permutations
:q; ' and giq; ', where i, j, k € V are distinct vertices, often force
G and H to be isomorphic.

1. Permutations and Partial Permutations

Let G and H be graphs with a common vertex set V, such that G—i = H -1,
for all ¢ € V. Ulam’s conjecture, also known as the graph reconstruction
conjecture (see Bondy [1]), states that this condition implies that G = H,
if [V| > 3. All graphs that we will work with are simple graphs, with
the same vertex set V. We will view a graph G as a set of edges, where
each edge is an unordered pair of distinct vertices. We write (%) for the
set of all unordered pairs of vertices. Thus, G C (g) The complement
of Gis G = (%) — G. An unordered pair of vertices is denoted by (z,y].
(The square brackets are convenient when it is necessary to construct sets
of unordered pairs.) It will often be convenient to write [z,y]lg = 1 to
mean that [z,y] € G, and (z,y]c = 0 to mean that [z,y] € G. Given a
permutation g of V, and a vertex z € V, the image of z under ¢ is denoted
z9. Then [z,y]? = [29,y?). We also write G? for the graph obtained from
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G by permuting each edge of G by ¢. Let p; be an isomorphism of G — 1
with H — i, so that (G — )P = H —i. Then p; is a partial permutation of
the set V. It does not map the point 2.

1.1 Definition. A partial permutation p of V is an injective mapping
from a proper subset X C V to a proper subset Y C V. A partial automor-
phism of a graph G is a partial permutation p such that for all [z,y] € (‘2’)
1) if [z,y] € G and [z, y]? is defined, then [z,y)? € G; and
2) if [z,y] € G and [z,y]? is defined, then [z,y)” € G;

The inverse of a partial permutation is also a partial permutation.
Notice that partial permutations can be composed. If p; and p; are par-
tial permutations, so is p,'pj_l. The result is another partial permutation.
Permutations and partial permutations are composed from left to right, so
that the product p,-p;1 means “first p;, then pj‘l”. Partial permutations
were applied to the graph reconstruction problem in Kocay [4], and to the
multirelation reconstruction problem in Ille [3].

We say that the image [z, y|PPs " ezists if p,-pj"1 can be applied to both
z and y. We are given the graphs G and H such that (G — i)?* = H — 1,
for all i. Graphs with this property are said to be hypomorphic. Notice
that for all 4,5 € V, p;pj ! is a partial automorphism of G, and p;'piisa
partial automorphism of H, because p; and p; are isomorphisms. Notice
that if [z, y]P®s " exists, then [z,y] € G if and only if [z, y]"*Pi ' € G, since
pip; ! is a partial automorphism of G.

1.2 Lemma. Let [z,y] be a pair of vertices of V. Then the image
-1 - -1

[z, y]"*%i  exists if and only if z,y & {4, 5% '}. The image [z,y|P7 ** exists

if and only if z,y & {j,77}.

The partial permutation p; can be converted to a permutation g;, by
extending p; to act on i, defining :% = i. Notice that giq; ! is in general
not an automorphism of G. By considering the cycle structure of g;q; 1 we
see that there are two possibilities: either i and j are in the same cycle, or
they are in different cycles. We state this as a definition.

1.3 Definition. The permutation qiqj“1 is said to be of type I if i and j
are in the same cycle, and of type 2 if they are in different cycles.

The two cases for the cycle structure of g;q; ! are illustrated in Figure 1.
The arrow in the diagrams indicates the direction of the cycle, and also
indicates those links in the cycle which p,-p;.'l cannot follow.
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Figure 1, The cycle structure of g;q; ! types 1 and 2

We assume the basic theory of graph reconstruction. The reader is
referred to the survey papers by Bondy and Hemminger [1], Bondy [2], and
Nash-Williams [6], or the book by Lauri and Scapellato [5]. In particular,
given a fixed graph K with fewer than |V| vertices, Kelly’s lemma says
that the number of subgraphs of G isomorphic to K equals the number of
subgraphs of H isomorphic to K. Consequently G and H have the same
number of edges. The degree of a vertex 7 in a graph G is denoted deg(i, G).
By Kelly’s lemma, deg(i, G) = deg(i, H).

We will often be concerned with the difference between two nearly
identical graphs G and G’. The “exclusive or” (also called “symmetric
difference”) of graphs G and G’ is denoted G G' = (G - G)U (G - G).
If G and G’ have the same number of edges, then |G — G'| = |G’ — G, so
that |G@® G| is even. We begin by stating a number of simple lemmas that
are used in the proofs of the subsequent sections.

1.4 Lemma. G% @ H consists of pazrs of the form [i, z].
Proof . This follows because (G — {)P =

1.5 Lemma. If deg(i,G) = deg(i%,G), for some i and j, where i # j,
then [i,j] € G if and only if [i%,j] € H.

Proof. By Kelly’s lemma, deg(i,G) = deg(i,H) and deg(i%,G)
deg(i%, H). Since deg(i, G) = deg(i%,G) = deg(i%, H) and deg(i, G—j)
deg(i%, H — j), the conclusion follows.

1.6 Corollary. Ifi% =i for some i and j, where i # j, then [i,j] € G if
and only if [i,j) € H.

Proof . If 1% = 1, then deg(i, G) = deg(i%,G). The result follows from the
previous lemma.

1.7 Corollary. Given any g;, G% = H if and only if q; preserves degree.

Proof. If G% = H, then deg(¢,G) = deg(i%, H) = deg(i%,G), so that g;
preserves degree. Conversely, suppose that g; preserves degree. We have
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deg(i, G) = deg(i%, @), for all i # j. It follows that [i, 7] € G if and only if
[t%,4] € H; that is, G% = H.

The automorphism group of a graph G is denoted aut(G).

1.8 Lemma. Ifg¢q;' € aut(G) for some i # j, then G% = G% = H.
Proof. If q,-qj'l € aut(G), then G%%' = G, so that G% = G%. We
show that G% = H. Let [z,y] € G. If i & {z,y}, then [z,y]% € H.
Otherwise, let [¢,2] € G. Then since giq; ! € aut(G), we have [i,z]%% f o
[iq:'-l,:c"“’i_l] €G. Ifj# x"""f-l, apply ¢; to get [iqi—!,x‘"";l]"i € H,
or [i,z)% € H. Otherwise z = j% . We thus have, that [z,y] € G if
and only if [z,y]% € H, for all pairs [z,y], except possibly for the pair
[z, 9] = [4, 5% l]. But G and H have the same number of edges. Therefore
we also have [i,5% | € G if and only if [i,5] € H, so that G% = H.

