FORMULAS FOR SUMS OF GENERALIZED ORDER-k
FIBONACCI TYPE SEQUENCES BY MATRIX METHODS

EMRAH KILIC

ABSTRACT. In this paper, we give formulas for the sums of gener-
alized order-k Fibonacci, Pell and similar other sequences which we
obtain using matrix methods. As applications, we give explicit for-
mulas for the Tribonacci and Tetranacci numbers.

1. INTRODUCTION
The well-known Fibonacci sequence {Fy,} is defined for n > 2 by
Fu+1 =F, + Fn—l

where Fj = Fo = 1.
The well-known Pell sequence {P,} is defined for n > 2 by

Pay1 =2P,+ Py

where P, =1,P, = 2.
Also, in [2], the author defined k sequences of generalized order-k Fi-
bonacci numbers forn >0and 1 <: < k by

. k.
6= 3 by (1.1)
J=

with initial conditions
i 1l n=1- ?:, £
= . orl-k<n<0
n { 0 otherwise, =n=

where g, is the nth term of the ith sequence. For example, when k = 2,
then the sequence {g2} is reduced to the usual Fibonacci sequence {Fy,}.

When k£ = 3 in (1.1), the sequence {9,3,} is reduced to the usual Tri-
bonacci sequence {t, } . The Tribonacci sequenceis0, 1,1,2,4,7,13,24, 44, ....

When k= 4 in (1.1), the sequence {gi } is reduced to the Tetranacci se-
quence {7, }. The Tetranacci sequence is 0, 1, 1,2, 4, 8, 15, 29, 56, 108, 208, ....
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Er (2] showed that G, = A™ where the k x k matrices A and G,, is given
by

—

1 1 1
1 0 o0 0 9 9% - o
01 0 0 G 9n1 ga1 - Ghoy
A= y bn = . . .
6 . o. 1. 0 Gn—ks1 Ga-ks1 oc Onoksl
(1.2)

respectively. The matrix A is said to be the generalized order-k Fibonacci
matrix. Furthermore, he gave the following identities:

i1 = gr+gitt fori<i<k-1 (1.3)
91’:+1 = g (1.4)

In [4], the authors gave the generalized Binet formula and the combina-
torial representations of the generalized order-k Fibonacci numbers g and
Lucas numbers I} (for more details see [5]).

In [2], the author defined the (k + 1) x (k + 1) matrices C and Uy, as
follows

10 ..0 1 0 ..0
1 Sn

c=|0 A and U, = | Sn-1 Gn (1.5)
0 Sn—k+1

where the matrices A, G, are given by (1.2) and S, = E;-'=l g;-‘. Then the
author showed that C" = U,,.

The authors defined the k sequences of the generalized order-£ Pell num-
bers as follows: forn >0and 1<:i<k

. . k .
Pi=2Pi + 3 Pi;
=2
with initial conditions

i_ 1 n=1—i, _
P”_{O otherwise, for1-k=n<0

where P: is the nth term of the ith generalized Pell sequence. When k =i =

2, then the generalized order-k Pell sequence {P;} is reduced to the well-
known Pell sequence {P,}. Also the authors defined the k x k companion
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matrix R and the k x k matrix E,, as follows

21 ... 11 L 5 .
1 0 ...00O P R B
r=lo 1 oo E - P,}_l P2, ... P"
- . . k] n = . ?
6 0 2 g Pl—k+1 Pl s o Pien

(1.6)
respectively. The k x k companion matrix R is said to be the generalized
order-k Pell matrix. Then the authors showed that R* = E,. Also they
defined two (k + 1) x (k + 1) matrices T and H, as follows

10 ... 0 1 0 ... 0
1 S,f
T=|0 R and Hy— ) (1.7)
. : E,
6 S:—k+1

where Sf = "7, Pf and the matrices R, E, are given by (1.6).

Then they showed that T™ = H,,. Also authors gave some useful formu-
las, the generalized Binet formula and the combinatorial representation of
the generalized order-k Pell numbers.

In this paper, we use the matrix methods to give explicit formulas for
the sums of the generahzed order-k Fibonacci and Pell numbers from 1 to
n, Sn=35_, g% and S§ = Y7, PF, respectively.

2. FORMULA FOR THE SUMS OF THE GENERALIZED FIBONACCI NUMBERS
Let f(A\) be the characteristic polynomial of the generalized order-k

Fibonacci matrix A, then we have f(A) = A¥ — X\¥=1 — | — X\ — 1 which
is a well-known fact. Suppose that A;, A2,...,Ax are the roots of equation
A k=1 _  _A—1=0. From [6, 7, 8], we know that \;, A,..., A are

distinct and \; # 1 for all <.

