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ABSTRACT. A function 7 : V — {1,...,k} is a broadcast coloring
of order k if w(u) = w(v) implies that the distance between u and
v is more than m(u). The minimum order of a broadcast coloring is
called the broadcast chromatic number of G, and is denoted x(G).
In this paper we introduce this coloring and study its properties.
In particular, we explore the relationship with the vertex cover and
chromatic numbers. While there is a polynomial-time algorithm to
determine whether x;,(G) < 3, we show that it is NP-hard to de-
termine if x,(G) < 4. We also determine the maximum broadcast
chromatic number of a tree, and show that the broadcast chromatic
number of the infinite grid is finite.

1 Introduction

The United States Federal Communications Commission has established
numerous rules and regulations concerning the assignment of broadcast
frequencies to radio stations. In particular, two radio stations which are
assigned the same broadcast frequency must be located sufficiently far apart,
so that neither broadcast interferes with the reception of the other. The
geographical distance between two stations which are assigned the same
frequency is, therefore, directly related to the power of their broadcast
signals.

These frequency, or channel, assignment regulations have inspired a vari-
ety of graphical coloring problems. One of these is the well-studied L(2, 1)-
coloring problem [3]. Let d(u,v) denote the distance between vertices
and v, and let e(u) denote the eccentricity of u. Given a graph G = (V, E),
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an L(2, 1)-coloring is a function c: V — {0, 1,...} such that (i) d(u,v) =1
implies |c(u) — c(v)| > 2, and (ii) d(u,v) = 2 implies |¢(u) — ¢(v)| > 1. For
a survey of frequency assignment problems, see [5].

In a similar way, Erwin et al. [2) defined a function b: V — {0,1,...} to
be a dominating broadcast if for every u € V (i) b(u) < e(u), and (ii) b(u) =
0 implies there exists a vertex v € V with b(v) > 0 and d(u,v) < b(v).
Dunbar et al. [1] called a broadcast independent if b(u), b(v) > 0 implies
that d(u,v) > b(u); that is, broadcast stations must be sufficiently far apart
so that neither can hear each other’s broadcast.

In this paper we introduce a new type of graph coloring. A function
7:V = {1,...,k} is called a broadcast coloring of order k if m(u) = m(v)
implies that d(u, v) > 7(u). The minimum order of a broadcast coloring of a
graph G is called the broadcast chromatic number, and is denoted by xs(G).
Equivalently, a broadcast coloring is a partition Pr = {V1, V4, ..., Vi} of
V such that each color class V; is an i-packing (pairwise distance more
than i apart). Note that in particular, every broadcast coloring is a proper
coloring. Also, if H is a subgraph of G, then xs(H) < x5(G).

Throughout this article, we assume that graphs are simple (no loops or
multiple edges) and, unless otherwise specified, connected. For terms and
concepts not defined here, see [4). In particular, we shall use the following
notation: ag(G) for the vertex cover number, Bo(G) for the independence
number, x(G) for the chromatic number, w(G) for the clique number, and
pr(G) for the largest cardinality of an r-packing.

2 Basics

Every graph G of order n has a broadcast coloring of order n, since one can
assign a distinct integer between 1 and n to each vertex in V. There is a
better natural upper bound.

Proposition 2.1 For every graph G,
x5(G) £ o0(G) + 1,

with equality if G has diameter two.

Proof. For the upper bound, give color 1 to every vertex in a maximum
independent set in G. Then give every other vertex a distinct color. Since
n — Bo(G) = ag(G) by Gallai’s theorem, the result follows.

If a graph has diameter two, then no two vertices can receive the same
color %, for any 7 > 2. On the other hand, since the vertices which receive the
color 1 form an independent set, there are at most Bp(G) such vertices. O
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From this it follows that the complete, the complete multipartite graphs,
and the wheels have broadcast chromatic number one more than their ver-
tex cover number. It also follows that computing the broadcast chromatic
number is NP-hard (since vertex cover number is NP-hard for diameter 2).

If a graph is bipartite and has diameter three, then there is also near
equality in Proposition 2.1.

Proposition 2.2 If G is a bipartite graph of diameter 3, then ao(G) <
x6(G) £ ao(G) + 1.

