ON THE EMBEDDING OF COMPLEMENTS OF SOME HYPERBOLIC PLANES III

Pınar ANAPA and İbrahim GÜNALTILI

Eskişehir Osmangazi University Department of Mathematics 26480 Eskişehir-Türkiye

E-mail: panapa@ogu.edu.tr, igunalti@ogu.edu.tr.

Abstract

In this study, we showed that an (n+1)-regular linear space, which is the complement of linear space having points are not on m+1 lines such that no three are concurrent in a projective subplane of odd order $m, m \geq 9$, could be embedded into a projective plane of order n as the complement of the Ostrom's hyperbolic plane.

Key Words: Linear space, affine and projective planes, hyperbolic planes

AMS Subject Classification: 51E20, 51A45, 51E15, 05B25

1 Introduction

The complementation problem with repect to a projective plane is to determine the parameters of linear space obtained from projective plane by removing a certain configuration of points and lines. The problem of embedding the "complements" of various configuration in a projective plane has been studied by various authors ([1], [2], [3], [4], [5],.....). In 1970, Dickey solved the problem for the case where the configuration removed was a unital [5]. In 1987, L.M. Batten characterized linear spaces which are the complements of affine or projective subplanes of finite projective planes and showed that these spaces can be embeddable in a unique way in a projective plane of order n [1]. A generalization of Batten's Theorem [1] was given by Günaltılı and Olgun [7]. In [8], Günaltılı, Anapa and Olgun showed that a linear space, which is the complement of a linear space whose points are not on a trilateral or quadrilateral in a projective subplane of

order m, is embeddable in a unique way in a projective plane of order n. In addition, it was determined that this linear space is the complement of certain regular hyperbolic plane in the sense of Graves [6] with respect to a finite projective plane. In [9], Günaltılı, Anapa and Olgun showed that a linear space, which is the complement of a linear space whose points are not on pentagon, hexagon and heptagon in a projective subplane of order m, is embeddable in a unique way in a projective plane of order n. In addition; it was determined that this linear space is the complement of certain regular hyperbolic plane in the sense of Graves [6] with respect to a finite projective plane.

In this study, it is shown that an (n+1)-regular linear space, which is the complement of a linear space whose points are not on m+1 lines such that no three are concurrent in a projective subplane of odd order m, $m \geq 9$, is embeddable in an unique way in a projective plane of order n. In addition; it is determined that this linear space is the complement of Ostrom's hyperbolic plane [14].

Now, we give some definitions required.

Definition 1.1: Let \mathcal{P} be a set of points and \mathcal{L} be a subset of power set of \mathcal{P} . Then $\mathcal{S} = (\mathcal{P}, \mathcal{L})$ is called a *linear space* if:

- L1 Any two points belong to an unique line.
- L2 Every line contains at least two points.

If $v = |\mathcal{P}|$ and $b = |\mathcal{L}|$ are finite then \mathcal{S} is called finite. The total number of lines through P is denoted by b(P), and the total number of points on l is denoted by v(l). Thus, if b(P) = k and v(l) = k then P is called a k-point and l is called a k-line. Furthermore, the total number of k-lines is denoted by b_k and the parameters k_m, k_M, r_m and r_M are defined as stated below:

$$\begin{array}{rcl} k_m & = & \min\{v(l) \mid l \in \mathcal{L}\} \\ k_M & = & \max\{v(l) \mid l \in \mathcal{L}\} \\ r_m & = & \min\{b(P) \mid P \in \mathcal{P}\} \\ r_M & = & \max\{b(P) \mid P \in \mathcal{P}\} \end{array}$$

If every point of S lies on exactly t lines then S is called t-regular. ($t \ge 1$).

The order of a non-trivial finite linear space is defined as one less than the highest degree of points.

A finite projective plane of order $n \ge 2$ is a finite linear space with $n^2 + n + 1$ points in which v(l) = b(P) = n + 1, for every line l and every point P.

A set of \mathcal{O} of m+1 points in a projective plane π of order m is called an " oval " if no three points of \mathcal{O} are collinear. A line of π which contains

exactly one point, two points and no points of \mathcal{O} is called "tangent line," "secant line, "and exterior line," respectively. A point of π is called an "exterior point" and "interior point" if it lies on exactly two tangent lines and no tangent lines, respectively.

Beniamino Segre [17] characterized ovals in a projective plane of order m. If m is even, then all tangent lines pass through a common point. If m is odd, then any point R outside \mathcal{O} is either on 0 or 2 tangents.

