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Abstract

In this study, we showed that an (n + 1)—regular linear space,
which is the complement of linear space having points are not on m+1
lines such that no three are concurrent in a projective subplane of
odd order m,m > 9, could be embedded into a projective plane of
order n as the complement of the Ostrom’s hyperbolic plane.
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1 Introduction

The complementation problem with repect to a projective plane is to de-
termine the parameters of linear space obtained from projective plane by
removing a certain configuration of points and lines. The problem of em-
bedding the " complements " of various configuration in a projective plane
has been studied by various authors ( {1], (2], [3], [4], [5],-.-... ). In 1970,
Dickey solved the problem for the case where the configuration removed
was a unital [5]. In 1987, L.M. Batten characterized linear spaces which
are the complements of affine or projective subplanes of finite projective
planes and showed that these spaces can be embeddable in a unique way in
a projective plane of order n [1]. A generalization of Batten’s Theorem (1]
was given by Giinaltili and Olgun [7]. In (8], Giinaltih, Anapa and Olgun
showed that a linear space, which is the complement of a linear space whose
points are not on a trilateral or quadrilateral in a projective subplane of
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order m, is embeddable in a unique way in a projective plane of order n.
In addition, it was determined that this linear space is the complement of
certain regular hyperbolic plane in the sense of Graves (6] with respect to
a finite projective plane. In [9], Giinaltili, Anapa and Olgun showed that
a linear space, which is the complement of a linear space whose points are
not on pentagon, hexagon and heptagon in a projective subplane of order
m, is embeddable in a unique way in a projective plane of order n. In addi-
tion; it was determined that this linear space is the complement of certain
regular hyperbolic plane in the sense of Graves [6] with respect to a finite
projective plane.

In this study, it is shown that an (n 4 1)—regular linear space, which
is the complement of a linear space whose points are not on m + 1 lines
such that no three are concurrent in a projective subplane of odd order m,
m > 9, is embeddable in an unique way in a projective plane of order n.
In addition; it is determined that this linear space is the complement of
Ostrom’s hyperbolic plane {14].

Now, we give some definitions required.

Definition 1.1 : Let P be a set of points and £ be a subset of power
set of P. Then § = (P, L) is called a linear space if:

L1 Any two points belong to an unique line.

L2 Every line contains at least two points.

If v = |P| and b = |L] are finite then S is called finite. The total
number of lines through P is denoted by b(P), and the total number of
points on [ is denoted by v(l). Thus; if 8(P) = k and v(I) = k then P is
called a k—point and [ is called a k—line. Furthermore; the total number
of k—lines is denoted by b; and the parameters k,, kar,Tm and 7p are
defined as stated below:

kn = min{v(l)|l€ L}
kvy = max{v(l)|le L}
rm = min{b(P)|P € P}
ry = max{b(P)|P € P}

If every point of S lies on exactly t lines then S is called t—regular. (¢t > 1).

The order of a non-trivial finite linear space is defined as one less than
the highest degree of points.

A finite projective plane of order n > 2 is a finite linear space with
n? + n + 1 points in which v(l) = b(P) = n + 1, for every line l and every
point P.

A set of @ of m 4 1 points in a projective plane 7 of order m is called
an " oval " if no three points of O are collinear. A line of # which contains
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exactly one point, two points and no points of O is called " tangent line,
" " secant line, " and " exterior line, " respectively. A point of 7 is called
an " exterior point " and " interior point " if it lies on exactly two tangent
lines and no tangent lines, respectively.

Beniamino Segre [17] characterized ovals in a projective plane of order
m. If m is even, then all tangent lines pass through a common point. If m
is odd, then any point R outside O is either on 0 or 2 tangents.

Let 7 be a projective plane of odd order m. A set of M of m + 1 lines
in 7 is called a " (m+1)-gon " if no three lines of M are concurrent. Any
point of 7 is called " corner point " if it is intersection of any two lines
of M. It is clear from the definitions of corner and exterior points that a
corner point of 7 is also an exterior point. Also; from the mentioned above
argument, lines of M is also tangent lines with respect to an oval of =.
Thus; an oval can also be described as an (m+1)—gon in a finite projective
plane of odd order m.