Proof. By the diameter constraint, each color at least 3 appears at most
once. Since the graph is bipartite of diameter 3, color 2 cannot be used
twice on the same partite set, and thus can be used only twice overall. O

For an example of equality in the upper bound, consider the 6-cycle;
for the lower bound, consider the 6-cycle where two antipodal vertices have
been duplicated.

We now present the broadcast chromatic numbers for paths and cycles.
Proposition 2.3 For2 <n < 3, xs(Ps) =2; and forn > 4, xp(P,) = 3.

Proof. The first n entries in the pattern below represent a broadcast
coloring for P,.
12131213

This is clearly best possible. O

Proposition 2.4 Forn > 3, if n is 3 or a multiple of 4, then x,(C,) = 3;
otherwise xp(Cn) = 4.

Proof. Since the cycle contains either P; or K3, x5(Cr) = 3. Let o, v1,
..+ Un—1, Y be the vertices of C,, and suppose there is a broadcast coloring
of order 3 with n > 4.

Then there cannot be two consecutive vertices neither of which has
color 1. For suppose that vy has color 2 and v3 has color 3, say. Then
neither vy nor v; can receive color 2 or 3, and only one can receive color 1,
a contradiction. Since vertices with color 1 cannot be consecutive, it follows
that the vertices with color 1 alternate. In particular, n is even.

Say the even-numbered vertices have color 1. But then no two consec-
utive odd-numbered vertices can receive the same color, and so they must
alternate between colors 2 and 3. In particular, n is a multiple of 4. It
follows that if n is not a multiple of 4, then x,(C,) > 4.
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We consider now optimal broadcast colorings. For cycles with order n
a multiple of 4, the pattern

1,2,1,3,1,2,1,3,...,1,2,1,3

is a broadcast coloring. When 7 is not a multiple of 4, the pattern consists
of repeated blocks of “1,2,1,3” with an adjustment at the very end:

n=4r+1: 1,2,1,3,1,2,1,3,...,1,2,1,3,4
n=4r+42: 1,2,1,3,1,2,1,3,...,1,2,1,3,1,4
n=4r+3: 1,2,1,31,2,1,3,...,1,2,1,3,1,2,4

Hence, if n is a multiple of 4, then x(Cn) < 3; otherwise x3(Cn) < 4.0

Just as the natural upper bound involves the vertex cover number, the
natural lower bound involves the chromatic number.

Proposition 2.5 For every graph G,
w(G) £ x(G) < x(G).

It would be nice to characterize those graphs where the broadcast chro-
matic number is equal to the clique number. It is certainly necessary that
the neighbors of any maximum clique form an independent set, and at least
one vertex of such a clique has no neighbors outside the clique (so it can re-
ceive color 1). If the graph G is a split graph, then this necessary condition
is sufficient. (Recall that a split graph is a graph whose vertex set can be
partitioned into two sets, A and B, where A induces a complete subgraph
and B is an independent set.)

On the other hand, a necessary condition for x5(G) = x(G) is that the
clique number be large.

Proposition 2.6 For a graph G, if xs(G) = x(G) then w(G) 2 x(G) — 2.

Proof. Assume x5(G) = x(G) = m. Consider the broadcast coloring as
a proper coloring. If one can reduce the color of every vertex colored m
while still maintaining a proper coloring, then one has a contradiction. So
there exists a vertex v,, that has a neighbor of each smaller color: say
V1,...,Ym-1 With ¥; having color ¢ (v; is unique for i > 2). Now, if one
can reduce the color of the vertex v,_1, this too will enable one to lower
the color of v,,. It follows that v,—1 has a neighbor of each smaller color.
By the properties of the broadcast coloring, that neighbor must be v; for
i > 3. By repeated argument, it follows that the vertices v3,v4,...,9m
form a clique. O
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In another direction, we note that if one has a broadcast coloring, then
one can choose any one color class V; to be a maximal i-packing. (Recolor
vertices far away from V; with color ¢ if necessary.) However, one cannot
ensure that all color classes are maximal i-packings.

3 Graphs with Small Broadcast Chromatic Number

We show here that there is an easy algorithm to decide if a graph has
broadcast chromatic number at most 3. In contrast, it is NP-hard to de-
termine if the broadcast chromatic number is at most 4. We start with a
characterization of graphs with broadcast chromatic number 2.

