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ABSTRACT. A (g, f)-coloring is a generalized edge-coloring in which
each color appears at each vertex v at least g(v) and at most f(v)
times, where g(v) and f(v) are nonnegative and positive integers
assigned to v, respectively. The minimum number of colors used by
a (g, f)-coloring of G is called the (g, f)-chromatic index of G. The
maximum number of colors used by a (g, f)-coloring of G is called
the upper (g, f)-chromatic index of G. In this paper, we determine
the (g, f)-chromatic index and the upper (g, f)-chromatic index in
some cases.

This paper deals with finite undirected graphs without isolated vertices,
or loops. Multiple edges are allowed. G is called a simple graph if G has no
multiple edges. Let G be a graph with vertex set V(G) and edge set E(G).
For a vertex v of G the degree of v in G is denoted by dg(v) and by d(v) if
there is no confusion. Let g and f be respectively nonnegative and positive
integer-valued functions defined on V(G) such that g(v) < f(v) for each
vertex v of V(G). A generalized edge-coloring, called a (g, f)-coloring is
considered in [3, 4] and [11]. A (g, f)-coloring is to color all the edges of G
such that each color appears at each vertex v at least g(v) and at most f(v)
times. Thus the ordinary edge-coloring is a (g, f)-coloring where g(v) = 0
and f(v) =1 for each vertex v € V(G). If g(v) = 0 for each vertex v of G,
then a (g, f)-coloring is simply called an f-coloring in [5] and [7]. An edge
coloring of G in which each color appears at each vertex v at least g(v)
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times is called a g-edge cover-coloring. Clearly a g-edge cover-coloring is a
special case of (g, f)-coloring. g-edge cover-coloring is considered in [9).

Note that a graph may have no (g, f)-coloring when g(v) > 0 for some
v € V(G). So it is important to determine the existence of (g, f)-coloring of
a given graph. The existence of (g, f)-coloring is wildly discussed in many
papers (see [1], [3] and etc). If G has a (g, f)-coloring, one of the (g, f)-
coloring problem is to find a (g, f)-coloring of G with minimum number
of colors, which arises in many applications, such as the network design,
the file transfer problem on computer networks, and so on [5], [6]. On the
other hand, if G has a (g, f)-coloring, it is also important to find a (g, f)-
coloring of G with maximum number of colors. The minimum number of
colors used by a (g, f)-coloring of G is denoted by x; 7(G) which is called
the (g, f)-chromatic index of G. The maximum number of colors used
by a (g, f)-coloring of G is denoted by x',;(G) which is called the upper
(g, f)-chromatic index of G.

Without loss of generality, we assume that f(v) < d(v) for each ver-
tex v € V(G). We call df(v) = [dg(v)/f(v)] the f-degree of vertex v.
Af(G) = max{ds(v) : v € V(G)} is called the maximum f-degree of G.
Similarly, the g-degree dgy(v) of vertex v € V(G) is dy(v) = |de(v)/9(v)]
when g(v) > 0 and dg(v) = |E(G)| when g(v) = 0. We call §,(G) =
min{dy(v) : v € V(G)} the minimum g-degree of G. The minimum num-
ber of colors needed to an f-coloring of G is called the f-chromatic index
of G and is denoted by x}(G). Let x;c(G) denote the maximum positive

integer k for which a g-edge cover-coloring of G exists. We call x;c(G) the
g-cover chromatic index of G. If G does not have a g-edge cover-coloring,
we set x'gc(G) = 0. The existence of x;c(G) is considered in [9]. It is
trivially true that Af(G) < x'f(G’) and x;c(G) < 6(G). If G has a (g, f)-
coloring, from the definition of x'j(G), x;c(G), x;,(G) and 7”(0), it is
easy to see that

x5(C) < Xg5(C) £ X 44(G) < x,e(G) (*)
In [10], it was proved that x; 7(G) = Af(G) and 79 7(G) = 64(G) when
G is bipartite. In this note, we determine x; 7(G) and ;"g 7(G) for some

graphs. To get our main results, we need some Lemmas.

Lemma 1. [2] Let G be a graph. If f(v) is positive and even for all
v € V(G), then x;(G) = As(G).

Lemma 2. [9] Let G be a graph. If g(v) is positive and even for all
v € V(G), then x,c(G) = 6,(G).
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A (g, f)-factor of G is a spanning subgraph H of G satisfying g(v) <
dy(v) < f(v) for each v € V(G). If a graph G itself is a (g, f)-factor, then
G is called a (g, f)-graph.

Lemma 3. (1] Let G be a graph and g(v) and f(v) be positive and even
for allv € V(G). If G is an (mg, mf)-graph for some positive integer m,
then G can be decomposed into m (g, f)-factors.