Let π be a projective plane of odd order m. A set of \mathcal{M} of m+1 lines in π is called a " (m+1)-gon " if no three lines of \mathcal{M} are concurrent. Any point of π is called " $corner\ point$ " if it is intersection of any two lines of \mathcal{M} . It is clear from the definitions of corner and exterior points that a corner point of π is also an exterior point. Also; from the mentioned above argument, lines of \mathcal{M} is also tangent lines with respect to an oval of π . Thus; an oval can also be described as an (m+1)-gon in a finite projective plane of odd order m.

Proposition 1.1: (Ostrom, [14]) Let \mathcal{O} be an oval in a projective plane of odd order m. The following are valid:

- (i) The number of interior points is $\frac{1}{2}m(m-1)$
- (ii) The number of exterior points is $\frac{1}{2}m(m+1)$
- (iii) A secant line contains $\frac{1}{2}(m-1)$ interior points
- (iv) An exterior line contains $\frac{1}{2}(m+1)$ interior points
- (v) The number of secant lines is $\frac{1}{2}m(m+1)$
- (vi) The number of exterior lines is $\frac{1}{2}m(m-1)$
- (vii) The number of tangent lines is m+1.

Definition 1.2: (Graves, [6]) A finite (m+1)-regular hyperbolic plane $(\mathcal{P}, \mathcal{L})$, in the sense of Graves, is a non-trivial (m+1)-regular linear space such that:

H1: There are four points, no three of which are collinear.

H2 If P is a point not on a line l, then there exist at least two lines, not meeting l through P.

H3 If a subset \mathcal{P}' of \mathcal{P} contains three non-collinear points and contains all points on the lines through pairs of distinct points of \mathcal{P}' , then \mathcal{P}' contains all points of \mathcal{P} .

Example 1.1: Let π be a projective plane of odd order $m, m \geq 9$ and \mathcal{O} an oval in π . Let Ω be the set of interior points of \mathcal{O} and consider the restrictions of the secant and exterior lines of π to the interior points of \mathcal{O} . Hence the restrictions of these lines are the set theorical intersections of the secant and exterior lines of π with Ω . The geometrical structure so obtained is a hyperbolic plane known as Ostrom's model [14].

Proposition 1.2: (Bumcrot, [4]) Any finite linear space satisfying the following conditions:

(i)
$$r_m \ge k_M + 2$$

(ii)
$$k_m(k_m-1) \geq r_M$$

is a hyperbolic plane in the sense of Graves [6].

A linear space S = (P, L) is said to be embeddable in a linear space S' = (P', L') if S' can be obtained from S by addition of some points called as ideal points and some lines called as ideal lines.

2 MAIN RESULTS

In this section, we show that an (n+1)-regular linear space, which is the complement of linear space whose points are not on an (m+1)-gon in a projective subplane of odd order $m, m \ge 9$, is embeddable in a unique way in a projective plane of order n. In addition; we determined that this linear space is the complement of the Ostrom's hyperbolic plane.

Proposition 2.1: Any (m+1)-regular linear space with line degree $\frac{m-1}{2}$ or $\frac{m+1}{2}$, $m \ge 9$, is a hyperbolic plane in the sense of Graves [6].

Proof: Let S be an (m+1)-regular linear space satisfying the condition (i) and (ii). It is clear that $r_m \geq k_M + 2$ and $k_m(k_m - 1) = (\frac{m-1}{2})(\frac{m-3}{2}) \geq m+1, m \geq 9$. By the Proposition 1.2, S is a hyperbolic plane in the sense of Graves.

We give the following result also given by Ostrom [14] in a some different way.

Proposition 2.2: A real complement of linear space whose points are on an (m+1)-gon in a projective plane of odd order $m, m \geq 9$, is a hyperbolic plane.

Proof: Let π be a projective plane of odd order m and S be a real complement of an (m+1)-gon in π , $m \ge 9$. The total number of points

on (m+1)-gon is $\frac{m^2+3m+2}{2}$. Thus, the total number of points of S is $\frac{m(m-1)}{2}$. Since an oval can also be described as (m+1)-gon in π , any point P of π not an (m+1)-gon is either a 0 or 2 tangents. In addition; from the definitions of corner and exterior points that a corner point of S is also an exterior point which is deleted from π . It follows every line of S has $\frac{m-1}{2}$ or $\frac{m+1}{2}$ points, from the Proposition 1.1. Therefore, S is a hyperbolic plane by the Proposition 2.1.

