A NOTE ON THE (g, f)-CHROMATIC INDEX OF GRAPHS

Changqing XU¹ Yatao DU²

- Department of Applied Mathematics, Hebei University of Technology Tianjin, 300130, China
- Department of Mathematics, Shijiazhuang Mechanical Engineering College Shijiazhuang 050003, China

ABSTRACT. A (g, f)-coloring is a generalized edge-coloring in which each color appears at each vertex v at least g(v) and at most f(v) times, where g(v) and f(v) are nonnegative and positive integers assigned to v, respectively. The minimum number of colors used by a (g, f)-coloring of G is called the (g, f)-chromatic index of G. The maximum number of colors used by a (g, f)-coloring of G is called the upper (g, f)-chromatic index of G. In this paper, we determine the (g, f)-chromatic index and the upper (g, f)-chromatic index in some cases.

This paper deals with finite undirected graphs without isolated vertices, or loops. Multiple edges are allowed. G is called a simple graph if G has no multiple edges. Let G be a graph with vertex set V(G) and edge set E(G). For a vertex v of G the degree of v in G is denoted by $d_G(v)$ and by d(v) if there is no confusion. Let g and f be respectively nonnegative and positive integer-valued functions defined on V(G) such that $g(v) \leq f(v)$ for each vertex v of V(G). A generalized edge-coloring, called a (g, f)-coloring is considered in [3, 4] and [11]. A (g, f)-coloring is to color all the edges of G such that each color appears at each vertex v at least g(v) and at most f(v) times. Thus the ordinary edge-coloring is a (g, f)-coloring where g(v) = 0 and f(v) = 1 for each vertex $v \in V(G)$. If g(v) = 0 for each vertex v of G, then a (g, f)-coloring is simply called an f-coloring in [5] and [7]. An edge coloring of G in which each color appears at each vertex v at least g(v)

¹⁹⁹¹ Mathematics Subject Classification. 05C15.

Key words and phrases. (g, f)-coloring, g-edge cover-coloring, f-coloring, chromatic index.

This research was supported by NSFC(10471078), HENSF(A2007000002), RSDP(20040422004), (05CHJJ02) of China.

times is called a g-edge cover-coloring. Clearly a g-edge cover-coloring is a special case of (g, f)-coloring. g-edge cover-coloring is considered in [9].

Note that a graph may have no (g,f)-coloring when g(v)>0 for some $v\in V(G)$. So it is important to determine the existence of (g,f)-coloring of a given graph. The existence of (g,f)-coloring is wildly discussed in many papers (see [1], [3] and etc). If G has a (g,f)-coloring, one of the (g,f)-coloring problem is to find a (g,f)-coloring of G with minimum number of colors, which arises in many applications, such as the network design, the file transfer problem on computer networks, and so on [5], [6]. On the other hand, if G has a (g,f)-coloring, it is also important to find a (g,f)-coloring of G with maximum number of colors. The minimum number of colors used by a (g,f)-coloring of G is denoted by $\chi'_{gf}(G)$ which is called the (g,f)-chromatic index of G. The maximum number of colors used by a (g,f)-coloring of G is denoted by $\overline{\chi'}_{gf}(G)$ which is called the upper (g,f)-chromatic index of G.

Without loss of generality, we assume that $f(v) \leq d(v)$ for each vertex $v \in V(G)$. We call $d_f(v) = \lceil d_G(v)/f(v) \rceil$ the f-degree of vertex v. $\Delta_f(G) = \max\{d_f(v): v \in V(G)\}$ is called the maximum f-degree of G. Similarly, the g-degree $d_g(v)$ of vertex $v \in V(G)$ is $d_g(v) = \lfloor d_G(v)/g(v) \rfloor$ when g(v) > 0 and $d_g(v) = |E(G)|$ when g(v) = 0. We call $\delta_g(G) = \min\{d_g(v): v \in V(G)\}$ the minimum g-degree of G. The minimum number of colors needed to an f-coloring of G is called the f-chromatic index of G and is denoted by $\chi_f'(G)$. Let $\chi_{gc}'(G)$ denote the maximum positive integer k for which a g-edge cover-coloring of G exists. We call $\chi_{gc}'(G)$ the g-cover chromatic index of G. If G does not have a g-edge cover-coloring, we set $\chi_{gc}'(G) = 0$. The existence of $\chi_{gc}'(G)$ is considered in [9]. It is trivially true that $\Delta_f(G) \leq \chi_f'(G)$ and $\chi_{gc}'(G) \leq \delta_g(G)$. If G has a (g, f)-coloring, from the definition of $\chi_f'(G)$, $\chi_{gc}'(G)$, $\chi_{gf}'(G)$ and $\overline{\chi_{gf}'(G)}$, it is easy to see that

$$\chi_f'(G) \le \chi_{gf}'(G) \le \overline{\chi'}_{gf}(G) \le \chi_{gc}'(G) \tag{*}$$

In [10], it was proved that $\chi'_{gf}(G) = \Delta_f(G)$ and $\overline{\chi'}_{gf}(G) = \delta_g(G)$ when G is bipartite. In this note, we determine $\chi'_{gf}(G)$ and $\overline{\chi'}_{gf}(G)$ for some graphs. To get our main results, we need some Lemmas.