Proposition 1.1 : ( Ostrom, [14] ) Let O be an oval in a projective
plane of odd order m. The following are valid:

1
(i) The number of interior points is §m(m -1)

1
(ii) The number of exterior points is -2-m(m +1)
(iii) A secant line contains %(m — 1) interior points
(iv) An exterior line contains §(m + 1) interior points
1
(v) The number of secant lines is Em(m +1)

(vi) The number of exterior lines is lm(m -1)

2

(vii) The number of tangent lines is m + 1.

Definition 1.2 : ( Graves, [6] ) A finite (m + 1)—regular hyperbolic
plane (P, L), in the sense of Graves, is a non-trivial (m + 1)—regular linear
space such that :

H1: There are four points, no three of which are collinear.

H2 If P is a point not on a line /, then there exist at least two lines, not
meeting ! through P.
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H3 If a subset P’ of P contains three non-collinear points and contains
all points on the lines through pairs of distinct points of 7P/, then P’
contains all points of P.

Example 1.1 : Let 7 be a projective plane of odd order m, m > 9
and O an oval in 7. Let § be the set of interior points of @ and consider
the restrictions of the secant and exterior lines of 7 to the interior points of
O. Hence the restrictions of these lines are the set theorical intersections
of the secant and exterior lines of # with Q. The geometrical structure so
obtained is a hyperbolic plane known as Ostrom’s model {14 ].

Proposition 1.2 : (Bumcrot, [4] ) Any finite linear space satisfying
the following conditions :

(i) Tm 2 kp + 2
(ii) km(km - 1) 2TM™

is a hyperbolic plane in the sense of Graves [6).
A linear space S = (P, L) is said to be embeddable in a linear
space 8’ = (P’, L’) if S’ can be obtained from S by addition of some points
called as ideal points and some lines called as ideal lines.

2 MAIN RESULTS

In this section, we show that an (n + 1)—regular linear space, which is the
complement of linear space whose points are not on an (m + 1)—gon in a
projective subplane of odd order m,m > 9, is embeddable in a unique way
in a projective plane of order n. In addition; we determined that this linear
space is the complement of the Ostrom’s hyperbolic plane.

Proposition 2.1 : Any (m + 1)—regular linear space with line degree

m—1 m+1
or

,m 29, is a hyperbolic plane in the sense of Graves [6)].

Proof : Let S be an (m + 1)—regular linear space satisfying the con-
dition (Z) and (i7). It is clear that r, > kpm + 2 and kp(km — 1) =

(m2— 1)(m —-) > m+1,m > 9. By the Proposition 1.2, S is a hyperbolic
plane in the sense of Graves.

We give the following result also given by Ostrom [14] in a some different
way.

Proposition 2.2 : A real complement of linear space whose points
are on an (m + 1)—gon in a projective plane of odd order m,m > 9, is a
hyperbolic plane.

Proof : Let 7 be a projective plane of odd order m and S be a real
complement of an (m + 1)—gon in 7, m > 9. The total number of points
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m2+3m+2
2

. Since an oval can also be described as (m + 1)—gon in 7, any

on (m+ 1)—gon is . Thus, the total number of points of S is

m(m - 1)

point P of ® not an (m + 1)—gon is either a 0 or 2 tangents. In addition;
from the definitions of corner and exterior points that a corner point of S
is also an exterior point which is deleted from =. It follows every line of S
has m—-_l or E+—1 points, from the Proposition 1.1. Therefore, S is a
hyperbolic plane by the Proposition 2.1.

Corollary 2.1 : A hyperbolic plane obtained from a projective plane
by deleting an (m + 1)—gon in a projctive plane of odd order m, m > 9, is
the Ostrom’s hyperbolic plane.

Theorem 2.1 : Let S = (P, L) be an (n+1)—regular linear space such
that :

i) v=n?+n+1- (7;), b=n2+n+1,9 < m < n,mis odd integer,

. m+1
(ll) bn—"‘;a = ( 2 ),
m=3

(iii) every line hasn+1,n,n — 2= orn — ﬂ,;—l points.