Corollary 2.1: A hyperbolic plane obtained from a projective plane by deleting an (m+1)-gon in a projective plane of odd order $m, m \ge 9$, is the Ostrom's hyperbolic plane.

Theorem 2.1 : Let $S = (\mathcal{P}, \mathcal{L})$ be an (n+1)-regular linear space such that :

(i)
$$v = n^2 + n + 1 - {m \choose 2}$$
, $b = n^2 + n + 1$, $9 \le m < n$, m is odd integer,

(ii)
$$b_{n-\frac{m-3}{2}} = \binom{m+1}{2}$$
,

(iii) every line has $n+1, n, n-\frac{m-3}{2}$ or $n-\frac{m-1}{2}$ points.

Then S is embeddable in a unique way in a projective plane of order n and complement of Ostrom's hyperbolic plane.

Proof: Let \mathcal{P}_{ij} be the set of points of S such that there are i lines of degree $n - \frac{m-3}{2}$, j lines of degree $n - \frac{m-1}{2}$, k lines of degree n and t lines of degree (n+1) through every point P of it. Then;

$$i(n - \frac{m-3}{2} - 1) + j(n - \frac{m-1}{2} - 1) + kn + (m+1-i-j-k)n = v - 1$$
 (2.1)
$$i + j + k + t = m + 1$$
 (2.2)

$$\sum_{i,j} |\mathcal{P}_{ij}| = v, \ \sum_{t} b_t = b, \quad t \in \{n+1, n, n - \frac{m-3}{2}, n - \frac{m-1}{2}\}$$

>From the (2.1) and (2.2), the following results are obtained.

$$k = \frac{m(m-1)}{2} - \frac{m-1}{2}i - \frac{m+1}{2}j$$

$$t = n+1 - \frac{m(m-1)}{2} + \frac{m-3}{2}i + \frac{m-1}{2}j$$

Also; by the simple counting methods;

$$\sum_{i,j} i |\mathcal{P}_{ij}| = n - \frac{m-3}{2} - \frac{(m+1)m}{2}$$

$$\sum_{i,j} j |\mathcal{P}_{ij}| = \left(n - \frac{m-1}{2}\right) b_{n-\frac{m-1}{2}}$$

$$\sum_{i,j} k |\mathcal{P}_{ij}| = nb_n \text{ and } \sum_{i,j} t |\mathcal{P}_{ij}| = (n+1)b_{n+1}$$

and the following results are obtained.

$$b_{n} = \frac{m(m-1)}{2}(n-m)$$

$$b_{n+1} = (n^{2}+n+1-m^{2}) - \frac{m(m-1)(n-m)}{2}$$

$$b_{n-\frac{m-3}{2}} = \frac{(m+1)m}{2}$$

$$b_{n-\frac{m-1}{2}} = \frac{m(m-1)}{2}$$

Let l be an n-line. The number of lines not meeting l is n, since S is (n+1)-regular linear space with n^2+n+1 lines. Therefore; every n-line induces a parallel class having n+1 lines none of which is an (n+1)-line.

Let c and d be the numbers of $\left(n - \frac{m-3}{2}\right)$ -line and $\left(n - \frac{m-1}{2}\right)$ -line in a fixed class, respectively. Then;

$$c\left(n-\frac{m-3}{2}\right)+d\left(n-\frac{m-1}{2}\right)+(n+1-c-d)n=n^2+n+1-\binom{m}{2}$$

implies that $c = (m+2-d) - \frac{2d-4}{(m-3)}$.

Since $c \in \mathbb{Z}$ and m is odd, $\frac{2(d-2)}{m-3} \in \mathbb{Z}$. It follows there is a integer number k such that $\frac{2(d-2)}{m-3} = k$. Thus the following equalities are obtained.

$$d = \frac{m-3+4k}{2k} \tag{2.3}$$

$$c = (m+2) - \left(\frac{m-3+4k}{2}\right) - \frac{1}{k} \tag{2.4}$$

From (2.3) and (2.4), k = 1 and $c = d = \frac{m+1}{2}$. It requires that the number of n-lines in a parallel class is n-m. Thus, the number of distinct parallel classes is $\binom{m}{2}$.

Consider the structure $S^* = (\mathcal{P}^*, \mathcal{L}^*)$ where \mathcal{P}^* is \mathcal{P} along with the parallel classes and \mathcal{L}^* consists the lines of \mathcal{L} extended by those parallel classes to which they belong. We shall prove that S^* is a linear space. It is clear that two old points (points of \mathcal{P}) or an old and a new point are on unique line of \mathcal{L}^* , since $S = (\mathcal{P}, \mathcal{L})$ is a linear space.

