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Abstract. For general graphs G, it is known [6] that the minimal
length of an addressing scheme, denoted by N(G), is less than or equal
to |G| —1. In this paper we prove that for almost all complete bipartite
graphs Ko, N(Kmn) = |Kma| — 2.
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1 Introduction

An address u; corresponding to vertex v; is a t-tuple (vector), each coordi-
nate being chosen in {0, 1, ¢}, and the vertex set of a graph G is {vy, ..., y|g}-
Let u;, be the rth coordinate of u;. Define a function d; such that

1 if wr=1 and u;,=0
di (i, ujr) = 1 if wr=0 and uj,=1
0 otherwise

The distance between u; and wu,; is defined by d(u;, u;) = Zﬁ=1 dy (i, u5).
Note that the symbol d never contributes to distance.

Theorem 1 (3] For a connected graph G, there exists some integer ¢ so that
each vertex has an address of length ¢ such that, for any two vertices v; and
v; the distance between them in G is equal to d(u;, u;).

We call such a correspondence between each vertex and its address, an
addressing scheme. Hence the next problem is to know how small ¢ can
be for a given graph G; the smallest ¢t being denoted by N(G) is called
squashed-cube dimension [5] of G. In general the following upper bound on
N(G) is known.

Theorem 2 [6] N(G) < |G| - 1.
The following theorem gives an example saying that the equality can hold.
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Theorem 3 (3] N(T,) = |T,,| — 1, where T, is a tree of order .

A complete bipartite graph is one whose vertex set can be partitioned into
two independent subsets M and N, so that each vertex of M is joined to
each vertex of N; if [M| = m, |N| = n, such a graph is denoted by Ky, ,.
We see that for m,n > 2 and a pair (m,n) # (2,2), unless d is used,
we never have valid addressing scheme on complete bipartite graphs. In
general, Graham et al. [3] showed that a result of Witsenhausen implies that
N(G) > max{n_,n,}, where n(resp. n_) is the number of positive (resp.
negative) eigenvalues of the distance matrix of G. In this inequality, when
the equality can hold, then an addressing scheme of G is called eigensharp
(1). In [2], by use of the above result, Graham et al. gave a lower bound
that N(Kmn) 2 |Kmn| —2 = m+n—2 for any m,n > 2. In the same
literature, they gave a comment as follows.

Theorem 4 [2] N(Kmpn) = |Kma| —2, forany m=n =2 mod 3.

In this paper we completely determine that for almost all m,n > 1, K n
has an eigensharp addressing scheme, i.e., N(Km ) = |[Kmn| — 2.

2 Construction of eigensharp addressing schemes

As is noted in Introduction, Graham et al. [2] proved that for any m,n > 2,
it can hold that N(K;»n) = m + n — 2. We note that the concept of a tree
is included in that of a bipartite graph, and hence N(K;,) = |Kj .| — 1.
Here we indeed construct eigensharp addressing schemes of all K, , except
for nine specific cases, where m,n > 1. At first we introduce a new term; a
(g,h)-array is a g x h matrix whose entries are in {0, 1,d}.

Lemma 1 For an odd integer k > 3, there exists a (k+1,k)-array such that

any two rows have distance 2.

Proof. Let a row vector a of length k be (1,0%,1,11%), where 0;

(resp. d;) is an all-zero (resp. all-d) row vector of length i. Let A be a
circulant matrix of order k¥ with a in the first row, then the following k+1
x k matrix yields a (k+1,k)-array, satisfying the above condition:

0
A b
which completes the proof. [

Now we shall show the main theorem.
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Theorem 5 If m,n > 1 and (m,n) # (2,3), (2,4), (2,6), (3,3), (3,4),
(3,5), (3,6), (4,4), (4,5), then

N(Kmpn) = |Kma| - 2.

Proof. Suppose that Ky, » = (M UN, M x N) has an eigensharp addressing
scheme. Let Xps (resp. Xy) be the set of addresses for the partite set M
(resp. N) of the Kpnpn. Let Kmisn be (M UN,M' x N), where M’ is
obtained by adding 3-copies of a given element « in }_,,, say x;, z2, 3, to
2 adjoin 000, 011, 101, 110 to x, x;, x2, 3 respectively, and adjoin ddd
to each element in (X) UX y)\z, see Example 1 with z = 11. Then K13 n
has an eigensharp addressing scheme. We may take the same procedure in
extending the original addresses for Kmzn to that of K ny3. Following the
proof we demonstrate that Kz'g, K2,7, Kz,g, K3‘7, Ks,s, K3,g, Kq,s, K4,7,
Ksg, K56, Ko, have eigensharp addressing schemes, we may consider the
following six cases.