Proposition 3.1 For any connected graph G, xu(G) = 2 if and only if G
is a star.

Proof. We know that the star K}, has broadcast chromatic number 2.
So assume x»(G) = 2. Then G does not contain P; and diam(G) < 2. By
Proposition 2.1, it follows that ag(G) = 1; that is, G is a star. O

As regards those graphs with x,(G) = 3, we start with a characterization
of the blocks with this property. If G is a graph, then we denote by S(G)
the subdivision graph of G, which is obtained from G by subdividing every
edge once. In S(G) the vertices of G are called the original vertices; the
other vertices are called subdivision vertices.

Proposition 3.2 Let G be a 2-connected graph. Then xs(G) = 3 if and
only if G is either S(H) for some bipartite multigraph H or the join of Ko
and an independent set.

Proof. Assume that x,(G) = 3. Let = : V(G) — {1,2, 3} be a broadcast
coloring and let V; = #~1(3), for 1 < ¢ < 3. It follows that V; is an i-packing
for each 1.

Let v € V;. The set V] is an independent set, so N (v) C V,UV3. But v
has at most one neighbor in V5, since V4 is a 2-packing. Similarly, v has at
most one neighbor in V3. Since v has at least two neighbors, it follows that
v has degree 2 and is adjacent to exactly one vertex in each of V; and V3.

It follows from Proposition 2.4 that the length of any cycle in G is
either 3 or a multiple of 4. Assume G contains a triangle {z,y,2}. These
vertices receive different colors; say z € V> and y € Vi. Then for every
neighbor ¢ of z apart from y, it follows that ¢ € V; and (since it is too
close to y to have another neighbor of color 3) that N (t) = {=,y}. Since y
cannot be a cut-vertex, it follows that this is the whole of G.
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So assume that every cycle length is a multiple of 4. By the proof
of Proposition 2.4, in any broadcast coloring of order 3 of a cycle, every
alternate vertex receives color 1. It follows that VoUV3 is an independent set.
Since G is a block, every edge lies in a cycle; so, G is the subdivision of some
multigraph H where every subdvision vertex receives color 1. Furthermore,
since V, and Vi are 2-packings in G, they are independent sets in H; that
is, (Vz, Va) is a bipartition of H.

Conversely, to broadcast color the subdivision of a bipartite multigraph,
take V; as the subdivision vertices, and (Vz, V3) as the original bipartition. O

Now, in order to characterize general graphs with broadcast chromatic
number 3, we define a T-add to a vertez v as introducing a vertex w, and
a set X, of independent vertices, and adding the edge vw, and some of
the edges between {v, w,} and X,. By extending the above result one can
show: "

Proposition 3.3 Let G be a graph. Then x»(G) = 3 if and only if G can
be formed by taking some bipartite multigraph H with (weak) bipartition
(X, V3), subdividing every edge exactly once, adding leaves Lo some vertices
in X UVa, and then performing a single T-add to some vertices in Va. (In
the coloring X C V5.)

Thus there is an algorithm for determining whether a graph has broad-
cast chromatic number at most 3. The key is that the colors 2 and 3 can
seldom be adjacent. In particular, if vertices u and v are adjacent with u
with color 2 and v with color 3, then any neighbor a of « apart from v has
N(a) C {u,v}. Apart from that, VU V3 must be an independent set, while
every vertex of Vi has degree at most 2. In particular, if two vertices with
degree at least 3 are joined by a path of odd length, then at one of the ends
of this path there must be two consecutive V2 U V3 vertices.

So a graph can be tested for having broadcast chromatic number 3
by identifying the places where V and Va3 must be adjacent, coloring and
trimming these appropriately, trimming leaves that are in Vj, and then
seeing whether what remains with the partial coloring is a subdivision of a
bipartite graph. We omit the details.

