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Abstract. A vertex subversion strategy of a graph G is
a set of vertices X C V(G) whose closed neighborhood
is deleted from G. The survival subgraph is denoted by
G/X. The vertex-neighbor-integrity of G is defined to be
VNI(G) = min{|X| + 7(G/X) : X C V(G)}, where 7(G/X)
is the order of a largest component in G/X. This graph
parameter was introduced by Cozzens and Wu to measure
the vulnerability of spy networks. It was proved by Gambrell
that the decision problem of computing the vertex-neighbor-
integrity of a graph is N"P-complete. In this paper we evaluate
the vertex-neighbor-integrity of the composition graph of two
paths.

1 Introduction

All graphs considered in this paper are finite and simple. We use Bondy
and Murty (2] for terminology and notations not defined here.

In 1987, Barefoot, Entringer and Swart introduced the notion of in-
tegrity to measure the vulnerability of graphs [1]. Incorporating the con-
cept of the integrity and the idea of the vertex-neighbor-connectivity [6], in
1996 Cozzens and Wu (3] introduced a new graph parameter called vertex-
neighbor-integrity to measure the vulnerability of spy networks. Gambrell
[5] proved that the decision problem of computing the vertex-neighbor-
integrity of a graph is N'P-complete. The vertex-neighbor-integrity of sev-
eral specific classes of graphs has been investigated. Cozzens and Wu |3, 4]
obtained the vertex-neighbor-integrity of paths, cycles and powers of cycles.
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Gambrell (5] studied the vertex-neighbor-integrity of magnifiers, expanders
and hypercubes. In this paper we evaluate the vertex-neighbor-integrity of
the composition graph of two paths.
Let G = (V,E) be a graph and u a vertex in G. We call N(u) = {v:

v € V(G),uv € E(G)} the open neighborhood of u, and Nu] = N(u)U {u}
the closed neighborhood of u. We say that u is subverted if N[u] is deleted
from G. A set of vertices X C V(G) is called a vertex subversion strategy
of G if each of the vertices in X has been subverted. By G/X we denote
the survival subgraph left after each vertex of X has been subverted. The
vertez-neighbor-integrity of G is defined as

VNI(G) = min{)X| + 7(G/X) : X CV(G)},

where 7(G/X) stands for the order of a largest component in G/X.

The composition graph of two graphs G and H, denoted by G[H], is the
graph with vertex set V(G[H]) = V(G) x V(H), and (u;,v) € V(G[H))
adjacent with (ug,v;) € V(G[H]) whenever u u; € E(G) or u; = uy and
v1v2 € E(H).

A vertex dominating setof the graph G is a set S C V(G) such that every
vertex in G belongs to S or is adjacent to a vertex of S. The cardinality
of a smallest vertex dominating set in G is called the vertexr dominating
number of G and is denoted by o(G).

Throughout this paper, we use Z* for the positive integer set. For a
real number z, [z] stands for the smallest integer greater than or equal to
z, and |z stands for the greatest integer less than or equal to z. For two
positive integers m and n, we denote

—r"‘*"’] 253~ @+ 1),
NS
and
m+3 ]+ |. m+3J (3n+1).

Our main result is as follows.

Theorem 1. Let m and n be two integers at least 2. Then
(i) If n = 2,3, then

(%], if m<12n;

D, if 12n<m < 16n— 3,

VNI(Pn[R)]) = orm > 16n — 3 and ™33 > L/ 2221, /=3,
q, if m2>16n—3 and =43 < |, /mA3 [, /mi3],
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(i2) If n > 4, then
(131,

