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Abstract

The Szeged index extends the Wiener index for cyclic graphs by
counting the number of atoms on both sides of each bond and
sum these counts. This index introduced by Ivan Gutman at the
Attila Jozsef University in Szeged, 1994, and so called Szeged
index. In this paper, we introduce a novel method for
enumerating by cuts. Using this method an exact formula for the
Szeged index of a zig-zag polyhex nanotube T = TUHC[p,q] is
computed for the first time.

Keywords: Szeged index, chemical graph, zig-zag polyhex
nanotube.

1. Introduction

A graph G is defined as a pair G = (V,E), where V is a finite, non-empty set of
vertices and E is a set of edges. The term chemical graph was introduced by
Cullen in 1758. He used those graphs for affinity diagrams showing a
relationship between chemical substances. Those results have never been
published officially. In a chemical graph, vertices represent atoms and edges
represent bonds.

Numbers reflecting certain structural features of a molecule that are
obtained from its chemical graph are usually called topological indices. Wiener
index (W) is one of the oldest and most thoroughly examined molecular graph-
based structural descriptor of organic molecule, [19]. This quantity is equal to
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the sum of distances between all pairs of vertices of the respective molecular
graph,

Let G be a graph and e is an edge of G. If e is connecting the vertices i
and j then we write e = i—j. The distance between a pair of vertices a and b of G
is denoted by d(a,b). For acyclic molecular graphs, Wiener discovered a
remarkably simple method for the calculation of W. For an edge e = i—j, let N(i)
be the number of vertices of G lying closer to i than to j and N(j) be the number
of vertices of G lying closer to j than to i, that is N(i) = [{u € V(G) | d(u,i) <
d(u,j)}| and NG) = [{u € V(G) | d(u,j) < d(u,i)}|. Then the Szeged index of the
graph G is defined as Sz(G) = Ze=a,-e £ NONG).

This generalization was conceived by Gutman at the Attila Jozsef
University in Szeged, and so it was called the Szeged index, [13]. It is usefule to
mention here that Gutman in his 1994 paper proposed the existence of the cyclic
index and abbreviated it by W*. In that paper he has not given any name to this
index. It was in [16] the index named Szeged index and abbreviated as Sz. For
more information about Szeged index we encourage the reader to consult [I-
2,15-18,21-22).

Diudea and co-authors [8-12] computed the Wiener index of some
nanotubes. In [14], John and Diudea computed the Wiener index of a zig-zag
polyhex nanotube. They proved that:
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In [3-6,23-24], one of us (ARA) computed the Pl and Wiener indices
of some nanotubes and nanotori. In this paper, we continue this program to
compute the Szeged index of a zig-zag polyhex nanotube. We mention here that
computing PI and also Wiener indices of nanotubes is very simpler than
computing Szeged index, because of the symmetry of nanotubes and nanotori.

In literature, there is a paper by Diudea in which Szeged index is tested
in QSPR, see [12]. In this paper, he examined use of Szeged index and several
other distance-based indices on correlation with the boiling points (BP) of 45
cycloalkanes. On the other hand, Khadikar et. al. [15] described various
applications of Szeged index for modeling physicochemical properties as well
as physiological activities of organic compounds acting as drugs or possess
pharmacological activity. The authors of this paper reviewed 175 papers
published on the subject of Szeged index. This shows that the subject of Szeged
index is more and more growing in chemistry, physics and also biology.

It is useful to mention here that Randic [18] introduced a novel index
named “revised Wiener index”, RW, which as will be seen shows better
descriptor than Szeged index for structure — property relationship for cyclic
molecules. To define, we augment Szeged index with contributions from
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vertices not considered in the definition of Sz index as proposed by Gutman. A
simple remedy to deficiency of Sz is to divide equally the count vertices at the
same distance from vertices at both ends of an edge.

Throughout this paper T = TUHCq[p,q] denotes an arbitrary zig-zag
polyhex nanotube, in the terms of their circumference (p) and the number of zig-
zags (q), see Figure 1. Our notation is standard and taken mainly from [7,19].
We prove that:

Theorem. With notation as above, we have:
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Figure 1. Zig-zag TUHC6[10,20] Nanotube.