4 Intractable Colorings

In contrast to the above, the problem of determining whether a graph has
a broadcast 4-coloring is intractable. We will need the following gener-
alization. For a sequence of positive integers s; < s2 < ... £ sk, an
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(81,82,...,5k)-coloring is a weak partition 7 = (V;, V3, ..., Vi), where V;
is an s;-packing for 1 < j < k. Then we define the decision problem:

(81, 82, ..., sk)-COLORING
Instance: Graph G
Question: Does G have an (sy, 59, . . ., si)-coloring?

For example, a 3-coloring is a (1,1, 1)-coloring. The BROADCAST 4-
COLORING problem is equivalent to the (1,2, 3,4)-COLORING problem. We
will need the intractability of a special 3-coloring problem.

Proposition 4.1 (1,1,2)-COLORING is NP-hard.

Proof. The proof is by reduction from normal 3-coloring. The reduction
is to form G’ from G as follows. Replace each edge uv by the following:
add a pentagon P,, and join u,v to nonadjacent vertices of P,,; add a
pentagon Quy and join u,v to adjacent vertices of Q,, and add an edge
Joining two degree-two vertices of Qu.. (See Figure 1.) The vertices u, v
are called original in G'.

Figure 1: Replacing an edge uv

We claim that G’ has a (1, 1, 2)-coloring iff G is 3-colorable.

Assume that G has a 3-coloring with colors red, blue and gold. We will
3-color G’ such that the gold vertices form a 2-packing. Start by giving the
original vertices of G’ their color in G. For each two adjacent vertices u,»
of G, color gold one vertex from each of P,, and Quv chosen as follows.
For Qu, it is the degree-2 vertex; for Py, it is the degree-2 vertex that is
distance-3 from whichever of u or v is gold if one of them is gold, and it is
the degree-2 vertex at distance 2 from both otherwise. Then it is easy to
color the remaining vertices in P,, and Q,, with red and blue.

Conversely, suppose G’ has a (1, 1, 2)-coloring = where the gold vertices
form a 2-packing. Then adjacent vertices » and v cannot have the same
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color. For, if they are both red or both blue, then there is no possible
coloring of Q.. (since one of the vertices in the triangle is gold); if they are
both gold, then there is no possible coloring of Pyy. That is, restricted to
V(G), the coloring = is a 3-coloring of G. D

Theorem 4.2 BROADCAST 4-COLORING is NP-hard.

Proof. We reduce from (1, 1,2)-COLORING as follows. Given a connected
graph H, form graph H’ by quadrupling each edge and then subdividing
each edge. Thus, all original vertices have degree at least 4 and all subdi-
vision vertices have degree 2.

The (1, 1, 2)-coloring of H with red, blue and gold, becomes a broadcast
4-coloring (Vi, V2, Va, V4) of H' by making V) all the subdivision vertices, V3
all the red vertices, V3 all the blue vertices and V; all the gold vertices. On
the other hand, in a broadcast 4-coloring of H’, none of the original vertices
can receive color 1. If we maximize the number of vertices receiving color 1,
it follows that all subdivision vertices receive color 1, and all original vertices
receive color 2, 3, or 4. So, the vertices colored 2 or 3 form an independent
set in H and the vertices colored 4 form a 2-packing in H. Thus we have a
(1,1, 2)-coloring of H. O

Comment: This proves that BROADCAST 4-COLORING is also NP-hard
for planar graphs. It is an open question what the complexity is for cubic
or 4-regular graphs. In another direction, it is easy to determine whether
a graph is (2, 2, 2)-colorable (only paths of any length and cycles of length
a multiple of 3 are). But what is the complexity of (1,2, 2)-COLORING?

5 Trees

We are interested in trees with large broadcast chromatic numbers. In
order to prove the best possible general result, it is necessary to examine
the small cases.

A tree of diameter 2 (that is, a star) has broadcast chromatic number 2.
A tree of diameter 3 has broadcast chromatic number 3. The case of a
tree of diameter 4 is more complicated, but one can still write down an
explicit formula. We say that a vertex is large if it has degree 4 or more,
and small otherwise. The key to the formula is the numbers of large and
small neighbors of the central vertex.

Proposition 5.1 Let T be a tree of diameter 4 with central vertez v. For
i=1,2,3, let n; denote the number of neighbors of v of degree i, and let L
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Figure 2: The tree Ts: the unlabeled vertices have color 1

denote the number of large neighbors of v. If L = 0 then

_J 4 ifng>22andn;+np+n3>3
Xb(T)_{ 3 otherwise,

and if L > 0 then

L+3 ifng>1andn;+ny+nz>2
Xb(T)= L+1 ifnp=nyg=mn3=0
L +2 otherwise.