Theorem 4. Let G be a graph. If g(v) and f(v) are positive and even for
all v € V(G), and §,(G) > Ag(G). Then x,;(G) = Af(G) and X' ;4(G) =
84(G).

Proof. By Lemma 1 and Lemma 2, x}(G) = Ay(G) and X;C(G) = &4(G).
Set k = Af(G). Then d(v) < kf(v) for any v € V(G). Since §4(G) >
A¢(G), we have d(v) > kg(v) for any v € V(G). It follows that G is a
(kg,kf)-graph. By Lemma 3, G has a (g, f)-coloring with k colors. Com-
bining (x), we have x,/(G) = A(G).

Set k1 = 64(G). Then d(v) > kig(v) for any v € V(G). Since 6,(G) >
A¢(G), we have d(v) < k1 f(v) for any v € V(G). It follows that G is
a (k1g, k1 f)-graph. By Lemma 3, G has a (g, f)-coloring with k; colors.
Combining (*), we have x; (G) = 34(G). a

Lemma 5. [3] Let G be a graph and m be a positive integer.

(1) If g(v) is positive and even for allv € V(G) and G is an (mg,mf —
m + 1)-graph, then G has a (g, f)-coloring with m colors;

(2) If f(v) is positive and even for allv € V(G) and G is an (mg+m —
1,mf)-graph, then G has a (g, f)-coloring with m colors.

Theorem 6. Let G be a graph and m be a positive integer.

(1) If g(v) is positive and even for all v € V(G) and G is an (mg,mf —
m + 1)-graph, then X' ,1(G) = 64(G).

(2) If f(v) is positive and even for allv € V(G) and G is an (mg+m —
1,mf)-graph, then x,;(G) = As(G).
Proof. Suppose that g(v) is positive and even for all v € V(G) and G is
an (mg,mf — m + 1)-graph. By Lemma 5, G has a (g, f)-coloring with m
colors. So m < ;"g!(G). And by (%), m < x;c(G). Since g(v) is positive
and even for all v € V(G), by Lemma 2, x;c(G) = 04(G). Set §4(G) = k.
So d(v) > kg(v) for all v € V(G). Thus for all v € V(G), we get that

kg(v) < d(v) < mf(v) —m+ 1.

Note that m < k and 0 < g(v) < f(v), mf(v) - m+1 < kf(v) -k +1.
Which deduce that kg(v) < d(v) < kf(v) —k+ 1. By Lemma 5, G has a
(g, f)-coloring with k colors. Combining (x), we have x';¢(G) = §4(G).
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Now suppose that f(v) is positive and even for all v € V(G) and G is
an (mg +m — 1, mf)-graph. By Lemma 5, G has a (g, f)-coloring with m
colors. So m > x'gf(G) And by (%), m > x'f(G) Since f(v) is positive
and even for all v € V(G), by Lemma 1, x (G) = Af(G). Set Af(G) =
So d(v) < kf(v) for all v € V(G). Thus for all v € V(G), we get that

mg(v) + m—1 < d(v) < kf(v).
Note that m > k, we have kg(v) + k¥ — 1 < mg(v) + m — 1. Which deduce
that kg(v) + £ — 1 < d(v) < kf(v). By Lemma 5, G has a (g, f)-coloring
with k colors. Combining (x), we have x; 1(G) = As(G).
a
Lemma 7. ([2]) Let G be a simple graph. Then
d(v) dv) +1
G)<
vGV{I-f(‘U)]}— f( {r f('l)) ]}
Lemma 8. ([9]) Let G be a szmple graph. Then
d(v) .
-(G) < min
mip{| 1) < (@) < mipl L5

Lemma 9. ([8]) Let G be any (mg + 1,mf — 1)-simple graph, then G has
a (g, f)-coloring with m colors.

veV

Theorem 10. Let G be a simple graph. If x}(G) = maxyev{[(d(v) +
1)/f@)}, Xge(G) = minvev{L(d(v) — 1)/9(v)]} and x,c(G) = x;(G).
Then G has a (g, f)-coloring and ng(G) xf(G), gf(G') Xgc(G)-
Proof. Let k = maxyev{[(d(v) + 1)/ f(v)]}. So for any v € V(G), d(v) <
kf(v)—1. By the condition of this theorem, k¥ < minyev{|(d(v)-1)/g(v)]}.
Thus for any v € V(G), d(v) > kg(v) + 1. So kg(v)+1 < d(v) < kf(v) -1
for any v € V(G). By Lemma 9, G has a (g, f)-coloring with & colors. And
by (*), we have x,;(G) = x;(G).

Similarly, we obtain that G has a (g, f)-coloring with x;c(G) colors. And
by (*), we have x'gf(G) = x;c(G).

]

If G has a (g, f)-coloring, we believe that x; (G)= x} (G)and Fg 7(G) =

x;c(G) for any graph G.
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