2. Main Results and Discussion

The aim of this section is computing the Szeged index of the zig-zag polyhex
nanotube T = TUHC,[p,q). It is clear that T has exactly 2pq vertices and p(3g-1)
edges. Suppose A and B are the set of all vertical and oblique edges of T,

respectively. Then Sx(T)= ZFUE ET) N@ENG) = Ze:ije AN(i)N(i)
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+2euies NONG).  We  assume  that  Sz(T)= Y emiies NONG)  and
Sz,(T) = Zﬁje 8 N(i)N(). To compute Sz(T), we first compute Sz,(T).

OY Y Y Y N NN AN AN
N N NN NN AN AN

NN INANININ AN

P row

Figure 2. 2-Dimensional Graph of T = TUHCq[p,q].
Lemma 1. §z(T) = Zﬁ.j“ N@NG) =2/3p°q(g* -1).

Proof. Suppose e = uv is an arbitrary vertical edge in the i row, Figure 2. One
can see that T has exactly p vertical edges in each row and so there are 2pi
vertices above the i row, which are all closer to v than u. Therefore,

Sa(T) =Y. pQpi)2pg—2pi) =2/3p°¢(q* - D).

To calculate Sz,(T), we consider six cases that are explained in the
following lemmas. We explain our method for computing summations which
are needed for calculating Szeged index of T. Without loss of generality,
suppose € = Xi3—X34. To calculate the number of closer vertices to x34, we first
draw two copies of 2-dimensional lattice of T and then cut e by an oblique line
and pass a vertical line through x;(;+4), oblique and vertical heavy lines of Figure
4. Then vertices closer to xy4 lie in the triangular region between those two lines.
In general, to calculate N(x;s:)), we compute the number of vertices in the
triangular or trapezoidal region, Figures 3 and 4, surrounded by the vertical line
passes through x; ;2 and oblique line passes through e;; = Xji—Xig+1).

Lemma 2. If q <p then Sz,(T)=2p’¢* +1/6pg* —1/6pg°.
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Proof. Suppose e;s = Xis-Xi¢s+1)and e;; = X;=Xig+1y are two arbitrary oblique edges
of T, Figure 3. Notice that N(X;)N(Xi¢+1) = N(Xis)N(Xi¢s+1)- Since T is bipartite,
N(x;) + N(xi(ﬂ.)) = N(xis) + N(Xis+1)) = 2pq. So, it is sufficient to consider one
obh% e edge in each zig-zag. Without loss of generality, we can consider e; in
the i zig-zag. Let M denote the set of all vertices closer to x;; than X;.y. Then

= {X12,... <X I(p+i)p X235+ - s X2(pti)s- - - Xglqt 1o+ - X)) - SO, N(X) =1 +2+ ... +q+
q(p—q+i— D=Ty+qp-q+I-1), where Ty=1+2+..+q istheq"‘
triangular number. And N(XiG+y) =2pq — (Tq+q(p—q+i-1)) =T+ q(p - i).
Therefore,

S2,(T)=2pY 7 lg(p+i-T)IT, +q(p-)]=2p'q* +1/6pg’ -1/ 6pg’.

Lemma 3. If p+1 < q < 2p then Sz)(T) = 1 /6pq3 - 4/3p5q + 4/3p3q _pzqz +
8/3p*q® + 1/5p° - 2/15pq — 1/30pq’ - 1/3p* + 2/15p* + 1/3p’q°

Proof. By our discussion in the paragraph before Lemma 2, we have N(x;;) = 1
+ 2+ .+ (pti~1) = Tpio and N(Xig+ny) = 2pq — Tpuio. Suppose N =
zc=ije AN(I)N(]) To compute N, it is enough to calculate N for all oblique

edges along an oblique cut and then multiply by 2p to obtain Sz,(T). Therefore,
+1
S5 (T)=2p) 1 Tpint (204 Tpuict)
+2PZ",, pr2Tprict = Tpaim _q)(2pq pei-t ¥ Tpaiciog)
+2PZ‘ p+2 I’*" I"”-"'q —-p- 1)(2pq p+i-l Tp+l— 1-g +T—p—|)
Hence Sz,(T)=1/6pg* —4/3p°q+4/3p°q— p’q*> +8/3p"q*
+1/5p% — 2/15pq -1/30pg® —1/3p* +2/15p* +1/3p*4*
Lemma 4. If q = p+1 then Sz,(T) = 11/6p®+31/6p°+9/2p* +5/6p* —1/3p>.
Proof. If g = p+1 then a similar argument as in Lemma 3 shows that
-p+l
SN =203 " TP Tpuin1)