1.9 Corollary. If q; = g;, for some i # j, then G% = H.
Proof . If ¢; = g;, then qiqj'l € aut(G).

Lemma 1.8 is one of the simplest possible cases of an algebraic rela-
tion on the permutations ¢; implying the reconstructibility of G; namely
G%%5'=G implies that G = H. It is connected with the well-known result
that regular graphs are reconstructible. For if G is regular then the map-
ping p; : G —i — H — i can be extended to an isomorphism ¢; : G — H. It
follows that G%% = G for regular graphs. Thus, Lemma 1.8 can be con-
sidered as an algebraic extension of the reconstructibility of regular graphs.

In this paper, we show that reconstructibility can also be implied by
a weaker algebraic relation. We consider the case when aq; ! is not an
automorphism of G, but where there exists an algebraic relation of the form
Gy = qakar! , for suitable vertices i, §, k, and £. Since (G —i)? = H —i
and (G - j)Pi = H — j, we know that G% and G% differ only slightly from
H. Therefore G%% " differs only slightly from G. Similarly for G99 "
where i, j,k,£ € V. We consider the situation when G%% "= gmar !, for
some i,j,k, L€ V.

If G¥G = GG , we can apply g; to each side of the equation and
obtain G%% ' = G, from which Lemma 1.8 gives G = H. Thus, the cases
to consider are:

1. G%% = g%, where i # j;

2. GU% ' = QU ' where 4, j, and k are distinct;
3. GU% = G®% ' where i, j, and k are distinct;
4. GU9 ' = G99 " where i, , k, and £ are distinct.
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We do not need to consider the case G%% = — Gu% l, because rela-
belling the subscipts 4,7,k as k,%,; reduces it to case 3. In this paper
we shall consider the first two of these possibilities. In section 2 we con-
sider the case lG"""’J‘ "= Gue . In sections 3 and 4 we consider the case
G"% = G%% . In most situations we are able to prove that this algebraic
relation implies that H is equal to one of G%, G% or G%.

The algebraic relation G%% et can be expressed in terms of an
automorphism of G obtained by composing the mappings %iq; ! and aq; !
As we do not know the mappings qiq; ! and qxq; ! a priori, it is not clear
what connection might exist between the structural properties of a class of
graphs and these relations. In a sense, the algebraic relations apply to all
classes of graphs.

Given any pair [z,y|, we can apply %iq; ! to it repeatedly to obtain
a cyclic sequence of pairs, which we will denote by §)(z, y), the pair-orbit
of [z,y]. It has the property that Q(z,y)%% g Q(z,y). If we conjugate
9iq; ! by g; or g;, we obtain the permutation qj"lq,u Therefore, if £ is
a pair-orbit of g;q; ! then Q% is a pair-orbit of qj‘lqi, and furthermore,
Q% = Q%. If G were composed of a union of pair-orbits, Q(z,y), then
since §(z,y)* = Q(z,y)%, we would have G% = G%, so that G = H, by
Lemma 1.8. Therefore there must be at least one pair-orbit Q(z,y) that is
only partially contained in G.

1.10 Lemma. Suppose that §) is the only pair-orbit that is only partially
contained in G. Then aiq; e aut(G — Q). Furthermore, if S # 8 is any

other pair-orbit, such that ' # Q(i,j% l), then Q' C G if and only if
(V) C H.

Proof . Every pair-orbit ' satisfies (/)% = (£')%. Since G - Q is a union
of pair-orbits, we have aiq; le aut(G — ). Suppose that Q' C G, where

Q#Q # Q0,59 ). Let [2,y) € V. Ifi & [z, y], then [z,4]% € (V) C H.
- - -1
If i = z, then [z, y]"% ‘e . Now y # j% ', so that (6, y]%% P =[i,y]% €
(§¥)?5 C H. It follows that ()% C H.
2. G%% = qua
We assume throughout this section that G¥% = = G%% ", for some
i # j. We have (g;g;')? € aut(G).
2.1 Lemma. q,»qj‘l € aut(G & G"*"i-l) and q,-qj'1 € aut{G OG"“’J_I) and
—_ e~
%:q; ' € ant(GNG"% ).
Proof. Since G%% ' = G%% | we have (G @ Cz?""q"-l)'m"_x = GoG¥; .
-1 —_ gt
Similarly for GNG%% and GNGT% .
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It follows from Lemma 2.1 that if [a:, y] € G ® GH% " then Sl(x y) C
-1
GaG"% similarly, if [z,y] € GNGET then Qz,y) C lelate 'R ; and
if [z,y] € GN Gq‘q’ then Q(z,y) C Gnﬁ"“’J .

2.2 Lemma. Let [z,y] € G ® G"% ", Then [z, y]PP5 " and [z, y]PP " do
not exist. Consequently, {z,y} N {i,j% '} # @ and {z,y} N {3, i"i_l} # 0.
Proof . If [z,y] € G-G%% , then [z,y]%% '€ (G-G%% 4% ' = G%% _@.
Hence [z, y)P5 " does not exist, since [z,y]%% l¢ G. Similarly if [z,y] €
G%% '~ G. By Lemma 1.2, we have {z,y} N {i,j% '} # @. Similarly for
[z, y|PsPi .

2.3 Lemma. Let [z,y] € G© G%%', and let Q = Q(z,y). Then 2N
(G - G%% )| = 9N (G¥% ' = @)|, and |9 is even.

Proof. This follows since (G — G%% 1)"""1'_ e L e)

Case (a). giq; ! is of type 1.

Consider a pair [z,y] € G ® G¥% ' Let Ci; denote the cycle of giq; !
containing 7 and j. Then % " and j% " are also in Ci;. If i% ] # §u 0,
then by Lemma 2.2, we have z,y € C;;. If i% = j4' = z, then since
[z, y]%% B 5. y™% 1] € G®G%% ', we conclude that y is also in Ci;j. Thus
we must have z,y € C;;. If Ci; had odd length, then |Q2(z,y)| would be
odd, a contradiction. We conclude that C;; has even length. Now |C;;| # 2,

-1
since this implies that i7% = j, so that ¢ = j, a contradiction. Therefore
Ci; has at least 4 vertices, so that it has at least 2 vertices other than

-1 -
{i,7}. There are two possibilities to consider, either i% and j% ' are
. I3 . . -, . -l
distinct vertices, or else 1% = j%