Lemma 1. Then the characteristic equation of matriz C is xF+! —2zF+1 =

0.

Proof. If we compute the |C — AI| by the Laplace expansion of determi-
nant with respect to the first row and by (1.5), we obtain |C — XI| =
(1= A)JA = AI) = —X*+1 4 20% 1 which is as desired. O

By Lemma 1, (1.5), we have the following Corollary without proof.

Corollary 1. Let A, Ag,..., A\ be the eigenvalues of A. Then the eigen-
values of C are A1, A2,..., Ak, 1 and all of them are distinct.
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Let V be the k x k Vandermonde matrix as follows:

,\g A%:; A',,:‘:;
As=2 k-2 gk
V= : :
AL A2 Ak
1 1 1
Then we have [4]:
GnV =VD"

where A1, Az, ..., A¢ are the eigenvalues of the matrix A, D=diag()1,Az2,. . .,Ak)
and G, given by (1.2).
Now we define the (k + 1) x (k + 1) matrix A as follows:
1 0 ... 0
=1
A=| "7 2.1
: v (2.1)
=L

k-1
where the k X k Vandermonde matrix V is as before.

Lemma 2. Let the matriz A have the form (2.1). Then the matriz A is
an invertible matriz.

Proof. If we compute the det A by the Laplace expansion of determinant
with respect to the first row, then it is readily seen that the values of
detV and det A are the same. Since V is the Vandermonde matrix and
AL A2,. .., Ax’s are different, det V % 0 and so det A # 0 which is as desired.

]

By a simple calculation, we have the following Lemma without proof.

Lemma 3. Let the matrices A and C have the form (2.1) and (1.5), re-
spectively. Then

' CA=AD
where D = diag (1, A1, A2,..., k).

Theorem 1. Then forn>k>2
Sn = z;g;= (h+g2+...+gk-1)/(k-1).
J=

Proof. From Lemma 3, we have CA = AD, where D = diag (1, A1, Ag, ..., k).
By Lemma 2, we know A is invertible, so we write that A—1CA = D. Hence,
C is similar to D. Thus we obtain C"A = AD™. Since C™ = U,,, we write
UnA = AD". From a matrix multiplication by considering the first entry in
the second row of the matrix products U,A = AD™, we have

Sn=(ot++...+g5f-1)/(k-1)
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So the proof is complete. ; 0

When k& = 2, S,, is the sum of the usual Fibonacci numbers from 1 to n
and by Theorem 1, we have

Sn=gn+g3—1L
Since g} = g2, for all positive integer n and g2 = F,, we write
n
Sp = _Z;Fi=Fn+1 +Fp—1l=Fpya—1
=
which is the well-known fact from [1].
Corollary 2. Let t, be the nth Tribonacci number. Then forn > 1,

n
=

Proof. When k = 3, the generalized order-k Fibonacci sequence {g3} is
reduced to the Tribonacci sequence {t,} and let S, denote the sums of
‘the Tribonacci numbers from 1 to n. Then by Theorem 1, we write S,
(g% + g2 + 93 — 1) /2. By (1.3) and (1.4), we write g} = g3,, and g2
g3 +g2_,. Since g3 = t,,, we may write

Sn=(g3p1+2+03 1 +63-1)/2=(tns1 +2n+tay —1)/2.

By the recurrence relation of Tribonacci numbers, ¢,40 =tp41 +tn +tn—
and so we have the conclusion

Sn =(tn+2+tn_1)/2.

Corollary 3. Let T, be the nth Tetranacci number. Then forn > 1,
14
J=

Proof. From Theorem 1, the Eqs. (1.3), (1.4) and the recurrence relation
of Tetranacci numbers, the proof is readily seen. O

From Theorem 1, (1.3), (1.4) and considering the above Corollaries, we
have the following Theorem without proof.

Theorem 2. Forn > 1,

_ g,,;.'_l+(k—1)g§+(k—2)gﬁ_1+...+2gﬁ_k+3+g,':_k+2—1

Nk
g5 =
i=1 J k—l
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Using Theorem 2, we now show that the sums of the generalized order-k
Fibonacci numbers from 1 to n can be expressed as a linear combination of
k terms of the sequence.