©f3

+1,

of3

51+ %2,

VNI(Pn[Pa]) = {

b,

a

\

if 2<m<12(%2) -8,
m=0,1,3(mod4) and n = 0,1(mod4),
or2<m<12(2) -4,

m =0,1,3(mod4) and n = 2,3(mod4);
if 2<m<12(%] -8,

m = 2(mod4), and n = 0,1(mod4),
or2<m< 12|72 -4,

m = 2(mod4), and n = 2, 3(mod4);
if 12|2]-8<m<6(n+1) and
n = 0(mod4),

or12|2] -8 <m < 6(n+2) and
n = 1(mod4),

or12[3] —4<m < 6(n+1) and
n = 2(mod4),

or12[2] —4<m < 6(n+2) and
n = 3(mod4);

if 6(n+1)<m<9n—3 and

n = 0(mod2),
or6(n+2)<m<9n -3 and

n = 1(mod2);

if In-3<m<1lbn-—3,

or m>16n—3 and

m > |y,

if m>16n—3 and

mis < | /mas [, fmay,

We postpone the proof of Theorem 1 to Section 3 and before that, in
Section 2, we give some lemmata which will be used in the proof of this
result. An analysis of how our results relate to previous results on the
vertex-neighbor-integrity of graphs will be presented in the final section.

2 Lemmata

To prove Theorem 1, we need the following lemmata.

Lemma 1 ([4]). For any positive integer m, if x > /m, then [Z] —

(1<

The proof of the following lemma is straightforward and is thus omitted.
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Lemma 2. Let m,n and = be positive integers, and f(z) = = + n[Z].
Then

(2) f(z) is a decreasing function if z < |/m|;

(%) f(x) is an increasing function if z > m.

Lemma 3. Let m and n be positive integers at least 2. Then

el HelVEL 2> VEIVE
. m _ I' “'l
:é'é-'l{””f;”—{ Dyl +lVEL 2 < LYEIVE.

Proof. By Lemma 2, we have

. m . m
mnin {z+n[—]} = tﬁrﬂgm{ﬂnf;]}' (1)

Let R = {[2] : [Vm] < z < m,z € Z*}. Then we can prove that
R=1{1,2,---, [Tv'%ﬁ'l}.

In fact, 1['"]6RIfR7£{12 -,|' 21}, assume 7* is an
integer with 1 < r* < [7=]-'| and r* € R. Let r, be the greatest integer
smaller than r* in R, r; be the smallest integer greater than r* in R. Then
r2 —71 2 2. Choose two integers z; and 3 such that r; = [2 ], ro=[2 m]
and [/m] < 2 < 7; < m. By Lemma 1, (5] - 35 +1] < 1. Since
there is no integer r with 7} < 7 < r; such that [22] =7 for any integer
z with [\/—l <z <m, weget [2] = [F] Snmlarly, we can prove
that [ 2] = |'—'| Repeatmg the above arguments, we can finally get

T = = [:2+5] = [2] = r2, & contradiction.
If fﬂx‘-] =r 1> then = M

z

3..

m
r—1

m
[ﬁ’|=r4=>r—1<—$r¢=>ﬂ$x<
T T T
So it is not difficult to see that

. m
i e+l Tl = min
where R* = {[W’"ﬁj]} UR.
Set g(r) = 2 + nr. It is clear that g(r) is a decreasing function when
0 < r < /%, and an increasing function when r > /™. So we have

{[ ] +nr} = mm [— +nr], (2

rGZI}' [7 + 111‘]
= min [a(r)] = fg(f\/_] ifm<mn;
= Juin [g(r)] = { min{To(vED], [o([/EN}, ifm>n O
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Case 1. m < n.
Since [{/Z] =1 € R*, we have

. em —
min [— + nr] = min [— + nr].
reRs' T rez+ T

It follows from (1), (2) and (3) that
min (o +nl 21} = [o(1y /2D

On the other hand, it is clear that 2 > |/Z][,/Z] =0 in this case.
Case 2. m>n.

First, note that

] 2 (] = v > 1212 1221
So [/, [/Z] € R*. It follows from (3) that

min {[ + nrl}

= min (12 +nrl} = min{la(Ly ZDL I 20} (@

reZ+

If \/Z is an integer, then [/Z| = [\/Z], the conclusion holds. If
v/ Z is not an integer, then [/Z] = | /Z] +1.
If 2> |/Z|[/Z], then

LL%J - [L\/%r] >n

.—_>% +nl\/—%_1 > %ﬁﬁ]— +n[\/§]

— g by 2 T+l 20
=] +n[\/§J > 77y +aly [

= Toly/ 201 fo(Ty /201
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By (1), (2) and (4), we have

i (o420} = P g2,

The case 2 < |/Z|[,/Z] can be proved similarly. m]