2.4 Theorem. IfG%% = G%% " and qiqg'—l is of type 1, and iq"ﬂ# L
then G= H. ;N

Proof. We have [z,y] € G @& G"% . By Lemma 2.2, every pair of Q(z,y)
must intersect both {4,7% '} and {j,i% : }. It follows that |Cj;| = 4. Refer
to Figure 2. Write the cycle C;; as (4, i"i—l,jq-'—l,j). Clearly Q(z,y) =
Qi ]) Then Gw» G""qJ-l = Q(z,j), and we can take G — G%% = {[z, 4],
[i% ,j9']} and G5 -G = {[5,3% ] [] 7% ']}. We see that i,i% Ul i
and j all have degree one in G — Gy By Lemma 1.10, q,qJ is an
automorphism of G — (3, j), so that the vertices of C;; all have the same

degree in G — Q(z,7), and therefore also in G. Let a be their common
degree in G.
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Figure 2, G and H when |Cyj| = 4 and i% # j% '

We now determine the degree sequence of H. We know that C,f'; =
(i,i":"‘!"‘,j,jq*) is a cycle of qj‘lq,-, as shown in Figure 2. If v ¢ Cjj,
consider any pair-orbit Q' = Q(u,v). By Lemma 1.10, ' C G if and only
if ()% C H. It follows that deg(u, G) = deg(u%, H). If u € C;;, consider
any pair-orbit ' = Q(u,v), where v € C;;. We again find that ' C G if
and only if ()% C H. Thus, any difference in the degree sequences of G
and H is completely determined by edges of (i, ) and Q(i, j% 1). Now

- -1 -1 -
Q(3,7% ') C G if and only if [j%,i% %] € H. Furthermore [i% ,j% |7 =
~ - _ -1 - -1
[7,3% l""] € H and [i% L i = [3,i% %] € H, since j% % = i% %,
-1
Therefore deg(i% %, H) = o+ 1. But G and H must have the same degree
-1 -1
sequences, a contradiction. We conclude that G — G%% =G%% —G =0,
-1
so that G = G%% , from which it follows that G & H, by Lemma 1.8.

The second possibility is when i = Jj% '. This is illustrated in Fig-
ure 3.

A
PP

Figure 3, G and H when |C;;| = 4 and i = jo

2.5 Theorem. IfG%% = G99 ", and g;q;" is of type 1, and %= 5
then either G% = H orelse G% @ H = {[i,jr, [¢,7%]}. Furthermore, [i,j] €
G if and only if [i,j] € H. If [i,j] € G then (G - [3,5))% = H - [i,j]. If
[2’.7] ¢ G then (G + [ivj])qi =H + [7').7]
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Proof. We have [z,y] € G & Gq"';’, where z,y € Cj;. By Lemma 2.2,
every pair of Q(z,y) must intersect both {3,4% ‘} and {j,i% ' }. It follows
that |Ci;| = 4, that is Cyj = (i,4% ,j,i%% ). Notice that [j, i%% '|P#;"
exists, so that by Lemma 2.2, Q([j,7%% l]) ZGoG" ' Therefore either
[z, 9] = [i, 4] or else [z,y] = [i% LA '], so that we again have Q(z, y) =
i, 7). Without loss of generality, we can take G — G%9% = {[¢, 5]} and
G"%'— @ = {[i%%",i%']}. Hence, |G — G*%'| = |G¥% '~ G| = 1.
Now either Q(i,j"i-l) CGor Q(i,j"i_l) C G, so that by Lemma 1.10, the
vertices of C;; all have the same degree in G — [¢, j], call it a. Therefore
deg(i, G) = deg(§,G) = .+ 1 and deg(iqi-‘,G) = deg(i"f"i—l,G) =a.

We now find (G — i)? and (G — j)P in order to find H. Since
[i(’J‘—l,z"’J‘qi—l] ¢ G, we find that [iq;l,iqf“:l]q‘ = [j,i%] ¢ H and [i";l,i"f"-'_l]"i
= [i,7%] ¢ H. Therefore (2(:,7))* N H = @. We know that either
S’Z(i,iqﬁ-l) C G or Q(i,i":'-l) C G. Suppose that Q(i,i"i—.) C G. Then
|(Q(i,i"i—l)‘1‘ NH| < 4. But Q(i,i"i—l) and (i, j) together contain 5 edges
of G. This is impossible, as G and H have the same number of edges. We
conclude that Q(z, iq:‘-l) C G. We then find that {j,j"-'_']"‘ = [4,j%) € H;
[j,i99% )% = [%,5%) € H; and [i,i% |% = [i,i%] € H. Of the 4
edges of Q(z, i% ’)‘1", at most one of them, namely [z, j], can be an edge
of H. Since G and H have the same number of edges, we conclude that
[¢,7] € H. It then follows that (G — [i,5])* = H - [i,5]. Notice that
deg(i, H) = deg(j, H) = a + 1 and that deg(i%, H) = deg(i%, H) = a.

If we do not have [3, j] € G-G%% ', then the alternative is [(99 4% l]
€ G — G%% . The analysis is very similar. We find that (Q(3,))% C H
and that (7, 7%], [i%,j%],[:,i%] € H but that [i,j] ¢ H. It follows that
(G +[i,5)" = H +[i, 4]-

Case (b). ¢ig; ! is of type 2.

Let C; denote the cycle of qiqj-l containing 7, and C; the cycle containing

J. Refer to the cycle structure of aiq; ! illustrated in Figure 1, for a type 2
permutation. Suppose first that |C;] > 2 and |C;| > 2. By Lemma 2.2,

G®GHS " C {[i,4], [iri% |, [, 5% "1, % 5% ']} M [5,i% ) € G o G,
then by Lemma 2.1, Q(i,i"i—)) CGo G%% . Since i,i"z'_l € C;, we then
must have Q(i, i% l) = {[4,i% l]}, which contradicts Lemma 2.3. Similarly
if (7,79') € G® G%% . 1t follows that G ® G%% = {[i, 4], [i% 59 ']}.
Lemma 2.1 then implies that j%% = j% ' so that Cj = (4,7% ). Similarly
we have C; = (i, i":'-l), so that i% % = i% and |Ci| = |Cj] = 2.
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Figure 4, G and H when |C;| = |C;| =2

2.6 Theorem. Suppose that G%% ' gua! , that giq; ! is of type 2, and
that |C;| = |C;| = 2. Then either G% = H, or else G*®H = {[3, 5], [¢, %]}
Proof. We have C; = (i,i% ) and Cj = (4,5% ). If G®G"% ' = @, then
G% = H, by Lemma 1.8. Otherwise GHG®% ' = {2, 4], [i"i—l .59} Refer
to Figure 4. We calculate (G — )P and (G — 7)?/ in order to find H. We
- - - -1 -
have [3% L Ve GaG% ' Therefore [i% ,j9|P = [1,5%] € G* © H.
-1 - - -1
If [i,u] € G% & H, where u # j, then [i,u)’ = [i% % l] EGHG"Y .
-1 -

It follows that u% = j% l, so that u = j%. Since G% @ H must be even,
we conclude that G% & H = {[i, j], [{, 7%]}.