Lemma 1. [2] Let G be a graph. If f(v) is positive and even for all $v \in V(G)$, then $\chi'_f(G) = \Delta_f(G)$.

Lemma 2. [9] Let G be a graph. If g(v) is positive and even for all $v \in V(G)$, then $\chi'_{ac}(G) = \delta_g(G)$.

A (g, f)-factor of G is a spanning subgraph H of G satisfying $g(v) \le d_H(v) \le f(v)$ for each $v \in V(G)$. If a graph G itself is a (g, f)-factor, then G is called a (g, f)-graph.

Lemma 3. [1] Let G be a graph and g(v) and f(v) be positive and even for all $v \in V(G)$. If G is an (mg, mf)-graph for some positive integer m, then G can be decomposed into m(g, f)-factors.

Theorem 4. Let G be a graph. If g(v) and f(v) are positive and even for all $v \in V(G)$, and $\delta_g(G) \geq \Delta_f(G)$. Then $\chi'_{gf}(G) = \Delta_f(G)$ and $\overline{\chi'}_{gf}(G) = \delta_g(G)$.

Proof. By Lemma 1 and Lemma 2, $\chi_f'(G) = \Delta_f(G)$ and $\chi_{gc}'(G) = \delta_g(G)$. Set $k = \Delta_f(G)$. Then $d(v) \leq kf(v)$ for any $v \in V(G)$. Since $\delta_g(G) \geq \Delta_f(G)$, we have $d(v) \geq kg(v)$ for any $v \in V(G)$. It follows that G is a (kg, kf)-graph. By Lemma 3, G has a (g, f)-coloring with k colors. Combining (*), we have $\chi_{gf}'(G) = \Delta_f(G)$.

Set $k_1 = \delta_g(G)$. Then $d(v) \geq k_1 g(v)$ for any $v \in V(G)$. Since $\delta_g(G) \geq \Delta_f(G)$, we have $d(v) \leq k_1 f(v)$ for any $v \in V(G)$. It follows that G is a $(k_1 g, k_1 f)$ -graph. By Lemma 3, G has a (g, f)-coloring with k_1 colors. Combining (*), we have $\chi'_{gf}(G) = \delta_g(G)$.

Lemma 5. [3] Let G be a graph and m be a positive integer.

(1) If g(v) is positive and even for all $v \in V(G)$ and G is an (mg, mf - m + 1)-graph, then G has a (g, f)-coloring with m colors;

(2) If f(v) is positive and even for all $v \in V(G)$ and G is an (mg+m-1, mf)-graph, then G has a (g, f)-coloring with m colors.

Theorem 6. Let G be a graph and m be a positive integer.

(1) If g(v) is positive and even for all $v \in V(G)$ and G is an (mg, mf - m + 1)-graph, then $\overline{\chi'}_{gf}(G) = \delta_g(G)$.

(2) If f(v) is positive and even for all $v \in V(G)$ and G is an (mg + m - 1, mf)-graph, then $\chi'_{af}(G) = \Delta_f(G)$.

Proof. Suppose that g(v) is positive and even for all $v \in V(G)$ and G is an (mg, mf - m + 1)-graph. By Lemma 5, G has a (g, f)-coloring with m colors. So $m \leq \overline{\chi'}_{gf}(G)$. And by (*), $m \leq \chi'_{gc}(G)$. Since g(v) is positive and even for all $v \in V(G)$, by Lemma 2, $\chi'_{gc}(G) = \delta_g(G)$. Set $\delta_g(G) = k$. So $d(v) \geq kg(v)$ for all $v \in V(G)$. Thus for all $v \in V(G)$, we get that

$$kg(v) \le d(v) \le mf(v) - m + 1.$$

Note that $m \leq k$ and $0 < g(v) \leq f(v)$, $mf(v) - m + 1 \leq kf(v) - k + 1$. Which deduce that $kg(v) \leq d(v) \leq kf(v) - k + 1$. By Lemma 5, G has a (g, f)-coloring with k colors. Combining (*), we have $\overline{\chi'}_{gf}(G) = \delta_g(G)$.

Now suppose that f(v) is positive and even for all $v \in V(G)$ and G is an (mg+m-1,mf)-graph. By Lemma 5, G has a (g,f)-coloring with m colors. So $m \geq \chi_{gf}'(G)$. And by $(*), m \geq \chi_{f}'(G)$. Since f(v) is positive and even for all $v \in V(G)$, by Lemma 1, $\chi_{f}'(G) = \Delta_{f}(G)$. Set $\Delta_{f}(G) = k$. So $d(v) \leq kf(v)$ for all $v \in V(G)$. Thus for all $v \in V(G)$, we get that

$$mg(v) + m - 1 \le d(v) \le kf(v)$$
.

