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Abstract

A connected graph G = (V, E) is said to be (a,d)- antimagic
if there exist positive integers a,d and a bijection f : E —
{1,2,...,|E]} such that the induced mapping gr:V = N,
defined by gs(v) = Y f(wv), wv € E(G), is injective and
9r(V)={a,a+4d,...,a+ (V]| - 1)d}. Mirka Miller and Mar-
tin Baa proved that the generalized Petersen graph P(n,2)
is (%&,3)-antimagic for n = O(mod 4),n > 8 and conjec-
tured that the generalized Petersen graph P(n, k) is (3348, 3)-
antimagic for even n and 2 < k < 3 — 1. In this paper, we
show that the generalized Petersen graph P(n, 3) is (3—",‘:5, 3)-
antimagic for even n > 8.

Keywords: (a,d)-antimagic labeling, Petersen graph, verter
labeling, edge labeling

1 Introduction

Hartsfield and Rjngel[61 introduced the concept of an antimagic
graph. An antimagic graph G is a graph whose edges can be labeled
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with the integers 1,2,...,|E(G)| so that the sum of the labels at
any given vertex is different from the sum of the labels at any other
vertex, that is, no two vertices receive the same weight. Hartsfield
and Ringel conjectured that every tree other than K> is antimagic
and, more strongly, that every connected graph other than K is
antimagic.

Bodendiek and Waltherl”] defined the concept of an (a, d)-antimagic
graph as a special case of an antimagic graph. Let G = (V, E) be a
finite, undirected and simple graph with vertex set V(G) and edge
set E(G), and let p = |V(G)|, ¢ = |E(G)| be the number of ver-
tices and edges of G, respectively. A connected graph G = (V, E) is
said to be (a,d)- antimagic if there exist positive integers a,d and
a bijection f : E — {1,2,...,q} such that the induced mapping
g7 : V = N, defined by gs(v) = 3 f(w), uv € E(G), is injective
and g;(V) = {a,a+d,...,a+ (p—1)d}. In this case f is called an
(a, d)-antimagic labeling of G.

Bodendiek and Walther!!1] showed that the theory of linear Dio-
phantine equations and other concepts of number theory can be ap-
plied to determine the set of all connected (a, d)-antimagic graphs.

Bodendiek and Walther!8! proved some graphs(including even cy-
cles; paths of even order; stars; C:.Ek); ik); K3 3; tree with odd order
n > 5 and having a vertex that is adjacent to at least three end
vertices) are not (a,d)-antimagic. They also proved that Poryy is
(k, 1)-antimagic; Cok+1 is (k + 2, 1)-antimagic; if a tree of odd order
2k+1(k > 1) is (a, d)-antimagic, thend = 1 and a = k; if Ky (k > 2)
is (a,d)-antimagic, then d is odd and d < (2k +1)(4k — 1) + 1; if
Korr1(k > 2) is (a,d)-antimagic, then d < (2k + 1)(k - 1) + 1.
For special graphs called parachutes, (a,d)-antimagic labelings are
described in [9, 10].

For the literature on (a,d)-antimagic graphs we refer to [1] and
the relevant references given in it.

Let n, k be integers such that n > 3, 1 <k <n and n # 2k. For
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such n, k, the generalized Petersen graph P(n, k) is defined by

V(P(n,k)) = {ui,u|1 <i<n},
E(P(n,k)) = {4 mod ny %, UiV ((i+k-1) mod ml! ST}

Since generalized Petersen graphs P(n,k) form an important
class of 3-regular graphs with 2n vertices and 3n edges, it is de-
sirable to determine which of the P(n, k) are (a, d)-antimagic.

Bodendiek and Walther[11] conjectured that P(n,1) is (184, 1)-
antimagic for even n and P(n,1) is (235, 2)-antimagic for odd n.
In [2] the proofs of the conjectures are given, and it is shown that
P(n,1) is (3245, 3)-antimagic for even n. In [3] it is proved that
P(n, k) is (a,1)-antimagic if and only if n is even, k < §—1and
a= o,

Mirka Miller and Martin Baéa [°] proved that P(n,2) is (3—"#, 3)-
antimagic for 7 = 0(mod 4),n > 8 and conjectured that P(n, k) is

(3—"}6, 3)-antimagic for even n and 2 < k < % — 1. In this paper, we
show that P(n,3) is (23£€, 3)-antimagic for even n > 8.