It follows from Theorem 2.6, that either [i, j] € G and [i% ', j% '] & G,
in which case [i,j] € H and [¢,j%] ¢ H, or else vice versa. Notice the
following:

e [i,j] € Gif and only if [i,j) € H
-1 -1
e [¢,i% )€ G ifand only if [,i% |P/ =[i,i%] € H
o [7,3%"] € G if and only if [j,j9 "7 = [, j*] € H
o [i%,j% '] € G if and only if [1, 5] € H and [j,i%] € H
- -1
o [i,j%'] € G and [j,i% | € G if and only if [i%, %] € H
We can construct graphs G and H satisfying Theorem 2.6, as shown
in Figure 5. Since G and H have the same number of edges, there are
only two possibilities for the four pairs connecting C; and C;. Either only
- -1 - e
[i,7] € G and [i,j] € H, or else [i,j% l], {4,7% |, [i% l,j"f l] € G, and
[, 5%, [4,1%]), [¢9,j%] € H. In Figure 5, the cycles of %:q; ! are represented
by ellipses of vertices that are alternately white and black. There may
be other edges between the cycles, and there may be additional cycles, as
well. It is evident from the construction that (G — )% = H — i and that
(G —37)% = H - j, and that |C;| = |Cj| = 2. In this example, G and H are
isomorphic. However, this is not necessarily so, as we can add additional
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edges between the two cycles, as well as additional cycles. The resulting

graphs would then not be hypomorphic, although we do not know how to
prove this in general.

n -1 -1
PI.PJ- PJ P,

Figure 5, Possible graphs G and H when |C;| = |C;| = 2

Consider now the case when [C;| = 1 and |C;| > 2. Since i% = i, by
Corollary 1.6, we have [4,j] € G if and only if [i,j] € H. Now [i,j] € G if
and only if [¢,5]% = [¢,j] € G%. Therefore [i,5] ¢ G% @ H. Suppose that
[4,4] € GY@H. Since u # i, we have [j, uJP: ' € G®G%% . By Lemma 2.2,
it follows that {79 ', u% '} N {i,j% '} # @ and {j% ", u% '} N {i,5} # @.
The second condition implies that « = j%. Hence G% & H C {[j,j%]}.
But since |G% @ H| is even, it follows that G% = H. We summarise the
previous results in the following theorem.

2.7 Theorem. Suppose that G%% = guei! » and that g;q; ! is of type 2.
If |Ci| # |Cj| or if |Ci| = |Cj| > 3 then G = H. If |C;| = |Cj| = 2, then
either G% = H or else G% ® H = {[t, j), [, 7%]}.

There remains the situation when |C;| = |C;| = 1. We then have

i% =i and j% = j. Lemma 2.2 now only says that [z,y] € G ® G¥% '
satisfies {z,y} N {i,5} # @. Since aiq; ! fixes both i and j, it acts as
an automorphism of G — {3, 7}, and so (G - {i,j})* = (G - {i,j})¥ =
H - {i,j}. The vertices of G are organized into cycles of giq; 1. Since
(gig;')? € aut(G), we know that if i or j is joined to a vertex on a cycle
of giq; 1) then it is also joined to every second vertex on the cycle. We
can construct graphs G and H satisfying these requirements, as shown in
Figure 6. In the diagram on the left, the cycles of a9 ! are represented by
ellipses of vertices that are alternately white and black. It is evident from
the construction that (G —1)% = H —i and that (G—3)% = H—j, and that
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|Ci| = |C;| = 1. In this example, G and H are not hypomorphic. However,
we do not know how to prove this in general. It may even be that (qig; )2
is the identity, so that the cycles of 9q; ! have length at most two. This
case is illustrated in the diagram on the right. It is very easy to see that
the graphs of this example are not hypomorphic, but more complicated
examples could be constructed.

Figure 6, Possible graphs G and H when |C;| = |C;| =1

3. %% '= qua , where 1, j, and k are distinct.

1 -
We assume throughout this section that G%% = G%% . Let G' =
- _ - -1 -1 -
G%% ' = Gu%i’. Notice that (G%% ' = G%% %% = G’ = G'. This
gives:

3.1 Lemma. Let G%% = Gu% ', where ,j, and k are distinct. Then
g;9;, " € aut(G).

Since p,-pj‘l is a partial automorphism of G, it follows that G and

G’ are nearly identical. We are concerned with G @ G’, the :iifference
between G and G’. Suppose that [z,y] € G & G'. If [z,y|?P: existed,
then we could apply pip; ! to it. Since pipj_l is a partial automorphism of

G, and since g;q; ! maps edges of G to edges of G’, we obtain [z, Yle =
[z, 9], a contradiction. It follows that [z, 4]Ps?7 " does not exist, so that by
Lemma 1.2, {z,y} N {7, i”a’_l} # @. Since G’ can also be written as G%%
we conclude that {z,y} N {k,i% l} # @ is also a requirement. This gives:

3.2 Lemma. If {j,i% } and {k,i% '} are disjoint, then G and G’ can
- -1 -1 -
differ in at most 4 pairs, [j, k], [4, 1% l], [k,i% ], and [i% ,i% l].
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We will prove that when {j,i% } and {k,i%"} are disjoint, G and
H are always isomorphic; that is, the algebraic condltion Gu% = gua’
implies the reconstructibility of G, when |{j, k k,i% " L 1% l}| = 4. The proof
consists of a number of cases, determined by the cycle structure of the
permutation g;g;'. We will prove that in each case, H is equal to one of
Gfli,qu', or G,

Notice that the graphs G,G’, H,G%,G%, and G all have the same
number of edges. Therefore any symmetric difference of the form G & G,
G® H, G% @ H, etc., all have an even number of pairs, and that |G —
G| = |G’ - @G|, etc. We can conclude that if G @ G’ has four pairs, that
IG-G=|G-Gl=2.

The technique used in each case is based on the following idea: Given
G ®G’, we apply the mappings p; and p;. to its pairs. Applying p;j and pi
to pairs of G will result in pairs of H. Since G' = G%% "= gua’! , applying
Pj Or pi to pairs of G’ will result in pairs of G%. Therefore, applymg Pi
and p;. to pairs of G — G’ will give pairs of H — G% and applying p; and
Pk to pairs of G’ — G will give pairs of G% — H. So given G & G', we can
often obtain G% @ H.