Proof. To show the upper bound we need to exhibit a broadcast coloring.

A simple coloring is to color the center and the leaves not adjacent to
it with color 1, and the remaining vertices with unique colors. This uses
L+ n3+ng3+mn; + 1 colors. It is optimal when ny = no = 0 and either
2<ng<3andL=00r0<n3z <2and L >0. (Note that L+ng+ny > 2
by the diameter condition.)

Another good coloring is as follows: put color 1 on the small neighbors
of the center v and on the children of large neighbors; put color 2 on one
large neighbor (if one exists) and on one child of each small neighbor; put
color 3 on the remaining children of small neighbors; and put unique colors
on the remaining vertices. If L = 0, then this uses 4 colors if n3 > 0 and 3
values otherwise. If L > 0, then this uses L + 3 colors if n3 > 0 and L + 2
colors otherwise. This coloring is illustrated in Figure 2.

The only case not covered by the above two colorings is when L = 0
and n3 = 1. In this case 3 colors suffice: use color 3 on the central vertex,
color 2 on its degree-3 neighbor and the children of its degree-2 neighbors,
and color 1 on the remaining vertices.

For a lower bound, proceed as follows. If the center is colored 1, then

41



Figure 3: The smallest trees with x3(T) = 4

the coloring uses L + n3 + n2 + ny + 1 colors, which is at least the above
bound. So we may assume that the center is not colored 1.

If a large neighbor receives any color other than 2, then either it or one
of its children receives a unique color. Thus we may remove it and induct.
So we may assume that every large neighbor of the center receives color 2.
This means there is at most one large neighbor.

At least three colors are always needed. For the case that L = 0, it is
enough to argue that 4 colors are needed if n3 =2, np =0 and n; =1 (as
any other case contains this as a subgraph). (This is tree Ag in Figure 3.)
If any degree-3 vertex receives color 1, then three more colors are needed
for its neighbors. On the other hand, the degree-3 vertices induce a P3, and
so require three new colors if 1 is not used.

In fact, this observation also takes care of the case where there is only
one large neighbor. O

Proposition 5.2 The minimum order of a tree with broadcast chromatic
number 2 is 2. For 3 it is 4 and for 4 it is 8. Furthermore, Py is the unique
tree on 4 vertices that needs 3 colors. The two trees on 8 vertices that need
4 colors are (i) the diameter-4 tree withnz =2, ny =1and L =ny =0,
called Ag; and (ii) the diameter-5 tree where the two central vertices have
degree-3 and for each central vertex its three neighbors have degrees 1, 2
and 3 respectively, called Bs. (These are depicted in Figure 3.)

Proof. By the above result, Ag is the unique smallest tree with diameter 4
that needs four colors. So we need only examine the small trees with
diameter 5 or more, which is easily done. O

In another direction there is an extension result.

Proposition 5.8 Let T be a graph but not Py. Suppose T contains a path
t,u,v,w where t has degree 1 and u and v have degree 2. Then xp(T) =
xo(T — ¢).

Proof. Take an optimal broadcast coloring of T —¢. Since T # Py, T — ¢
contains P, and hence uses at least three colors.
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If u receives any color except 1, then one can color ¢t with 1. So assume
u receives color 1. If v receives any color except 2, then one can color ¢ with
color 2. So assume v receives color 2. If w receives any color except 3, then
one can color ¢ with color 3. So assume w receives color 3. But then one
can recolor as follows: v gets color 1, u gets color 2, and ¢ gets color 1. O

For example, this shows that x,(P,) = 3 for all n > 4.

We are now ready to determine the maximum broadcast chromatic num-
ber of a tree. An extremal tree Ty for d > 2 is constructed as follows: it
has diameter 4; ) =ng3 =1, np =0, L = d — 2 and all large vertices have
degree exactly 4. The tree Ty has 4d — 3 vertices and x,(T4) = d + 1. The
tree T is shown in Figure 2.

