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ABSTRACT. We introduce a new technique for constructing pair-
wise balanced designs and group divisible designs from finite groups.
These constructed designs do not give designs with new parameters
but our construction gives rise to designs having a transitive auto-
morphism group that also preserves the resolution classes.

1. INTRODUCTION

The purpose of this paper is to introduce a new technique for construct-
ing pairwise balanced designs (PBDs) and group divisible designs (GDDs)
from some constructions in group theory. First we state the necessary def-
initions.

Let K be a subset of positive integers and let A be a positive integer. A
pairwise balanced design (PBD(v, K; ) or (K,)) — PBD) of order v with
block sizes from K is a pair (V, B) where V is a finite set (the point set)
of cardinality v and B is a family of subsets (blocks) of V which satisfy the
properties:

1. If B € B, then |B| € K.
2. Every pair of distinct elements of V occurs in exactly A blocks of B.
If A\=1, PBD(v,K) is used for PBD(v, K, 1).
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The pairwise balanced design (V, B) is called resolvable if the block-set B
is partitioned into classes so that each element of V occurs exactly once

amongst the blocks of each class. Such a partition is called a resolution for
the PBD.

Let K and G be sets of positive integers and let A be a positive integer.

A group divisible design of index A and order v (a (K,\)—GDD) is a triple
(V,G,B), where V is a finite set of cardinality v, G is a partition of V into
parts (groups) whose sizes lie in G, and B is a family of subsets (blocks) of
V which satisfy the properties:
1. If B € B then |B| € K.
2. Every pair of distinct elements of ¥ occurs in exactly A blocks or one
group, but not both.
3.16]>1.
K ) =1, we write K — GDD simply for (K,1)—=GDD. Ifv = ayg) +a29> +

-+ + @495, and if there are a; groups of size g;, ¢ = 1,2,..., s, then we say
the (K,)) — GDD is of type g7'g3?-:-g%.

One may consult [2, Part III, pp. 185-228] for a description of known
PBDs and GDDs by 1996. Also, to see some new results on this area, the
following web address may be useful
http://wuw.emba.uvm.edu/~dinitz/newresults.html

Let G be a finite group. A set A of non-trivial subgroups of G is called
a partition for G if G = |J A and for every two distinct members H and K
of A we have H N K = 1. The partition A is called non-trivial if |4] > 1.
The reader may consult [5] as a survey on partitioned groups. For further
possible undefined notation we refer the reader to [2].

Our main tools for construction PBDs and GDDs are the following:

Theorem 1.1. Suppose that G is a finite group having a non-trivial parti-
tiomA. IfB={zsH|He A, z€G}andR={{zH |z €G} | H e A},
then (G, B) is a resolvable PBD(|G|,K), where K = {|H| | H € A} and
R is a resolution. Moreover, the automorphism group (G, B) contains a
subgroup isomorphic to G which acts transitively on both the point-set G
and the block-set B, also it preserves the resolution classes.

Theorem 1.2. Suppose that G is a finite group having a non-trivial par-
tition A. Let B = {zH |zH # He A, z € G} and V = G\{1}
and G = {H\{1} | H € A}. Then (V,G,B) is a K — GDD, where
K={H||HeA}.
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In the next section we prove and use these results to construct PBDs
and GDDs.

2. PROOFS OF MAIN TOOLS AND CONSTRUCTIONS

Proof of Theorem 1.1. Let z,y € G. Since G = JA, z”'y € H for
some H € A. It follows that z,y € 2H. Now assume that H, K € A such
that z,y € aH N bK for some a,b € G. Then zH = yH and zK = yK.
These equalities imply that 2~y € HN K. Now if ¢ # y, then H = K,
since A is a partition for G. It follows that aH = bK, as required. Each
member of R is the set of left cosets of a subgroup, so it partitions G as a
set. Thus R is a resolution.

The last part is clear since G acts on both G and B by left multiplication.
This completes the proof. O

Proof of Theorem 1.2. Let z,y € V. Since A is a partition for G, G
partitions G as a set. Now let z,y be two distinct elements of G and as-
sume that z,y are not both in one H € A. Then, as the proof of Theorem
1.1 shows, the elements z,y belong to aL for some L € A and a € G.
But aL # L, since otherwise z,y are simultaneously in a member of A.
On the other hand, as the proof of Theorem 1.1 shows, the elements z,y
cannot both belong to a member of B and G. This completes the proof. O

In the following we use Theorems 1.1 and 1.2 to construct PBDs and
GDDs which are not perhaps of new parameters, but what we want to
emphasis on it is that the constructed resolvable PBDs have a transitive
automorphism group that also preserves the resolution classes.

Recall that a finite group G is called a Frobenius group if it contains a
subgroup H with the property that HY N H =1 for all g € G\H. Such a
subgroup H of a Frobenius group G is called a Frobenius complement. Also
it is well-know (see e.g. [3]) that in a Frobenius group G with a Frobenius
complement H, the set N := G\(UgeG H9) U {1} is a normal subgroup of
G, called Frobenius kernel of G.