We look at the cycle structure of qjq,’c'l. We assume that G and H are
non-isomorphic, hypomorphic graphs, and obtain a contradiction in each
case.

3.3 Lemma. G% ®H consists of all pairs [z, y|Pi and [z, y|P* which exist,
such that [z,y] € G G'.

Proof. Recall that g; and gx both map G’ to G%, and that p; and py
both map pairs of G to H. Therefore, given [z,y] € G & G, if [z,y]*
exists, then it is a pair of G% @ H, and similarly for [z,y]P*. Conversely,
if [i,w] € G% @ H, then at least one of [i,w]’; and [i,w]’s" exists, since
J # k, giving a pair [z,y] € G @ G’ with the required properties.

3.4 Lemma. If (j) or (k) is a cycle of g;q; ', then |G & G| # 4.

Proof. Suppose that (j) is a cycle of qqul. We have j%% = j, so that
J% = j. By Lemma 1.6, [j,k] € G if and only if [j,k] € H. We also
know that [4,k] € G’ if and only if [j, k]?™ = [j,k] € (G')% = G%. It then
follows that (4, k] € G®G’ if and only if [j, k| € G% @ H, a contradiction to
Lemma 1.4. Therefore [j, k] € G G’, so that |G & G'| # 4, by Lemma 3.2.
The proof is similar if (k) is a cycle.

3.5 Theorem. |G ® G'| =4 is impossible.

Proof. Suppose that |G & G'| = 4. By the preceding lemmas, we have
GG = {[j,k] U,iqi’],[k,i":’q], [z'"a ,i% ']}. We also know that (j) and
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(k) are not cycles of g;q; ! Therefore kPspx! exists, whether quk is of
type 1 or 2. Consider the pa.lr [k, 4% ] € GPHG'. Without loss of generality,
we can assume that [k,i% ] € G' — G (by considering G instead of G,
if necessary). Apply p;p;! to get [k‘h‘li ' it 'l € G’ - G, since 9;q; "
is an automorphlsm of G', and pka is a partial automorphism of G.
Comparing [Ic"qu i% ] with the four pairs of G @ G’, we conclude that
either k%% = j or i%

Suppose first that k%% = % ', We have two pairs, [k,i% l], [1% ' 1% ’]
€ G’ — G. The remaining two pairs of G ® G’ are [4, k], [4, iq;l] eG-G.
We now apply pxp; 71 to [5,4% l] to obtain [jP*Pi l, i% l]. Now this pair must
exist, since (j) and (k) are not cycles of g;q; '. Therefore it is a third pair
of G — G’, which is impossible.

Consequently, we must have k"i‘?k— ' = j. It follows that qjq,:l is
of type 1 We have two pairs, [k,% ] l,i%'] € ¢ - G Therefore
7, ] [1% ,z‘lu ] €G- G’ Apply pip;! and 1>ka1 to [i% ,z‘lx ] to get
[i%,i% PP’ and [i% L% PPy ] We must consider whether these pairs
exist or not.

Suppose first that (zqn i% ”ﬂ’k '] and [z ,i% ””’: ] do not ex:st
Then by Lemmal.2, i% = jor kPi ‘and i% = kor ]”k . As|{j,k,1% ,zqk }|
= 4, we must have i% = k% "and i% = j%'. This is illustrated in
Figure 7. We find that the cycle of g;q; ! containing j and k has exactly 4
vertices.

-1
K'Py -1
i k. (IJ

-1 g.-1
le m,ll

n n-1
Pjp/f,

Figure 7, |G ® G'| = 4, [i% 4% P3P:"] does not exist

We now calculate G% @ H, using Lemma 3.3, by applying p; and pi
to pairs of G ® G'. The result is G* & H = {[¢,j%],[4, ], [¢, k]}, since
Jj% = k%, This is impossible, as |G & H| must be even.

There remains the situation when [i% ,i% 'P?c'| or symmetrically,
(49 R '] exists. Suppose that [i% ", i% 'PiPi '] exists. As this pair
must be in G — G’, we conclude that [i% % Pi?i'| = [i% tie].
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- - -1 -
follows that (i% )%% = i%  or equivalently, i% %)’ = ;. This situation
is illustrated in Figure 8.

H, GY%

-1 -1
(lj qk (Ik q

Figure 8, |G ®G'| = 4, [ivi i eet = 19 e
Let C denote the cycle of qu,c containing j and k. Since qjqk
aut(G'), the vertlces of C all have the bame degree in G', call it a. The
cycle of g; qk containing % s (z": ,z"k ). Let f denote the degree of
%" and z"k m G'. Now G' -G = {[k,i% ] [4,4% ]} and G - G’
{ls, k] [z": i% ]}, ie, G is formed from G by removing the edges [k, i% ]

[4,4% '] and adding the edges 7, k], [¢% ,z"k ']. These pairs are indicated in
the dlagram Consequently, all vertices of C also have degree a in G; and

%, i both have degree 3 i in G. It follows that deg(v,G) = deg(v, G"),
for all v€E V. But G = G%% ', so that deg(v, @) = deg(v®% Weiln 1) =
deg(v?% " G') = deg(v®% l,G), ie, v and v®%  have the same degree in
G, forallveV.

We then show that a = 8. Consider the pair-orbit Q(z": ik ) with
respect to g;q; . 71. Tt consists of a cyclic sequence of pairs (Py, Py, ..., Pp),

where Py = [z": , 1% ], and Ppy = Pt , where £ = 0,1,2,...,m, and
addition of subscripts is reduced modulo m + 1. As G' = G%% l, we
conclude that P, € G if and only if Ppyy € G'. Now Py € G - .
Therefore P, ¢ G. Hence, there is some ¢ € {0,1,...,m — 1}, such
that P, € G but Ppy; € G. Then Ppyy € G' — G. 1t follows that Py
is either [k, i"i-l] or [4, i";]]. Now deg(i";l,G) = deg(i";l,G) = . As
deg(v,G) = deg(v""":'-l, G), we conclude that a = deg(j, G) = deg(k,G) =
deg(i% ', G) = deg(i% ', G) =

We now find H — G% = {[i, z":l‘h)} and G% — H = {[i, k%]}, using
Lemma 3.3. Therefore, if v € {i% K2 ,k%}, then deg(v, G%) = deg(v H).
In G%, the vertices of C% all have degree o; furthermore i and 7% "% have
degree (3, which equals @. Now H i is formed from G% by removing the edge
[¢,k%] and adding the edge [i,i% ‘11] Hence, in H, the vertices of C% all
have degree o, except for k%, which has degree a— 1. Also, deg(i, H) = a,
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but deg(i% KN ) = a+1 But G and H must have the same degree
sequences, a contradiction.