2 Main Result

Theorem 2.1 P(n,3) is (3%£€, 3)-antimagic for even n > 8.

Proof. We define the edge labeling f of P(n,3) for even . > 8 as
follows:

(n+i4+1)/2,1<i<n-1Aimod2=1,

/241, 2<i<n—-4Aimod2=0,
f('“i“1+(s mod n)) = 3n/2, i=n-2,
1, i=n.

n+(i+1)/2, 1<i<n-3Aimod2=1,
5n/2+2+4+14/2, 2<i<n-4Aimod?2=0,

fluivy) = 1+ 2n, i=n-—-2,
n/2, i=n-1,
2 4+ 2n, i=n.
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2n + 3 + ((i + 1) mod n)/2,
1<i<n—-1Aimod2=1,

F (U014 42 mod m) = 3n/2 +1+ ((i +2) mod n)/2,

2<i<nAimod2=0.

Now we verify that f is a bijection from the edge set E(P(n,3))
onto {1,2,...,q}.

Denote by

S51= {f(uiu1+(i mod n))ll <i< n}’

Sp = {fww)]l <i<n},

Sa = {f (V14 (G42) mod m)I1 S5 n}.
Then

S1= SnUSi2US13U 51,

Su= {f(w;,; mod n))|1§i5n—-1Az'mod2=1}
= {n/2+({+1)/2)1<i<n—-1Aimod?2=1}
= {n/2+1,n/2+2,...,n},

Siz= {flwuy; modn))|2§i$n—4/\imod2=0}
= {i/2+12<i<n-4Aimod 2=0}={2,3,...,n/2 -1},

S13 = {f(uiul_'.(i mod ﬂ))lz =n- 2} = {3n/2}’

S1a= {f(uit 14 mod nylt =7} = {1}

Sp = S21U S0 U S2U Sz U Sos,

So1= {f(w)|l <i<n-3Aimod2=1}
= {n+(@E+1)/21<i<n-3Aimod2=1}
= {n+1,n+2,...,3n/2 - 1},

Sop = {f(win)|2<i<n—4Aimod2=0}
= {5n/2+2+i/2)2<i<n-4Aimod2=0}
= {5n/2+3,5n/2+4,...,3n},

Sas = {f(ww)li =n—2} = {1+2n},

Saa= {f(ww)li=n—1}={n/2},

Sos = {f(ww)li =n} = {2+2n},
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S3 = S31USs,

Sa1 = {f(vivl+((i+2) mod )l £i<n—1Aimod2=1}
= {2n4+34+((i+1) modn)/2[1 <i<n—-1Aimod 2=1}
= {2n44,20+5,...,50/2 +2,2n + 3},

S3p = {f(vivl+((i+2) mod n))|2 <i<nAimod 2 =0}

{3n/24+ 14 ((:+2) mod n)/2]2 <i < nAimod 2 =0}
{3n/2 +3,3n/2 + 4,...,2n,3n/2 + 1,3n/2 + 2.

Hence, S; US> U S3 is the set of labels of all edges, and

S1USUS;

S11U 812 U S13U S14 U Sa1 U S22 U Sa3 U S24 U Sa5 U S31 U Sag
514U 812U S24 U S11 U S21 U S13 U S32 U S23 U So5 U S3; U Sao
{1, 2,3,...,n/2 -1, n/2, n/2+1,n/2+2,...,n, n+1,
n+2,...,3n/2-1,3n/2, 3n/2+1, 3n/2+2, 3n/2 + 3,
3n/2+4,...,2n, 2n+1, 2n+2, 2n+3, 2n +4,2n + 5,
<, 9n/242, 5n/2 4 3,5n/2 +4,...,3n}

{1,2...,3n).