Theorem 2.1. Let n and t be two positive integers such that there is
a Frobenius group G with Frobenius kernel F and complement K with
|F| = n and |[K| =t. Then there ezist a resolvable PBD(nt,{n,t}) and a
{n,t} — GDD of type (n — 1) (t — 1)". Moreover, the automorphism group
of this resolvable PBD is transitive on both the point-set and block-set and
it preserves the resolution classes.

Proof. We know that the set of all conjugates of K in G with the subgroup
F form a partition of G (see [3, Satz 8.17, p. 506]). Now Theorems 1.1 and
1.2 complete the proof. a
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Remark 2.2. Note that if n and ¢ are two positive integers having the
property stated in Theorem 2.1, then ¢ divides n — 1 (see [3, Satz 8.3,
p. 497]). For every odd prime p, Hol(Cp) (the holomorph of the cyclic
group of order p) is a Frobenius group with kernel and complement size
p and p — 1, respectively. Thus, by Theorem 2.1, there exist a resolvable
PBD(p® - p,{p,p—1}) and a {p,p~ 1} ~GDD of type (p—1)!(p—2)? (of
course it is well known that a PBD(p? — p, {p,p—1}) can be obtained from
aresolvable TD(p—1, p), and that a {p,p—1}—GDD of type (p—1)! (p—2)?
can be obtained by deleting one point from it and using this point to
redefine groups). More generally we know for which pair of positive integers
f and k there is a Frobenius group with Frobenius kernel and complement
of sizes f and k, respectively. This is a result due to Boykett [1]. By
definition, a pair (N, ®) of groups is called a Ferrero pair if ® is a fixed
point free group of automorphisms of the group N. It follows that the
semidirect product N x ® is a Frobenius group.

Theorem 2.3. (Boykett, [1, Theorem 1)) Let n,t be positive integers, n =
[1p§ the prime factorization of n; then there exists a Ferrero pair (N, ®)
withn = |N| and t = |®| iff t divides pf* — 1 for all i.

Theorem 2.4. Let n,t be positive integers such that t divides p{* — 1 for
all i where n = [[p{* be the prime factorization of n. Then there ezist a
resolvable PBD(nt,{n,t}) and a {n,t} — GDD of type (n — 1)} (t — 1)".
The automorphism group of this resolvable PBD is transitive on both the
point-set and block-set and it preserves the resolution classes.

Proof. 1t follows from Theorems 2.1 and 2.3. a

Remark 2.5. In Theorem 2.4 the condition that ¢ divides p{' — 1 for all
i is weak (existence of T'D(t,n) is a sufficient condition, and the theorem
is generally not true if we remove this condition). We again emphasize on
the specific structure of automorphism groups of the constructed designs.

Let g be a prime power. We denote by PGL(2,q) and PSL(2,q) the
projective general (special, respectively) linear group of degree 2 over the
finite field of order q.

Theorem 2.6. Let g be an arbitrary prime power greater than 3 and k =
ged(2,q — 1). Then there exist resolvable

2_1) g-1 gq+1
pep(AL=D (821 0 9Ly 4nd PBD(g(e? - 1), {a - La,a+ 1)

and

{"—;—l,q,%l}—cpp and {g—1,9,q+1} - GDD

of type

(L= -y (L =k o
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and

(g-2) {afle (a- 1)‘1""1(1“1%’33

respectively. The automorphism group of this resolvable PBD is transitive
on both the point-set and block-set and it preserves the resolution classes.

Proof. Let ¢ = p™ where p is a prime number and n > 0. The group
PGL(2, q) (resp. PSL(2,q)) has a partition P consisting of ¢ + 1 Sylow p-
subgroups, g%h’- cyclic subgroups of order ¢ — 1 (resp. 9-’r1) and L‘%ﬁ
cyclic subgroups of order g + 1 (resp. Z£2) (see pp. 185-187 and p. 193 of
[3]). Now Theorems 1.1 and 1.2 complete the proof. O

Theorem 2.7. Let m be an arbitrary positive integer and q¢ = 22™*! and
r = 2™. Then there exist a resolvable

PBD(q2(q2 +1)(q- 1):{‘1—27'+1,0—1,42,q+2r+1})

and a
{¢g—2r+1,9-1,¢*,q+2r+1} - GDD

of type
(g- 27,)3’4«_—1)_{‘1&&@ - 2)"&?"’3@2 - l)q"'+1 (g+2r) Lig=1)g=2r+1) .

Moreover, the automorphism group of this resolvable PBD is transitive on
both the point-set and block-set and it preserves the resolution classes.

Proof. Let G be the Suzuki group Sz(g). By [4, Theorems 3.10 and 3.11,
pp. 192-193] G has a partition consisting of ﬂg'—l)—g"“—"”l

(!32—",;,1)"—2, Mj’_iu, g2 + 1 respectively) subgroups of orders q — 2r +
1,g—1, g+ 2r 41,42 Since |Sz(q)| = ¢*(¢*> + 1)(¢ — 1), Theorems 1.1 and
1.2 complete the proof. O

Remark 2.8. It seems that Theorem 2.7 could possibly be a new result.
We are unable to demonstrate the use of these PBDs in some problems
that are of central to design theorist.
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