This completes the proof that |G ¢ G'| = 4 is impossible.

We now turn to the situation when |G @& G’| = 2. There are 6 ways
- -1 - -
of choosing two edges out of {[7, k], [, i% |, [k,i% ], [¢% R ‘}. However,
due to the symmetry between j and k, some of these will be equivalent.
We look at each case in turn.

3.6 Lemma. If|G®G'|=2, then [j,k|¢G G .

Proof . Suppose that (j, k] € G—G’ and that some pair [z, y] € G'~G. Then
since [7, k]Pi and [j, kJP* do not exist, we find that H — G% = @ and that
G% — H # @, which is impossible. A similar result holds if [j,k] € G' — G
and [z,y] € G- G'.

3.7 Lemma. IfG®G' = {[j,i% ],[i% ,i%']}, then G™ = H.

Proof . Suppose that [j,i% '] € G— G’ and that [i% ,i% '] € G'—G. Apply
p; and py to obtain [i, j%] € H — G% and [i,i% %), [1, 1% ]'""] €EG" - H.
Since |H — G%| = |G% — H| = 1, we conclude that i% % = {% "% It then
follows that H ¢» G% = (G ¢ G’)%. But this equals G? & G%. Cancelling
GY leaves GI* = H.

Interchanging j and & in the above lemma gives:
3.8 Lemma. IfG®G = {[k,i% |,[i% ,i%']}, then G% = H.
There remains one case.

3.9 Theorem. G &G’ = {[j,i% ), [k, i"a'-l]} is impossible.

Proof. Without loss of generality, suppose that [j,i% l] € G - G’ and that
(k,i% '] € G -G. If [k,i% l]"f"i ' were to exist, it would also be a pair
of G' - G, as p;p;! is a partial automorphism of G and an automorphism
of G'; that is, we would have [i% l,k"”l: l] € G’ - G. This would make
|G’ = G| > 1, which is impossible. We conclude that [k, i% )]”i"; * does not
exist. This implies that kPiPx" does not exist; hence kP = k. Similarly,
we find jP* = j. This is illustrated in Figure 9, which shows the cycles (j)

and (k) of g;g; ', and the cycle C containing i% " and 49", It follows from
Lemma 3.3 that H — G% = {[i,j]} and G* — H = {[i, k]}.
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1

-1 g-1q.
qjqk k. ]J

Figure 9, G® G’ = {[j,i% "], [k,i% ']}

We show that G and H have different degree sequences, by comparing
deg(v, G) and deg(v%, H). We have GOG' = {[j,i% ], [k,i% ]}, and G% &
H = {[i,,li,k)}. Ifv & {5 k,i%",i% '}, then deg(v,G) = deg(v, G') so
that deg(v%,G%) = deg(v%,(G')%) = deg(v¥, G%). Since v% ¢ {i, ], k},
we have deg(v, G) = deg(v?, G%) = deg(v%, H). Since j% = j and k% =
k, we also have deg(v,G) = deg(v%,H) when v € {j,k}. We must still
compare deg(v, G) and deg(v%, H) when v € {i"i—l ,i% ')

Now G' -G = {[k, i";']}. Since g;q; ' € aut(G’), it follows that in G’,
k is adjacent to every vertex of C. In G, all vertices of C have a common
degree, call it . Then deg(i% l,G’) = deg(i% e )=a. Since G -G’ =
{15, iqil]}, we conclude that deg(iq;l,G) = deg(i”i—‘,G') —-1=«o-1,and
that deg(i% ,G) = deg(i% ,G') +1=a+ 1.

Since G* ® H = {[i,j],[¢, k]}, we have deg(i, H) = deg(i, G") and
deg(i% %, H) = deg(i% %,G%). But deg(i, G%) = deg(i% ,G" ) = @ and
deg(i% 9,G%) = deg(i% ,G') = a. We conclude that G and H have
different degree sequences, a contradiction.

We summarise the preceding lemmas and theorems as the following:

3.10 Theorem. Let G and H be hypomorphic graphs. If G%% ‘= guat! ,

where i, j, and k are distinct, and |{j, k, iqz‘-l,i";l}l = 4, then H is equal
to one of G%,G%, or G%*.

We thus have an algebraic condition forcing tzle reconstructibility of
G. We must still deal with the case when |{j, k,i% ,i% }| <3.
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4. [{j, ky i% , 1%} < 3
The possible cases are:

1. j=14%" (or symmetrically, k = i% )
2. % =%

. . -1 . -l
3. j=1% and k=1%

Case 1. j = i% '

In this section we assume that |{j, k,i% ,i% "} = 3 and that j = i% .

4.1 Lemma. G & G’ consists of pairs of the form [j,z] or [k,i% !].
Proof. As in Lemma 3.2, we find that if [z,y] € G®G’, then [:z:,y]”i”i-1 and
[z, )PP ' do not exist. Hence {z, y}N{j, i":‘—l} # 0 and {z,y}N{k,i% } #
@. Since j = i% , this reduces to either j € {z,y}, or [z,y] = [k:,i"i_l].

-1 -
Notice that g;q;; ! maps i%  to 1% = J so that g;g; ' does not fix the
point j.

4.2 Lemma. Given [j,z] € G ® G, for some z. If [j, z]P*P; " exists, then
k% # k and G ® G’ = {[j, k), [, 5% ], [k, % ], [j, k% "]},
Proof. We have j%% "= %", Since pkpj‘l is both an automorphism of
G’ and a partial automorphism of G, we have [7, :z:]”';”i— g [i% ' g ‘] €
G ® (. By Lemma 4.1, we find that either %% "—kor j. Now we can
not have 2% = 4, because then z = j% ", but then zP*?5 " does not exist,
contrary to assumption. It follows that £ = k%% ' and that k% # k, since
2P*P5 " exists.

We have found that [, k%% l], [k,i"i-l] € G G’ and that these pairs
are either both in G - G’, or both in G’ — G. There must be at least two
more pairs to balance these, and they must be pairs [j, z], such that z” ey’

does not exist. The only possibilities are [, k] and [4, /% . This completes
the proof.