Lemma 4. Let m and n be positive integers with m > 9, n > 2, and

flx)y=z+ nl'-"—‘%], where z € Z* U {0}. Then

(2 +n, f 4<m<In-3;
?, if In—3<m<16n -3,
orm > 16n -3 and

0P 1) = mis |, fmss ), [mas)
q, if m>16n—3 and

‘ = < |y/mE) /=

Proof. First, note that

]-(x+1)+n|'

f(z)=x+n|'"; ]—(3n+1)

So, by Lemma. 3, we have

f(z)

zez+u{o}

] - =p 282> | /=8, /=83y,
N - =g = <|y/=8),/ns3),
Case 1. 9<m<9n-3.

When z <[], we have [Z43] =r > 4. Then

(5)

m+3 +3 m+3 m+<+3
= — —< —X=
rz+1] rer-1< 11 ST +1< —
Hence,
iR 1) = min{[TE2] e — (3n - 1) (6)
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Let g(r) = [2£3] + nr. It follows from m < 9n — 3 and r > 4 that

;'(’—;1% < go Since n > 2, we get

m+3 m+3
glr+1) - g(r) =n + [ 0] - [
m+3 m+3
> —_
_n+'r+1 T
_m+3
r(r+1)

1
-1

which implies that g(r) is an increasing functlon when r > 4.
Whenm > 9, z* = [2] -1 < [2] and [243] = 4. Then, from (6) we
obtain

z*+1

i, 1) = 0@) = Bn+1) = [T 4

Case 2. In—-3 <m<16n -3.

In this case, we have [{/™+3] =4 and |,/Z33| = 3. So,

_m+3 3 m+3 m+3
—1<[% Fl=l—1-1=l—
f\/ Ly =)
t H - m+3 - = 3
It follows from (5) that 0522?-';1 f(z) f“ﬁ%ﬂ 1)=p
Case 3. m > 16n — 3.
Note that /™33] > 4. Then we have

1-1.

[z ]_(M]_l [_m_'*'3_ o
[\/lnﬂJ [/ 25

From (5), we obtain

p, if mE2> | [mis ] [mesy,
o<iiP [®) = {q, f_t.<[\/_Jf\/_]

The following lemma is interesting itself.
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Lemma 5. Let m be an integer at least 2 and G a graph. Then

(7], (@) =1,
o(Pn(G)) =< [3%], if 0(G) 22 and m =0,1,3(mod4);
Z+1, if 0(G) > 2 and m = 2(mod4).

Proof. The case 0(G) = 1 follows from the fact o(Pn) = [3] immediately.

Suppose 0(G) > 2. Denote V(P,) = {uj,us,...,un} and V(G) =
{v1,v2,...,un}. Assume m =4k +7,0 <7 <3. Let V; = {(ui,v;) : 1 <
j £ n} and G; be the subgraph of P,[G] induced by V; for i = 1,2,...,m.
The result holds obviously when k = 0. So we assume k > 1.

It is not difficult to see that there always exists a vertex dominating set
X of Pp|G] such that |(Vgi42 U Vaip3)NX| > 2 foreachi=0,1,...,k—1,
see Figure 1.

NN N7 NN L N 7N7N7]
AN Nl AN
VAN/RNAN N2\ ANZANAN

N7 \VIN/ \WWIN/ \V

I\ v,.\v V"\V N/ \\" ‘l‘\' Y/ \V
PPN - PPN -
Gi G2 Gz Gy G4i+1G4i4+2G4i+3G4i44 Gar—Cak—Gar—1 Ga
Figure 1: A graph P,|G] with m = 4k

Furthermore, we can assume (Vi U Vg )N X| > 1if m = 4k + 1,
[(Vare U Vi1 U Vigg2) N X| 2 2 if m = 4k + 2; and J(Vir U Vageyr U Vigy2 U
Vak43) N X| > 2 if m = 4k +3. So we have |X| > [2] if m =0, 1, 3(mod4),
and |X| > % + 1 if m = 2(mod4).

On the other hand, it is easy to construct a vertex dominating set X*
of Pn[G] such that |X*| = [3] if m =0,1,3(mod4), and |X*| = Z +1if
m = 2(mod4). This completes the proof. a

3 Proof of Theorem 1

We first prove the following claim.