Since gk, , = g% +gk_, +... + ¢5_,,, and by Theorem 2, we have

kgt + (k—1)gk_;+...+ 3k _jia+205_pia+ 9h _jy1—1
k-1

(i (’c+1—j)9ﬁ_,-—1)/(k—1)-

n
k
95
=]

J

3. FORMULA FOR THE SUMS OF THE GENERALIZED PELL NUMBERS

In this section we give a formula for the sums of the generalized order-k
Pell numbers by matrix methods. From the Companion matrix, it is a well-
known fact that the characteristic equation of the generalized order-k Pell
matrix Ris g (z) = zF —2zF-1—2*-2— . —2—1=0. Let u;, o, - .., 1t be
the roots of the equation g (z) = 0. From [9], we know that the eigenvalues
M1y M9, .- -, My are distinct and u; # 1 for all 4.

We consider the k£ x £ Vandermonde matrix

I D

R

V= : : : . (3.1)
B B2 e
1 1 1

Then we have E,V = VD" where D = diag (1 820+ x) (9].
Now we extend the k x k£ Vandermonde matrix V to the (k + 1) x (k + 1)
matrix W as follows

1 0 ... 0
—k1
W= . . . 3.2
: v (3.2)
—k-1

If the det W is expanded to the first row, then it is seen that det W =
detV. Since p,, g, ..., are distinct, the matrix V is invertible and so
detW #0. :

Expanding the characteristic equation of the matrix T, |T' — M| =0, to
the first row, by the characteristic equation of the matrix R, we have the
following Lemma without proof.

Lemma 4. Then the characteristic equation of matriz T is h (z) = z*+! —
3zF —zk-1_1=0.



Note that h (z) = f+! — 3z* — z*~1 -~ 1 = (z — 1) g(z) where g(z) is
the characteristic polynomial of the matrix R. Since the roots of g (z) are
distinct and all of them are different from 1, thus the roots of the h (z) are
distinct.

Lemma 5. Let the matric W have the form (3.2). Then the matriz W is
invertible.

Proof. By the Laplace expansion of determinant with respect to the first
row, we see that det W = det V where the matrix V given by (3.1). Since
det V # 0, the proof is complete. a

Now by a simple calculation, we give the following Lemma.

Lemma 6. Let the matrices W and T have the forms (8.2) and (1.7),
respectively. Then

TW =WQ
where Q = diag (1, uy, fa, . . ., tiy;) i the diagonal matriz of order k + 1.

Then we have the following Theorem for the explicit formula for the
sums of the generalized Pell numbers.

Theorem 3. Let S denote the sums of the generalized Pell numbers from
1 to n. Then

SP =3 Pr= (P +P2+...+PE—1)/k
=

Proof. Since the matrix W is invertible and by Lemma 6, we write W—1TW =
Q. Thus, T is similar to Q. Then we obtain T"W = WQ". Since T" = H,,
we write H,W = WQ™. From a matrix multiplication by considering the
first entry in the second row of the matrix products T"W = WQ", we have

Sy =3  Pf=(Pi+Pi+...+Pf-1) [k
So the theorem is proven. ]

When k = i = 2, the generalized Pell sequence {P}} is reduced to the
usual Pell sequence {P,}. Since P! = P2, for all n and by Theorem 3,
we obtain

i Pi=(Pa+P-1)/2= (P}, +Pi-1)/2

which is well-known result from [3].
Since E,41 = E,E, = E,E,, the matrix E, is commutative under
matrix multiplication where E,, is given by (1.6), we have

Pl = PL,+P} for2<i<k, (3.3)
P! = Pk (3.4)
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Thus as an analogue of the Theorem 2, by Theorem 3, (3.3) and (3.4),
for generalized order-k Pell numbers, we have the following result:

i P kP¥+(k—1)PE | +...+3PF , s+2P% ,+Ps ., -1
4 i= % .
Jj=1

4. CONCLUSIONS

For common generalization of the generalized order-k Fibonacci, Pell
numbers and similar other sequences, define the sequence {a}} as follows:
forn >0, 1 <i< k and fixed constant «,

ot =adl_,+ai_ +...+al_,
with initial conditions
¢ _ { 1 n=1-i,
"~ 1 0 otherwise,

If the characteristic equation of the sequence {a, }, that is, z**! — az* —

a forl-k<n<0.

zk-1 — ..z ~1 = 0, does not have multiple roots, then by considering
Theorems 2 and 3, one can obtain the following result:
i @ = kaﬁ + (k - 1) ak_l +...+ 3aﬁ_k+3 + 2aﬁ_k+2 +a$l—k+1 -1
j=1 7 k—-24+a )
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