Theorem 5.4 For all trees T of order n it holds that x,(T) < (n+7)/4,
ezcept for Py, As and Bg. Furthermore, this bound is sharp.

Proof. We have shown sharpness above. The proof of the bound is by
induction on n.

If n < 8 the result follows from Proposition 5.2. If diam(T") < 3, then
xo(T) < 3. If diam(T) = 4, then the bound follows from Proposition 5.1.
So assume n > 9 and diam(T) > 5.

Define a penultimate vertex as one with at least one leaf-neighbor and
exactly one non-leaf neighbor. Suppose some penultimate u has degree 4
or more. Define T/ to be the tree after the removal of u and all its leaf-
neighbors. Then take an optimal broadcast coloring of 77, and extend to a
broadcast coloring of T by giving u a new unique color and its leaf neighbors
color 1. By the inductive hypothesis it follows that x»(T) < xs(T') +1 <
(n+3)/4+ 1= (n+7)/4, unless T" is one of the three exceptional trees.

But the three exceptional trees can each be broadcast colored with 4
colors so that, for any specific vertex v, neither it nor any of its neighbors
receives color 2. So let v be u’s non-leaf neighbor and color 77 so. Then
color u with color 2 and its leaf-neighbors with color 1. So, in this case
xb(T') < 4, which establishes the bound.

So we may assume that every penultimate vertex has degree 2 or 3.

Now, define a late vertex as one that is not penultimate, but at most
one of its neighbors is not a penultimate or a leaf. (For example, the third-
to-last vertex on a diametrical path.) For a late vertex v, define 7, as
the subtree consisting of v, all its penultimate neighbors, and every leaf
adjacent to one of these. Since diam(T) > 5, T, is not the whole of T’; let
w be v’s other neighbor. Then define 7' =T - T,.

If ITy| = 3 (we use |T,| to denote the order of T,), then v has degree 2
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and its penultimate neighbor has degree 2. So by Proposition 5.3 above,
xo(T) = x(T") and we are done. Therefore we may assume that |T,| > 4.

Give T' an optimal broadcast coloring. Then, if w is not colored 3, one
can extend this to a broadcast coloring of T by giving v a new unique color,
all its (penultimate) neighbors in T, color 1 and the remaining vertices of
T, colors 2 or 3 (recall that every penultimate has degree 2 or 3). We are
done by induction—one new color for at least four vertices—unless [T,| = 4
and T" is an exceptional tree. But in this case one can readily argue that
xo(T) < 4.

So assume the vertex w receives color 3 in every coloring of T'. (In
particular, this means that 7” is not one of the exceptional trees.) Now, we
can afford to recolor w with a new color and proceed as above if |T,| > 8.
So assume that |Ty,| < 7.

If v has only one penultimate neighbor of degree 3, then one can color
T, with colors 1 and 2 except for v, and so we are done. So we may assume
that v has two degree-3 neighbors. But then v has exactly two neighbors
in T, and these have degree 3. But then one can color T, with colors 1
and 2, except for one neighbor of v, with v receiving color 1. And hence we
are done by the inductive hypothesis. O

6 Grids

We will now investigate broadcast colorings of grids Gy with r rows and
¢ columns. The exact values for r < 5 are given in the following result

Proposition 6.1 x3(Ga2c) = 5 for ¢ 2 6; x5(G3e) = 7 for ¢ 2 12;
x6(Ga,c) = 8 for ¢ > 10; and x5(Gs,c) = 9 for ¢ > 10. The values for
smaller grids are as follows:

m\"|]2 3 4 5 6 7 8 9 10 11 12
2 |3 4 4 4 5

3 4 5 5 6 6 6 6 6 6 7
4 5 7 71 17 1 71 8

5 7 7 7 8 8 9

Proof. Consider the following coloring pattern. For ¢ > 2, the first
¢ columns indicate that the values for x»(Ga,) stated are in fact upper
bounds.
21 4,1 3 1]...
1 3 1'2 1 51...



Consider the following coloring pattern. For ¢ > 3, the first ¢ columns
indicate that the values for x,(Gsc) stated are in fact upper bounds.