Claim 1. Let m and n be two integers withm > 4, n > 2, and X be any
vertex subversion strategy of P |P,) with |X| =z. Then
(@), min,, {1X] +7(PalPol/X)}

(211 +n, if 4<m<9n-3;
23 if In-3<m<16n-3,

= orm216n—3and1"—:—3>|_\/-’-"-ﬂ:§”1/1"1lﬁ];
4 if m216n—3andﬂ;lL35|J/ﬂ;‘L3J|'1/%3]_
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(®) pymin  AX[+7(Pr[Pa)/X)} =[5+ [253] if m = 0,1,3(mod4)

and n > 4; min  {|X| + 7(Pm[Pa)/X)} = [B)1+[2353] if m =
[F1<z<F+1
2(mod4) and n > 4.
(¢) r>nri'1}]{|X| + 7(Pm[Pa)/X)} = [%] if m =0,1,3(mod4) and n > 4.
z2[3

(d) xé“.n,i‘il{lxl +7(Pm[Pal/X)} = 2 +1 if m = 2(mod4) and n > 4.

Proof. Let V(Pp) = {u1,us,...,um} and V(P,) = {v1,v2,...,0n}. De-
note {(u;,v;) : 1 < j < n} by V; and the subgraph of Pp,[P,] induced on
Vi by G; for i =1,2,...,m. Then G; & P,. So, P,,|P,] contains m copies
of disjoint P,’s.

(a) When |X| = z < [%], it is clear that P,[P,]/X contains at least
m — 3z copies of disjoint P,s, and each component of Pn(P,]/X with at
least n vertices is a Px[P,]. Denote the number of components of P, [P,]/X
with at least n vertices by wn(Pm[Pn]/X). Then wn(Pm[Pn)/X) <z +1.
So we have

T

At the same time, it is easy to see that for a given integer z with 0 < z <
[%], there always exists X C V(Pm[Ps]) such that

.

r(PalPa}/X) 2 [ o

m3a:

T(Pm[Pr]/X) = nf

Therefore,

o (X4 T(PalP)/ X0} = min, {4 n[ BT

1}

The result follows from Lemma 4 immediately.
(b) We first consider the case m = 0,1, 3(mod4).
If | X| =[], then it is not difficult to see that

r(PalPa)/X) 2 2201,

On the other hand, if we set X* = {(ui,vfgy) : i = 3k +2, k =
-, [F] — 1}, then

n-3

L}

7(Pm[Pal/X¥)

So,

min {|X|+ 7(Pu([P]/X)} = [+ (7
z={%]
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If [B] <z < [%], let Hbea maximum component of Pn[P,]/X.
Assume that V(H)NV; # 0 for some i. Then we have XNV,_; =0ifi > 2
and X NV;4; =0 if i < m — 1. By the definition of composition graphs,
we see that at least one of G;_; (if 4 > 2) and Giy; (f i <m—-1)isa
subgraph of H. Then

T(PmlPal/X) = [V(E)] > n > [222].
Therefore,

(3128 <r .I{|X|+T(Pm[Pn]/X)} > r_1 + [__] ®)

It follows from (7) and (8) that

X|+ 7(PnlF,
0 (X4 7P

The other assertion can be proved similarly.
The results in (c) and (d) follow from Lemma 5 immediately. O

Proof of Theorem 1.

(¢) If 2 < m <9, then it is obvious that VNI(P,[P,]) = [%]. So we
assume m > 9.

Let X be an arbitrary subversion strategy of Pp[P,] with |X| = z. By
Lemma 5, o(Pn[FP]) = [F]. So we have

. m
min {1X] 4 7(PulP/ X0} = (1. ©)
If m < 9n — 3, then it follows from Claim 1 (a) that

{IXI +7(Pm[Pa)/X)} = f—] +n.

0<

Thus, VNI(Py[P,]) = min{[}],[2}] +n} = [F].
If 9n — 3 < m < 16n — 3, then [/™+2] = 4 and p = [2L] + n. From
Claim 1 (a), we have

0<ng!rl,,,1{|X| +7(Pm[Pal/X)} =p = f—] +n.