Notlce that it follows from Lemma. 42 that G- G and G' - G are
{[5, k%% ] (k,i% ]} and {[4, k], [4, j% ]} Let C; denote the cycle of g;q;
containing j, and Cj, the cycle containing k.
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4.3 Theorem. IfGEBG’ = {3, k), [, 3% ), [k, 1% ] [5, k%% )} and k% #
k, then |C;| = 2, q;q;! must be of type 2, and G% & H = {[3, j, [i, k‘h]}

P'roof Without loss of generality, let G — G’ = {[k,i% ] [4, k%% "]} and

- G = {[4,k),[j,7% ]} Apply p; and py to obtain H — G% = {[i,k%]}
and G% — H = {[i,j]}. The case when g;q; ' is of type 1 is illustrated in
Figure 10; type 2 is illustrated in Figure 11. A dotted line indicates a pair
that is known not to be an edge of G.

Sapt !

k k' KL k
Figure 10, G ® G’ = {[4, k), [5, % |, [k, % ], [j, k%% ')}, g;q5* of type 1

Notice that k # % ' , by assumption. We also know that 1.":_ l# ke ,
for if these two were equal, then g;g;' would map (4, k% ] EG-G
to [, 7% ] € G’ - G, which is impossible, as g;g;' € aut(G’). We have
3,4% J"x € Cj; therefore these vertices all have the same degree in G/,

call it o. Similarly, k, k%% ' € Cy, so that these vertices also have the same
degree in G’, call it 8. If qjq,;'1 is of type 1, then C; = Ci and a = 3.

H

Figure 11, G ® G’ = {[j, K}, [7, 5% ), &, % '}, [1, k%% ]}, gjg; " of type 2
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We show that if |Cj| > 3, then G and H have different degree se-
quences. This is done by observing that G and G% have the same degree
sequence, and showing that G?™ and H have different degree sequences.

Suppose that |C;| > 3, so that j,j% , and i% " are distinct vertices. Since
G -G = {{ki% |,[j, k%% ]} and G' = G = {[j,k],[.5% ]}, we have
deg(j,G) = deg(j%",G) = @ — 1 and deg(i% ,G) = a + 1. Similarly,
deg(k%%",G) = f + 1.

Ifv ¢ {5 iqa‘_l,jqﬁ:l,kqﬂ;l}, then deg(v,G) = deg(v,G’). Hence
deg(v®,G%) = deg(v™, (G')%™) = deg(v®,G%). Since G% & H = {[i, j],
¢, K9]}, we know that v? & {i,7,k%}, so that deg(v, G) = deg(v?,G%) =
deg(v%, H). The vertices of {j, i"f-l,jq':l , k‘“"il} have degrees {a& — 1, —
1,0, + 1} in G. Since G% — H = {[i,j]} and H — G% = {[i,k%]}, we
have deg(j%,H) = deg(i, H) = «; deg(i"i_l‘“',H) = o deg(j";l"*,H) =
deg(j, H) = a — 1; and deg(k%% %, H) = deg(k%, H) = 8 + 1. Thus, the
degrees of v, when v € {j,i”;x,jqil,kqfq;l}, are {o,a,0 — 1,8+ 1}. If
|C;] = 3, this is not possible. We conclude that |C;| = 2, so that g;g; "' is
of type 2.

We have been unable to prove that |C;| = 2 is not possible in The-
orem 4.3. We find that i% fo § l, so that the degrees in G of v €
{5,i% ' ke '} are the same as the degrees in H of v%.

Lemmas 4.2 and Theorem 4.3 handle the situation when there is a pair
[,2] € G®G' such that [j, z]P*P5 " exists. We now consider the cases when
[4, z]P*Ps " does not exist, for every [f,z] € G® G'. Since j”“”;l =%,
we conclude that z” ¥?;" does not exist. It follows that either z = k or
xz = j% . The possible pairs for G ® G’ are [j, k], [j, j% ], and [k,i% ].
G @ G’ contains exactly two of these pairs.

4.4 Lemma. If [j, alc]"""’:'_l does not exist, for any [j,z] € G ® G', and
[k,i% '] € G® G, then k% = k.

Proof. If [k,i% l]”i"; " were to exist, it would equal a pair of G & G, since
pjp,:l is a partial automorphism of both G and G’. It would follow that
[k,i% |Pirs’ = [4, k%% ] equals either [, k] or [f, 7% ]. This implies that
k% = k.

4.5 Lemma. G &G’ = {[j, %], [j,j";l]} is impossible.
Proof . Calculating G% @H = {[j, j%*|} gives a contradiction, since |G% ®H|
must be even.
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4.6 Lemma. G&G' = {[j, 4], [k,i"i—l]} is impossible.
Proof. Calculating G% @ H = {[i, k]}, using Lemma 3.3, gives a contradic-
tion, since |G* @ H| must be even.

4.7 Lemma. IfG®G' = {[j,j% |, [k,i% ]}, then G% = H.

Proof . Without loss of generality, assume that G—G’ = {[k, % ' ]} and that
G'-G = {[j,5%]}. By Lemma 4.4, k% = k. Calculate H — G% = {[1, k]},
using Lemma 3.3, and G% — H = {[j, %]} = {[i, ]}, since j% = i. Let
C; be the cycle of qjq,zl containing j, as illustrated in Figure 12. In G’,
all vertices of C; have the same degree, call it a. Let 8 = deg(k,G").
Suppose first that |C;| > 3, so that i"i—laé §% . Since G ~ G’ = {[%, i"i_’]}
and G' - G = {[j,j";‘]}, we have deg(4,G) = deg(j”il,G) =oa-1;
deg(i% ,G) = a +1; and deg(k,G) = f+1. X v & {j k5% ,i% "},
then deg(v,G) = deg(v,G’) so that deg(v?™,G%™) = deg(v®,(G")%*) =
deg(v?,G%). Since v%* ¢ {4, j, k,i"f_l"*}, and since G ®H = {[i, k], [i, j]},
we conclude that deg(v®™,G%) = deg(v®,H). If v = k, we also have
deg(k,G) = B+ 1 = deg(k?, H). The degrees of {j,j"il,i"i-l} in G are
{a=1,a-1,a+1}. The degrees of v* in H are {a—1,a~1,a}, so that G
and H have different degree sequences, a contradiction. We conclude that
ICj| =2, so that i% = j% ', and G’ — G = {[§,i% ]}.

We then find that g; maps [k,i% ] € G — G to [i,k] € H — G%, and
[j,i"iil] € G' — G is mapped to [i,j] € G% — H. Therefore (G G')% =
H @ G%. Since (G')% = G%, it follows that G% = H, as required.