Let X and Y be two new distinct points. We must show that they determine a unique line of \mathcal{L}^* . Let l_X and l_Y be n-lines which determine the parallel classes corresponding to X and Y, respectively. If l_X and l_Y do not meet, then X = Y which is a contradiction. So l_X and l_Y meet. Each point of l_Y is on a unique line of the parallel class determined by l_X . Thus, l_Y does not meet precisely one line of the parallel class determined by l_X . This leaves precisely one line parallel to both l_X and l_Y . Thus; \mathcal{S}^* is a linear space with $n^2 + n + 1$ points and $n^2 + n + 1$ lines. So \mathcal{S}^* is a projective plane of order n, by [8].

Consider the complement of S in S^* . The lines of $S^* \setminus S$ are sets of $\frac{m-1}{2}$ or $\frac{m+1}{2}$ points, the extensions of the $(n-\frac{m-3}{2})$ -lines or $(n-\frac{m-1}{2})$ -lines of S, respectively. It is clear that $S^* \setminus S$ is a linear space and there is at least one point not on a given line in $S^* \setminus S$. It is known that there are exactly $\frac{m+1}{2}$ lines of degree $\frac{m-1}{2}$ and $\frac{m+1}{2}$ lines of degree $\frac{m+1}{2}$ through any new point added to S (any point of $S^* \setminus S$). Thus $S^* \setminus S$ is a (m+1)-regular linear space with $\binom{m}{2}$ points and m^2 lines such that every line has degree $\frac{m-1}{2}$ or $\frac{m+1}{2}$. Therefore; $S^* \setminus S$ is a (m+1)-regular hyperbolic plane as known the Ostrom's hyperbolic plane, by the Corollary 2.1.

References

- [1] Batten, L.M.; Embedding pseudo-complements in finite projective planes, Ars Combinatoria 24 (1987), 129-132.
- [2] Batten, L.M and Beutelspacher, A.; The theory of finite linear space, Cambridge University Press, New-York-Melbourne, (1993)
- [3] Bose, R.C and Shrikhande, S.S.; Embedding the complement of an oval in a projective plane of even order, Discrete Math. 6. (1973), 305-312.
- [4] Bumcrot, R.J.; Finite hyperbolic spaces, Atti Convegno Geom. comb e sue Appl. Perugia (1971), 113-130.
- [5] Dickey, L. J.; Embedding the complement of a unital in a projective plane, Atti del convegno di Geometria combinatoria e sue Applicazioni, Perugia, 1971, 199-203.

- [6] Graves, L. M.; A finite Bolyai-Lobachevsky plane, Amer. Math. Monthly 69 (1962), 130-132
- [7] Günaltılı, İ. and Olgun, S.; On the embedding of some linear spaces in finite projective planes, J. Geom. 68 (2000) 96-99.
- [8] Günaltılı, İ., Anapa, P. and Olgun, S.; On the embedding of complements of some hyperbolic planes, Ars Combinatoria 80 (2006), 205-214.
- [9] Günaltılı, İ., Anapa, P. and Olgun, S.; On the embedding of complements of some hyperbolic planes II, (under riview in Discrete Mathematics).
- [10] Günaltılı, İ.; Pseudo-semicomplements in finite projective planes, (accepted in Ars Combinatoria).
- [11] Kaya, R. and Olgun, S.; Construction of some hyperbolic planes using Baer subplanes, Combinatoric's 88. Verlang: Mediterranean Press, 105-112.
- [12] Kaya, R. and Ozcan, E.; On the construction of Bolyai-Lobachevsky planes from projective planes, Rendiconti del Seminario Mathematico di Brescia 7 (1984), 427-434.
- [13] Ralston, T.; On the embeddability of the complement of a complete triangle in a finite projective plane. Ars Combinatoria 11 (1981) 271-274.
- [14] Ostrom, T.G.; Ovals and finite Bolyai-Lobachevsky Planes, Amer. Math. Monthly, 69 (1962), 899-901.
- [15] Özcan, E., Olgun, S. and Kaya, R.; On the line classes in some finite hyperbolic planes, Commun. Fac.Sci.Univ.Ank.Series A, V38, (1989), 7-13.
- [16] Sandler, R.; Finite homogeneous Bolyai-Lobachevsky planes, Amer. Monthly 70 (1963), 853-854.
- [17] Segre, B.; Ovals in a finite projective plane, Canada J. Math 7 (1955), 414-416.