2

—Cn
N = W
—
W= N

131 2
4 1 5 1
121 3

T
N = W
e

|

1 |

3 |

Consider the following coloring pattern. For ¢ > 4, the first ¢ columns
indicate that the values for x;(G4,c) stated are in fact upper bounds.

12131,2131 6
3151 7'1 4121
14121/3151 8
2 1316'l 2131

Consider the following coloring pattern. Let i and j denote the row and
column of a vertex, with 1 <i<rand1<j<ec. Then assign color 1 to
every vertex with ¢+ j odd; assign color 2 to every vertex with i and j odd
and 7 + j not a multiple of 4; and assign color 3 to every other vertex with
t and j odd. The picture looks as follows.

2 1 3 1]2 1 3 1
1 -1 -1 - 1 -
31 2 1|31 21
1 - 1 -1 - 1 -
2 1 3 1|2 1 3 1

(The uncolored vertices induce a copy of the grid in the square of the graph.)
For Gs,. the uncolored vertices should be colored as follows:

4 6 5 8,4 7 5 9]...
5 7 4 9'5 6 4 8]...

It is to be noted that the patterns for Gs,s and Gsg are exceptions.

Lower bounds in general can be verified by computer. Some can be
verified by hand. One useful idea is the following. For the lower bound
for G, where ¢ > 6, note that any copy of G 3 contains a color greater
than 3. If one considers the three columns after a column containing a 4,
then that G 3 has at least one of its vertices colored 5 or greater. O

The following table provides some more upper bounds. An asterisk
indicates an exact value.

m\" |6 7 8 9 10 11 12 13 14 15 16
6 [8 9 9 ¢* 9° 9* 10 10 10 11 11
7 9* 9* 10 10 11 11 11 11 12 12
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Often, the greedy approach produces a bound close to optimal. By
the time the grids have around 20 rows (together with several hundred
columns), the greedy approach uses more than 25 colors. As the following
theorem implies, these bounds are not best possible.

Theorem 6.2 For any grid Gmpn, X6(Gmn) < 23.

Proof. There is a broadcast coloring of the infinite grid that uses 23 colors.
The coloring is illustrated below. This provides a broadcast coloring of any
finite subgrid.

As in the coloring of G 5, above, we start by coloring with 1s, 2s and 3s
such that the uncolored vertices occur in every alternate row and column.
Then the following coloring is used to tile the plane.

4158145 ]94a[s5[8]4a4[5]9
106 11| 7 (126 [10]7 [11]6|13] 7
514195 ]| 4| 8][514]|]9]|5]41]8
4|7 [156] 6 |13 | 7 |16 6 [17 [ 7 [12] 6
2511814 | 51145 19|45 ]11
00 6 21| 7 |10 6 |14| 7 |15]6 [10] 7|
5 14| 85| 495148154719
13| 7 |11 6 |22 7 126 [11]7 [23]6
4 | 519145845 ]9[4]5]8
1216 |10 7 156|137 106 [14]7
5 | 4 |17 | 5 | 4 |11 | 5 | 4 [18] 5 [ 4 |11
16| 7 [19| 6 |14 | 7 |20]6 [21]7 |15] 6

The coloring was found by placing the colors 4 through 9 in a specific
pattern, and then using a computer to place the remaining colors. O

Schwenk [6] has shown that the broadcast chromatic number of the
infinite grid is at most 22.

7 Other Grid-like Graphs

While the broadcast chromatic number of the family of grids is bounded,
this is not the case for the cubes. We start with a simple result on the
cartesian product O with K.

Proposition 7.1 Ifxs(G) > diam(G)+z, then xp(GOK2) > diam(GOK?)
+2r - 1.
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Proof. The result is true for z < 0, since x,(GOK?3) > x5(G). So assume
z > 1. Suppose there exists a broadcast coloring 7 of GOK, that uses
at most diam(GOK3) + 2z — 2 colors. It follows that the 2z — 1 biggest
colors—call them Z—are used at most once in GOK5. It follows that one of
the copies of G is broadcast-colored by the colors up to diam(GOK,) —1 =
diam(G) together with at most z— 1 colors of Z. Thus x,(G) < diam(G) +
z — 1, a contradiction. O

For example, this shows that the broadcast chromatic number of the
cube is at least a positive fraction of its order. Next is a result regarding
the first few hypercubes Qgq.