Then S is embeddable in a unique way in a projective plane of order n
and complement of Ostrom’s hyperbolic plane.

Proof : Let P;; be the set of points of S such that there are i lines of
degree n — "'T‘:", 7 lines of degree n — 51, £ lines of degree n and ¢ lines
of degree (n + 1) through every point P of it. Then;

i(n—m_3—1)+j(n—m2_1—-1)+kn+(m+1—i—j—k)n=v—1 (2.1)
itjt+k+t=m+1 (2.2)

m—3 m-—1

Y 1Pyl=v, Y be=b te{n+lnn- 5= =5}

1,j t

>From the (2.1) and (2.2), the following results are obtained.

mim—-1) m-1. m+1,
— 2—
2 2
m(m—1)+m—3i+m—1,
2 2 2

k

t = n+1
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Also; by the simple counting methods;

Y ilPyl = nom=3_(mitlm
0

2 2
. m-1
2 ilPyl = (n_ 2 )bn-%‘—‘
t']

Y k[Py|l = nbnand Y t|Py]=(n+1)bass
5

‘.’j

and the following results are obtained.

b, = M(n -m)
bpt1 = (n2+n+1_m2)_m(m-12)(n—m)

(m+1)m

b _vn—:i = -
n -z 2

m(m — 1)

b _10!—1 = —_—
n e nd 2

Let ! be an n—line. The number of lines not meeting { is n, since S is
(n+ 1)—regular linear space with n% +n+1 lines. Therefore; every n—line
induces a parallel class having n + 1 lines none of which is an (n + 1)—line.

Let ¢ and d be the numbers of (n — 252) —line and (n — Z51) ~line
in a fixed class, respectively. Then;

c(n—m;3)+d(n—mT—1)+(n+1-—c—d)n=n2+'n.+1— (T;)

2d - 4
(m-3)°

Since ¢ € Z and m is odd, 2d-2)
m-—3

2(d-2)
m—3
_m-—3+4k

- 2k

m— 3+ 4k 1
_)_z

implies that c = (m + 2 - d) -

€ Z. It follows there is a inte-

ger number k such that
obtained.

= k. Thus the following equalities are

d (2.3)

(2.4)

c=(m+2)—( 5

From ( 2.3) and (24), k =landc=d = mt1

number of n—lines in a parallel class is n —m. Thus, the number of distinct
parallel classes is (7).

. It requires that the
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Consider the structure S* = (P*,L*) where P* is P along with the
parallel classes and £* consists the lines of £ extended by those parallel
classes to which they belong. We shall prove that S* is a linear space. It
is clear that two old points (points of P ) or an old and a new point are on
unique line of £*, since S = (P, L) is a linear space.

Let X and Y be two new distinct points. We must show that they
determine a unique line of £*. Let Ix and ly be n—lines which determine
the parallel classes corresponding to X and Y, respectively. If [x and ly
do not meet, then X = Y which is a contradiction. So lx and ly meet.
Each point of ly is on a unique line of the parallel class determined by Ix.
Thus, ly does not meet precisely one line of the parallel class determined
by Ix. This leaves precisely one line parallel to both Ix and ly. Thus; $*
is a linear space with n2 + n + 1 points and n? + n + 1 lines. So S* is a
projective plane of order n, by [8].

Consider the complement of S in S*. The lines of $*\ S are sets of 251
or Bl points, the extensions of the (n — Z52) —lines or (n — Z51) -lines
of S, respectively. It is clear that S*\S is a linear space and there is at least
one point not on a given line in $*\S .It is known that there are exactly
41 lines of degree ™! and 2 lines of degree ™41 through any new
point added to S (any point of §*\S ). Thus $*\S is a (m + 1)—regular

linear space with 9 points and m? lines such that every line has degree

m-—1 m+1
— or

5 . Therefore; §*\S is a (m + 1)—regular hyperbolic plane
as known the Ostrom’s hyperbolic plane, by the Corollary 2.1.
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