-1
j i

-1
qqu\:
Figure 12, G & G’ = {[5, % ], [k, i"i—l]}
Case 2. i% = i%

-1 - -1
In this section we assume that |{j,k,i% ,i% ! } = 3 and that 1% =
- -1
i%" . Notice that i% is a fixed point of 295"
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4.8 Lemma. G ® G’ consists of pairs of the forms [iq‘-l,z] or [j, k).

Proof . Ab in Lemma 3.3, we find that if [z, y] € GOG', then [z, y|PPi and

[z, yJPeri’ do not ex1st Hence {z,y}N{j,i% } # @ and {z,y}N{k,i% } #
-1

@. Since i% =%, this reduces to either i% '€ {z,y}, or [z,y] = [4,k).

4.9 Theorem. Ifi% = i%' , and q;q; ! is of type 2, then G% =

Proof Let X be the set of vertlces z such that [z": ,:z:] € GOG. Let
[zqa , X denote the set of all pairs [¢% ,z] such that z € X. By Lemma 4.8,
(GOG")-[j,k] = [i% ,X]. Givenz € X, if zPsPc " exists, then zP?x ' € X,
since pjpgl isa partial automorphism of G and G’. If zPi?k " does not exist,
then since q,q' is of type 2, we can apply pka a number of times to
obtain z??:' € X. Thus X%% ' = X. By Lemma 3.3, H ® G% = [i, X %],
since X% = X %. Since |G ® G'| and |H & G%| are even we conclude that
GoG = [z": s X]. Thus, G% @ G% = (G G')% = [i,X%) = G% @ H so
that G¥ =

4.10 Theorem. Ifi% = §a , and qjq,:l is of type 1, then either G = H
or else G¥ @& H = {[i, ], (4, k%]}
Proof. Let C denote the cycle of g;q; ! containing j and k. Refer to Fig-
ure 13. As in Theorem 4.9, let X denote the set of vertices z such that
[i"z_l,:z] € G G'. By Lemma 48, (G& G”) - 4, k] = [z”: ,X]. Let
X'=X -C. Then (X' )"J"k = X', since p;p;' is a partlal automorphism
of both G and G, and C is a cycle of g;g;'. If X %o = X , we again have
G% = H, as in Theorem 4.9. We divide the cycle C into two subsets: P,
the vertlces on the path from & to j; and P, the vertices on the path from
5% to kG

Then P1 UP, =C. If z € XN Py, where £ =1 or 2, then we can apply
either p,pk or its inverse to £ as many times as needed to obtain P, C X.
Consequently we can assume that X N C is either P, or P,. Suppose first
that XNC = P;. By Lemma 3.3, G% ®H = [i, (X —5)P)U[i, (X —k)P*]. Let
m = |Py|. Then |G% @ H| = |X’| + m — 1, whereas |[i% ,X]| = |X'| +m.
Since |G% @ H| and |G & G’| are both even, we conclude that [j,k] €
G ®G’. We then have G% @ G% = (GHG')% = [z"j X% U{[j,k]%} =
[¢, X%] U {[j, k%]}. Comparing this with the expression for G% @& H gives
G% @ H = {[i,J], 4, k%]}.
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Suppose now that X NC = P,. Let £ = |P2|. We find that G% @ H =
[z, XPs]U[i, XP*), since j, k € X. Therefore |G% @ H| = | X'|+£+1, whereas
1

% , X]| = |X’| + £. It follows that [j,k] € G @ G’. As above, we obtain
G% ® H = {[i, 5}, [5, k%] }.

We have been unable to prove that G% = H in this case. If we attempt
to use the degree sequence as in Theorem 3.5, we can proceed as follows.
Consider the case when X NC = Pj, and assume that [i% ' VPICG-G.
Then [i% ,j] € G~ G so that [i, j] € G%. Since G% @ H = {[i, j], [5, k%]},
we have [i,j] € G% — H and [j, k%] € H — G%. Therefore [j,k] € G' - G.
Let my = |(G' = G)N[i% ,X')| and mz = |(G - G') N[i% ,X’]|. Then
|G’ -= G| =my +1 and |G — G'| = m + my, so that my + 1 = m + ms.

In G, the vertices of C all have the same degree, call it a. Let § =
deg(i"f—l,G’). Then deg(iqi-l,G) =fB8+m+my—m = B+ 1. Also,
deg(4, G) = deg(k,G) = a. The other vertices of P; have degree a + 1 in
G. We use G% — H = {[i,j]} and H - G% = {[j, k%]} to obtain the degrees
in H. We have f+ 1 = deg(i% ,G) = deg(i, G%) = deg(i, H) + 1, so that
deg(i, H) = . Also, a = deg(k,G) = deg(k%,G%) = deg(k%,H) — 1, so
that deg(k%,H) = a+ 1. If v ¢ {i,k%}, then deg(v,G%) = deg(v, H).
The only conclusion drawn is that « = §.

Case 3. j =i% and k=%

--1 - -
In this section we assume that |{j, k,i% 1% l}l =2 and that j = i%
-1
and k = 1% . These conditions weaken the implications of the relation

Gu%5' = gua ', and do not seem sufficient to settle this case. We have
only the following simple lemma and observations.
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4.11 Lemma. G @G’ consists of pairs of the forms [j, ] or [k, z].
Proof. As in Lemma 3.3, we find that if [z,y] € G® G, then [z, y]"’i”i-l and
[z, )PP’ do not exist. Hence {z,y}N{J, iqi_’} # @ and {z,y}N{k,i% } #
@. Since i% = k and % = j, this reduces to either j € {z,y}, or
ke {z,y}.

Notice that k%% = (i )t%' = i% = j. Therefore giqp " is of
type 1. Suppose that [k,z] € G ® G, for some z. If [lc:,a:]”i";l exists,
then [j,z%% | is also in G ® G, since p;pr ! is a partial automorphism of
G, and an automorphism of G’. If it does not exist, then z is either j or
kG Thus, the possible difference pairs are [k, k% 1], [4, k], and [5, j9% l] (by
symmetry); and pairs of the form [k, z|, [§, z%% |.

5. Conclusion

The algebraic relations G%% = G%% ' or G%% = G%% " are sufficient to
force the reconstructibility of G in many cases. The second relation implies
that one of G%,G%, or G% always equals H when |{j,k,i% 1, 1% l}| = 4.
When |{j,k, i% l,iqi !}| = 3, the results are less conclusive; G% and H
can sometimes differ in up to two edges, that is |G% @ H| < 2. When
{4, k, 1% i }H = 2, the conditions are not strong enough to force G = H.
Other algebraic relations for which similar results likely hold are G%% =
Gu and GG = QUaE " where i, j, k and ¢ are distinct.
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