Note that $m \ge k$, we have $kg(v) + k - 1 \le mg(v) + m - 1$. Which deduce that $kg(v) + k - 1 \le d(v) \le kf(v)$. By Lemma 5, G has a (g, f)-coloring with k colors. Combining (*), we have $\chi'_{af}(G) = \Delta_f(G)$.

Lemma 7. ([2]) Let G be a simple graph. Then

$$\max_{v \in V} \{ \lceil \frac{d(v)}{f(v)} \rceil \} \leq \chi_f^{'}(G) \leq \max_{v \in V} \{ \lceil \frac{d(v)+1}{f(v)} \rceil \}.$$

Lemma 8. ([9]) Let G be a simple graph. Then

$$\min_{v \in V} \{ \lfloor \frac{d(v) - 1}{g(v)} \rfloor \} \le \chi_{gc}^{'}(G) \le \min_{v \in V} \{ \lfloor \frac{d(v)}{g(v)} \rfloor \}.$$

Lemma 9. ([8]) Let G be any (mg+1, mf-1)-simple graph, then G has a (g, f)-coloring with m colors.

Theorem 10. Let G be a simple graph. If $\chi'_f(G) = \max_{v \in V} \{ \lceil (d(v) + 1)/f(v) \rceil \}$, $\chi'_{gc}(G) = \min_{v \in V} \{ \lfloor (d(v) - 1)/g(v) \rfloor \}$ and $\chi'_{gc}(G) \geq \chi'_f(G)$. Then G has a (g, f)-coloring and $\chi'_{gf}(G) = \chi'_f(G)$, $\overline{\chi'}_{gf}(G) = \chi'_{gc}(G)$.

Proof. Let $k=\max_{v\in V}\{\lceil (d(v)+1)/f(v)\rceil\}$. So for any $v\in V(G)$, $d(v)\leq kf(v)-1$. By the condition of this theorem, $k\leq \min_{v\in V}\{\lfloor (d(v)-1)/g(v)\rfloor\}$. Thus for any $v\in V(G)$, $d(v)\geq kg(v)+1$. So $kg(v)+1\leq d(v)\leq kf(v)-1$ for any $v\in V(G)$. By Lemma 9, G has a (g,f)-coloring with k colors. And by (*), we have $\chi_{gf}'(G)=\chi_{f}'(G)$.

Similarly, we obtain that G has a (g, f)-coloring with $\chi'_{gc}(G)$ colors. And by (*), we have $\overline{\chi'}_{gf}(G) = \chi'_{gc}(G)$.

If G has a (g, f)-coloring, we believe that $\chi'_{gf}(G) = \chi'_{f}(G)$ and $\overline{\chi'}_{gf}(G) = \chi'_{gc}(G)$ for any graph G.

REFERENCES

- [1] M. Cai, On some factor theorems of graphs, Discrete Math., 98 (1991) 223-229.
- [2] S. L. Hakimi and O. Kariv, A generalization of edge-coloring in graphs, Journal of Graph Theory, 10 (1986) 139-154.
- [3] G. Liu, On (g, f)-factors and factorizations. Acta Math. Sinica, 37(1994) 230-237.

- [4] G. Liu and X. Deng, A polynomial algorithm for finding (g, f)-colorings orthogonal to stars in bipartite graphs. Science in China, Ser A 35(3)(2005) 334-344.
- [5] S. Nakano, T. Nishizeki, and N. Saito, On the f-coloring of multigraphs, IEEE Trans. Circuit and Syst., 35(3) (1988) 345-353.
- [6] S. Nakano, T. Nishizeki, Scheduling file transfers under port and channel constraints. International Journal on Foundations of Computer Science, 4(2) (1993) 425-431.
- [7] S. Nakano, T. Nishizeki, Edge-coloring problems for graphs, Interdisciplinary information Sciences, 1(1) (1994) 19-32.
- [8] H. Song and G. Liu, Applications of an equitable edge-coloring theorem, The International Conference on Mathematical Programming, Dec. 2002 19-22.
- [9] H. Song and G. Liu, On f-edge cover-coloring in multigraphs, Acta Mathematica Sinica, (2005) 4 to appear.
- [10] C. Xu and G. Liu, The existence of (g, f)-coloring, submitted to the Electronic J. Comb..
- [11] X. Zhou, K. Fuse and T. Nishizeki, A linear algorithm for finding [g, f]-colorings of partial k-trees, Algorithmica, 27 (2000) 227-243.

E-mail address: chqxu@sdu.edu.cn dyt77@eyou.com