Case I. By Theorem 4, K, has an eigensharp addressing scheme, for
m=n=2( mod 3).

Case II. Since K37, Kg4 have eigensharp addressing schemes, then sim-
ilarly Kmn» has an eigensharp one for m = 2 ( mod 3), n = 1 (
mod 3), and (m,n) # (2,4), (5,4).

Case III. Since K29, K56, and Kg3 have eigensharp addressing schemes,
then similarly Ko, , has an eigensharp one for m =2 ( mod 3),n =0
( mod 3), and (m,n) # (2,3), (2,6), and (5, 3).

Case IV. Since K37, K¢ 4 have eigensharp addressing schemes, then sim-
ilarly Km» has an eigensharp one for m = 0 ( mod 3), n = 1 (
mod 3), and (m,n) # (3,4).

Case V. Since K47 has an eigensharp addressing scheme, then similarly
Komn has an eigensharp one for m =n =1 ( mod 3), and (m,n) #
(4,4).

Case VI. Since K39, K¢ have eigensharp addressing schemes, then simi-
larly K » has an eigensharp one for m =n =0 ( mod 3), and (m,n)
# (3,3), (3,6), which completes the proof. O
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3 Nonexistence of eigensharp addressing schemes

In this section we discuss the nonexistence of eigensharp addressing schemes
for the nine remaining cases; (m,n) = (2,3), (2,4), (2,6), (3,3), (3,4), (3,5),
(3,6), (4,4), (4,5). The next lemma is useful in shortening our procedure.
As results on nonexistence of an eigensharp addressing scherme, it is known
that the Petersen graph has no eigensharp addressing scheme [1]. Also it
is known that K3 and K33 has no eigensharp addressing schemes in (2]
and in [5] respectively. But, here we show by use of Lemma 3 that K4
has no eigensharp addressing scheme. We determined by computer search
together with Lemma 3, that for the other six cases, there are no eigensharp
addressing schemes. Here we denote the number of d’s contained in an
address m; by D(m;).

Lemma 3 Suppose that there exists an eigensharp addressing scheme for
Kmnand n 2 3. If m =2 or m = 3, then D(m;) > 2 for each address m;
of the scheme corresponding to the part of size m, 1 < i < m.

Proof of the case m = 2.
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Case 1. We assume that there exists an eigensharp addressing scheme.
Suppose that D(m,;) = 1. We may assume that all but nth coordi-
nate of m; are zero. Since d(n;,m;) = 1, each n; has only one 1
between the first coordinate to the (n-1)th. For 1 <[;,l[; <n -1, n;
and n; must have single one in distinct coordinates l;,!;; otherwise,
d(ni,n;) < 1. However, since there are exactly n addresses n;, such a
situation never occur.

Case 2. Suppose that D(m;) = 0 holds for both i = 1,2. Without loss of
generality, assume that row m, is all zero. Since d(m;,n;) =1, only
one coordinate in each n; is equal to 1, and all the other coordinates
are zero or d. Note that d(n;,n;) =2 fori,j =1,...,n(i # j). Since
n > 3, we can not decide my. 0O

The proof in case of m = 3 can be made similarly but is a little more
tedious, so we omit it. From Lemma 3 we easily see that N(K33) = 4 and
N(K33) = 5. We show nonexistence of an eigensharp addressing scheme of
Kz’q.

Proof of N(K24) # 4. Suppose that N(K24) = 4. Lemma 3 implies
that D(m,) = D(mgy) = 2. There exist at least two n; having one 0 and
one 1 in the coordinates where m; does not have d. We may consider them
as ny,n2. Since d(ni,n2) is equal to 2, we see that the third and fourth
coordinates of n;,ny are 00,11 respectively. We illustrate this situation:

m> 0 0 d d
me> 1 1 d d
n> 0 1 0 0
ne> 0 1 1 1
N3 > *) *3 *3 *yq
g >

If ¥; = 0 and *3 = 1, then d(n;,n3) # 2 either for j = 1 or j = 2. Hence
*1 =1 and x2 = 0, *3 = »4 = d because d(n;,n3) = 2. There is no way to
decide an address nq. 0O

368



Remark 1 In case of (m,n) = (2,5), the equality in Lemma 3 can hold as
follows:

m;> 00 0 d d
me> d 1 1 0 d
n1> 1d 000
ng> 1 dd 11
ng> 01001
ng> 01d 10
ng> 0 01 0 d

Two addressing schemes of K, are called isomorphic if permuting rows
in each partite set, permuting columns or replacing symbol 1 by symbol 0
of one, yields another. The above solution is nonisomorphic to the one in
Example 1.
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