Proposition 7.2 x,(Q1) = 2, x5(Q2) = 3, xs(Q3) = 5, xs(Q4) = 7, and
xo(Qs) = 15.

Proof. The values for Q; and Q; follow from earlier results. Consider
Q3. The upper bound is from Proposition 2.1. To see that five colors are
required, note that since Fo(Q3) = 4, at most four vertices can be colored
1. Further, at most two vertices can be colored 2; but, if four vertices are
colored 1 then no more than one vertex can be colored 2. Therefore, the
number of vertices colored 1 or 2 must be at most five. Since diam(Q3) = 3,
no color greater than 2 can be used more than once. As there are eight
vertices in Qs, this means that at least five colors are required. The lower
bound for Q4 follows from the value for Q3 by the above proposition.

For a suitable broadcast coloring in each case, use the greedy algorithm
as follows. Place color 1 on a maximum independent set; then color with
color 2 as many as possible, then color 3 and so on. O

We look next at the asymptotics. Bounds for the packing numbers of
the hypercubes are well explored in coding theory. For our purposes it
suffices to note the bounds:

2’:
pj(Qk) < /2] (k) .
i

2o
and p2(Qk) > 257 1/k by, for example, the (computer) Hamming code.
Proposition 7.3 x5(Qk) ~ (5 — O($))2*.
Proof. For the upper bound, color a maximum independent set with
color 1. Then color as many vertices with color 2 as possible. Clearly one

can choose at least half a maximum 2-packing. And then use unique colors
from there on.
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The lower bound is from the packing bounds above, together with the
fact that Bo(Qx) = 2F~1. D

For the sake of interest, the following table gives some bounds computed
by using these approaches.

n |6 7 8 9 10 11
xo(@n) > | 15 28 63 132 285 610
x(Qn) < |25 49 95 219 441 881

We consider next another relative of the grid. Define a path of thick-
ness w as the lexicographic product P,[K,,], that is, every vertex of the
path is replaced by a clique of w vertices. A broadcast coloring of a thick
path is equivalent to assigning w distinct colors to each vertex of the path
and requiring a broadcast coloring.

Let g(w) denote the broadcast chromatic number of the infinite path of
thickness w. A natural approach is to assign one color to every vertex, then
a second and so on. So the following parameter arises naturally. Let f(m)
denote the broadcast chromatic number of the infinite path given that no
color smaller than m is used.

Proposition 7.4 For all m sufficiently large, f(m) < 3m — 1. Indeed, for
allm, f(m) <3m+2.

Proof. This result is easy to verify for small m. For the cases up to m = 33
a computer search produced a suitable coloring.

The bound f(m) < 3m — 1 is by induction on m. The base case is
m = 34, where it can be checked by computer that the greedy algorithm
eventually settles into a cycle of length 176400 moves and uses no color
more than 101.

In general, take the broadcast coloring for f(m). Then replace the
vertices of color m with the three colors in succession 3m,3m+1,3m + 2.
The result is still a broadcast coloring. O

So if we have the thick path, it follows that g(w) < (1 + 0(1))3%. The
idea is to fill the first level, then the second and so on.

As for lower bounds, it holds for the path that at most 1/(i + 1) of
the vertices can receive color i. Hence for H(s,t) = . 1/i it follows
that we need ¢t such that H(m,t) < 1. By standard estimates for the
harmonic series, H(1,t) ~ In(t) — 7, where -y is the Euler constant. Thus
f(m) > em — o(m).

As for g(w), similar considerations imply that we need H(1,t) > w so
that g(w) > Q(e™). It is unclear if this is the correct order of magnitude.
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We note that we quickly run into problems with achieving a proportion of
1/(i + 1) for any beyond the first w colors.

8 Open Problems
1. Can the broadcast chromatic number of a tree be computed in poly-
nomial time?

2. What is the maximum broadcast chromatic number of a grid (and
when is it first obtained)?

3. What about other “grids” such as the three-dimensional grid or the
hexagonal lattice?

4. What is the maximum broadcast chromatic number of a cubic graph
on n vertices?

5. What is the complexity of (1,2,2)-COLORING?
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