1
+ ZPZ,’:;_,,.,,z pri=1 _Tp+i-l—q)(zpq _Tp+i-| +Tp+i— —q)
= 11/6p° + 31/6p> + 9/2 p* + 5/6p° — 1/3p.
Lemma 5. Suppose q = 2p. Then Sz,(T) =89/5p°® =5/3p* -1/15p%.
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]
Figure 3. Oblique and Vertical Edges of T with p <q.

Proof. Since q = 2p, Toricieg =Tipar- Therefore,
1
8z,(T)=2p :: T,.ia(2pg- Toria)* 21’27:,,,,2 Tpsia— 27}-,;—1 Y2pg=T,, i, + 2T _pa)

Therefore, Sz,(T) = —2/15p*~293/15p°-1/3p*+16p°q.

Lemma 6. If q > 2p then Szx(T) = 2p°¢* —4/3p%q —2/15p* + 4/3p’°q-
13/15p° +p*.

Proof. To prove the lemma, we consider three cases that 2p < q <2p +4 and q
>2p +4(q is odd or even).

Case 1. 2p < g < 2p + 4. In this case we have:
1
Sz(T) = 2p) 0 ' Tpyi1 2P = Tpuich)

-p+]
+2P 7:::2 (Tp+i—l —Y;—p-l )(ZP‘] —Tp+i-l +T'-p—l)

+2pz:'l=q-p+2(rﬂ‘”'l - 7;

-p-1 —T[Hf-l-q X2pq —Tpﬂ'-l —7;—p—l -TpH-l-q)

-2/15p% -2/3p°q + 4/3p°q — 13/15p° + p* + 413 p’q’.

Case 2. q = 2p + 4 and q is even. Suppose €; = X||=X)2, €2 = X23—X33,
-esy €q = Xqq = Xqeg+n)- Then it is clear that N(x;1)N(X12) = N(xq)N(Xgg+n)), ---»
N

(Xen@INg2ia2+1) = Ngnsixgarn)N(Xqasixgzen), Figure 4. So it is
sufficient to calculate one half of these values and then multiply by 2. Therefore,

1
Sz(T)=4pY 0 T, 0ir1(2Pg~Tpicy)

2
+4p :-'z P2 (7, piet ~Ticpuy Y2pgq - Tpia +T_ p-l)

= 2/15p® -2/3p°q + 4/3p°q — 13/15p° + p* + 4/3 p°¢.
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Figure 4. Oblique and Vertical Edges of T withp>q.
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Case 3. ¢ > 2p + 4 and q is odd. Using a similar argument as above
NxiON(X12) = N(Xgg)N(Xgqe),  --» Ny NEgoyzgenyz) =
N(X(q+3y2(q+3y2)N(X(g+3y2(q+sy2), Figure 4. So we must calculate one half of these
values and then add to N(X(g+1)2(g+1y2)N(X(g+1y2(q+32)- Therefore,

1
SzAT)= 4pY ' T,ics(2Pg~Tpuiy)

-1/2
s Tpaict =Ty )2PG =Ty + i)

+2p(Tga1yr24 p=1t = Tigeryr2-p-102PG = Tigiry124p-1 + Tguaryra-p-1)
=-2/15p* -2/3p’q + 4/3p°q - 13/15p° + p* + 4/3 p°q’.

This completes the proof.

+4p

Proof of the Theorem. The proof is straightforward and follows from Lemmas
1-6.

Corollary. If T is a zig-zag polyhex nanotube then RW(T) = Sz(T).

Proof. Since a zig-zag polyhex nanotube is bipartite, T does not have a cycle of
odd length. Therefore, RW(T) = Sz(T).
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