Therefore we conclude that f is a bijection from E(G) onto
{1,2,...,3n}.

Denote by

gf('U) = z f(uv): uv € E(G):
W = {gs(v)lv € V(G)}.

Now, we show that g; is a bijective mapping from V(G) onto W.

Let us denote the sets of the weights(under an edge labeling f)
of vertices u; and v; of P(n,3) by

Wi = {gs(w)ll <i<n}
= {f (¥4 ((4n-2) mod m®) + (Wit mod ny) + f(uivi)
|1 <i<n},
Wa ={gs(w)ll <i<n}
={f (”1+((i+n-4) mod nyi) + f (”i”1+((i+2) mod n)) + f(uivi)
|1 <i<n}
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Where

Wy =WpuWipUWisuWiUWs,
wWu ={f (“1+((i+n-2) mod n)ui) + f(wity 1 mod n)) + f(uive)
1<i<n-3Aimod2=1}
— {3n/2+2+(3i—1)/21 <i<n-3Aimod 2=1}
= {3n/2+3,3n/2 +6,...,3n — 3},
Wiz = {f (44 (i+n-2) mod u)“i) + f(uit 4 mod n)) + f(uivi)
|2<i<n-4Aimod 2 =0}
={3n+3+3i/2)2<i<n-4Aimod 2 =0}
={3n+6,3n+9,...,9n/2 -3},
Wiz = {f(U)4((4n—2) mod m%i) +f (%) mod n)) + S (witi)
li = n -2} = {9n/2},
Wi ={f (“1+((i+n—2) mod n)“i) +f (“i“1+(i mod n)) + f(uivi)
li =n -1} = {3n},
Wis = {f(¥14(4n—2) mod m)%) + (%14 mod ny) + fuive)
li=n}={3n+3},

Wo = Wa UWa U Wos UWag U Was,
War = {f(v)4((4n—1) mod mUi) +f (Vi1 (i+2) mod w) S (uivi)
1<i<n-3Aimod?2=1}
= {9n/2+4+(3i+1)/2l <i<n—-3Aimod2=1}
= {9n/2 +6,9n/2+9,...,6n},

Waz = {f(¥14(G4n-t) mod m%) + F(Vi¥1 1 (i42) mod m) + Fluats)
|2<i<n-4Aimod 2 =0}
={6n+6+3i/22<i<n-4Aimod2=0}
= {6n+9,6n+12,...,15n/2},
Was = {f(V14(G4n-4) mod m¥) +f (ViVy4((i42) mod n)) + S (uivi)

|i =n—2} = {6n +3},
Wae ={f ('”1+((i+n—4) mod n)”i) +f (”i”1+((i+2) mod n)) + fluiw)
li =n—1} = {9n/2 + 3},
= {f (V14 ((4+n-4) mod n)'”i) + f (Ui 4 ((i42) mod n)) + fluiv)
li = n} = {6n + 6}.

Wa

o
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Hence, W = W; U Wj is the set of the weights of all vertices, and

W =WwWuWw,

= WnUWiaUWizU Wi U Wis U Way U Wap U Was U Wy U Was

= Wit UWi, UWis U Wia U Wig U Wag U Way U Wag U Was U Wag

={3n/2+3,3n/2+6,...,3n -3, 3n,3n+3,3n+6,3n+9,...,
9n/2 -3, 9n/2, In/2+3, 9n/2+6,9n/2+9,...,6n, 6n+ 3,
6n+6, 6n+9,6n +12,...,15n/2}

= {3n/2 +3,3n/2 +6,...,15n/2}.

We can see that each vertex of P(n,3) receives exactly one label
of weight from W and each number from W is used exactly once as a
label of weight and further that the set W = {a,a+d,...,a+ (V|-
1)d}, where a = 386 and d = 3. According to the definition of
(2, d)-antimagic labeling, we thus conclude that P(n, 3) is (3238, 3)-
antimagic for even n > 8. O

In Figure 1, we give a (2%, 3)-antimagic labeling for P(16,3).
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Figure 1 : The (35t2, 3)-antimagic labeling of the graph P(16,3).
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