Thus, by (9), VNI(Pn[Pa]) = min{[%}],p} = min{[Z], [27}] +n} = p.
If m > 16n — 3, by Claim 1 (a), we have
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on {1X] 4 7(Pal P}/ X)}

_J » if m > 16n — 3and_'l'_>[\/_“-\/—-|
_{q’ if m > 16n— 3a_nd—+—<l\/—“-\/—.| (10)

In a manner similar to that of the proof of Lemma 3, we can show
that the function A(r) = [242] + nr — (3n + 1) attains its minimum value

when r = [/2£2] or | /™3| Note that [\/ﬂ"fﬁ] > [\/E"fﬁj > 4 when

m 2 16n — 3, h([{/2£2]) = p, h(|1/=2]) = g, and A(3) = [F]. So
we have p < [%] and ¢ < [3]. The result follows from (9) and (10)
immediately.

(#) The case m = 2,3 is trivial. So we assume m > 4.
Case 1. 4 <m < 12|%] -8, m = 0,1,3(mod4) and n = 0,1(mod4); or
4<m<12(2] -4, m=0,1,3(mod4) and n = 2, 3(mod4).

It can be proved that [2] < [271] +n and [2] < [2] +[253]. By
Claim 1, we have

VNI(Pn[P,)) —mzn{[

4, 314 LR = 1

Case 2. 4 < m < 12|%] — 8, m = 2(mod4) and n = 0,1(mod4); or
4 <m < 12(%]) -4, m = 2(mod4) and n = 2, 3(mod4).

It can be proved that 2 +1 < [Zfl] +nand 2 +1 <[] + [%2].
By Claim 1, we have

-3
2

VNI(Pn[Pa)) = min{[ 221 +n, r 1+, S +1 = Z+1

Case 3. 12[2] —8 <m < 6(n+1) and n = O(mod4); 12{2] -8 <m <
6(n + 2) and n = 1(mod4); 12| 2| —4 < m < 6(n + 1) and n = 2(mod4);
or 12[2] —4 <m < 6(n +2) and n = 3(mod4).

It can be proved that [2] + [252] < [25] +n, [2] +[253] < [2]
and [3] + [252] < 2 + 1. By Claim 1, we have

VNI(Pn[P.)) = min{[~ ]+ 3 1+r H 1, +1}

m n—3

= fg] + |"2—1-
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Case 4. 6(n+1) < m < 9n-3 and n = 0(mod2); or 6(n+2) <m < In-3
and n = 1(mod2).

It can be proved that [21] +n < [2] + [253], [221) +n < [2]
and [2Fl] +n < 2 +1. By Claim 1, we have

VNI(Pn|P,]) = min{[—

kP f 1+ = H ], +1}

= rT] +n.

Case 5. 9n—3 <m < 16n—3; orm > 16n—3 and 243 > |, /md3 [, /mt3],

As in the proof of (i), if we set h(r) = [2£2] 4 nr — (3n + 1), then
h([{/223]) = p < h(4) = [=F!] + n. On the other hand, it is not

difficult to prove that [2f2] +n < [Z] + 252 L= (2] +n < [Z] and
[21+n<Z+1. By Claim 1, we have

VNIPa[Pa]) = minip, [ 31+ 2521, 121, 2 41} =p.

Case 6. m > 16n — 3 and =3 < | /md3|[, /mt3],

This case can be proved by arguments similar to that for Case 5.
The proof of Theorem 1 is complete.

4 Concluding remarks

Cozzens and Wu [3, 4] showed that the maximum vertex-neighbor-integrity
for powers of cycle C,, and for trees on n vertices is on the order of /n.
In (5], Gambrell proved that the vertex-neighbor-integrity of any member
of a family of magnifier graphs is linear in the order of the graph. By
an analysis of Theorem 1, we can see that the vertex-neighbor-integrity of
P |P,) is also on the order of the square root of the number of the vertices
of Pp[Py).

Gambrell [5] conjectured that the vertex-neighbor-integrity of any graph
with n vertices is no greater than [%]. Our results verify this conjecture
for the composition graph of two paths.
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