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Abstract. For odd n > 5, the Flower Snark F,, = (V,E) is a simple
undirected cubic graph with 4n vertices, where V ={a;: 0 <i<n-1}U
{6i:0<i<n-1}U{c;: 0<i<2n—1}and E = {bib(i+1) moan:0<i <
n—=1}U{CiC(i+1) mod 20 : 0 <@ < 2n—1}U{a;d;, aici, aicpgi : 0 < i < n—-1}.
For n = 3 or even n > 4, F,, is called the related graph of Flower Snark.
We show that the crossing nuinber of F,, equals n - 2if 3 <n <5,andn
if n>6.

Keywords. crossing number, cubic graph, flower snark

1 Introduction

We consider only good drawing of a simple graph, i.e. a drawing satisfies
(i) no edge crosses itself; (ii) adjacent edges do not cross; (iii) crossing edges
do so only once; (iv) edges do not cross vertices and (v) no more than two
edges cross at a common point. Let G be a graph with vertex set V and
edge set E. We denote the crossing number of G for the plane by er(G).
If D(G) is a good drawing of G, then v(D(G)) denotes the number of the
crossings in D(G). It is clear that ¢r(G) < v(D(G)). Crossing number of
a graph represents a fundamental measure of non-planarity of graphs.

The crossing number of cubic graphs has been widely studied in recent
years. Hlinény"m proved that it is NP-hard to determine the crossing num-
ber of a simple 3-connected cubic graph. The generalized Petersen graph
P(n, k) is an important class of cubic graphs. Its crossing number has been
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Fig. 1.1 Flower snark Fj

studied in [4, 5, 9, 10]. More details about crossing number can refer to
(6, 8, 12, 13, 14, 15, 16].

Snarks are simple nontrivial connected cubic graphs of chromatic index
4 (i.e. without a 3-edge-coloring). The well-known Four color theorem is
equivalent to the statement that no snark is planar. The flower snarks|1]
are an important class of snarks. Fiorini proved that the flower snarks are
all hypo-Hamiltonian. More details on flower snark can refer to [2, 3, 11].

For odd n > 5, the flower snark F, = (V, E) is a simple undirected
cubic graph with 4n vertices, where V = {a; : 0 < i < n -1} U{b; :
0<i<n-1}U{c:0<i<2n—-1}and E = {bib(i41) moan:0<i <
n—1}U{cCiC(i+1) mod 2n : 0 <& < 2n—1}U{@a;ibi, ai¢i, aiCnyi : 0 <4 < n—1}.
For n = 3 or even n > 4, F,, is called the related graph of flower snark.
Fig. 1.1 shows the graph Fj.

In this paper, we study the crossing number of F,, (n > 3) to give
a better understanding of their topological structure. We show that the
crossing number of F;, equals n — 2 if 3 <n <5, and n if n > 6.

2 Basic lemmas

Let A, B be two disjoint subsets of E(G). In a drawing D, the number of
the crossings crossed by an edge in A and another edge in B is denoted by
vp(A, B). The number of the crossings that involve a pair of edges in A
is denoted by vp(A). So v(D) = vp(E(G)). In a drawing D, an edge is
said to be clean in D if it is not crossed by any other edge, otherwise, it is
crossed in D. An edge set is clean in D if all its edges are clean, otherwise,
it is crossed in D. A crossed edge (set) involves the crossing on it, and vice
versa. A pair of edge sets (A, B) is a crossed-pair if vp(A, B) > 0. Let X
be a subset of V(G) or of E(G) for a graph G. Then G[X] denotes the
subgraph of G induced by X.
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Fig. 3.3 A good drawing of Fy Fig. 3.4 A good drawing of Fy

The following are crucial, but elementary, observation.
Lemma 2.1. Let A, B, C be mutually disjoint subsets of E(G). Then,

UD(C,AUB) = I/D(C,A)-I-I/[)(C,B),
UD(A uB) = V[_)(A) + I/D(B) + I/D(A,B).

3 Upper bounds for F;,, (n > 3)

Lemma 3.1. cr(F,)<n-1for3<n <5and er(F,) <nforn>6.

Proof. We show good drawings of F;, (n = 3,4,5) with n — 1 crossings in
Fig. 3.1-3.3, hence, cr(F,) < n -1 for 3 < n < 5. Fig. 3.4 shows a good
drawing of F with 6 crossings. This drawing can be extended to produce
a good drawing of F,, (n > 6) with n crossings. Hence, cr(F,) < n for
n > 6. O

4 Crossing number of F,, (n > 3)

There are one 2n-cycle, one n-cycle and n claws in F,, by the definition of
the graph F,,. For 0 <i<n -1, let

Si = -l';l [{ai)bia Cisci+n}]y

T, = B(S:) = {aib;, aici,aichti},
Li = {bibiy1,¢iCit1:CntiCnpit )
E;, = T;UL,.
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Fig. 3.5 Xo

In this paper, the subscripts of the vertices in 2n-cycle are read modulo
2n and all the other subscripts are read modulo n unless specified other-
wise. Now, we divide the edge set of F,, into n mutually disjoint subsets
Eo,Ey,....Ep_r,ie, E=Jy E;and EiNE; =0 (0<i#j<n-1).
Lemma 4.1. Forn > 3, let D be a drawingof F,,. Ifall T; (0 i <n—1)
are clean in D, then v(D) > n.

Proof. For 0 <i < n—1, we define function fp(i) counting the number of
crossings in the drawing D as fp(i) = vp(E;) + vp(FE;, E — E;)/2. Then,
by Lemma 2.1, we have v(D) = Zf:o fo().

Suppose that there exists an 7 (0 < i < n — 1) satisfying fp(¢) < 1, say
fp(0) < 1. Let Xy = ToUTy U Lo. Since Ty UT) is clean and fp(0) < 1,
Xy is uniquely drawn as shown in Fig. 3.5. The plane is divided into 3
regions r;, 7o and 73.

If the vertex az lies in 7y, then since ToUT] is clean, the paths asc,+9¢n41
and aacacs . . . ¢ —1¢, Would both cross the edges of Ly C Ey. A contradic-
tion to fp(0) < 1.

If the vertex az lies in 2, then since the edge as2bs € T3 is clean, the
vertex bs has to lie in fs. Since ToUT) is clean, the edge beb; and the path
babs .. . by—_1bo would both cross Lg. A contradiction to fp(0) < 1.

If the vertex as lies in 73, then since ToUT) is clean, the paths azcac; and
A2Cn+2Cn+3 - - - Can—1¢o would both cross Lg. A contradiction to fp(0) < 1.

Hence, fp(i) > 1 forall 0 < i < n—1. Then v(D) = Y& [ fp(s) >
n. O
Lemma 4.2. cr(F3) = 2.

Proof. By Lemma 3.1, ¢r(F3) < 2. We need only prove that cr(F3) >
2. By contradiction, suppose that there is an optimal drawing D of F3
satisfying v(D) < 1.

Since the subgraph F3[Ep U E; U Th) is a subdivision of K33, v(D) >
cr(K3,3) = 1. From the hypothesis (D) < 1, v(D) = 1. Since (D) =
1 < 3, by Lemma 4.1, there is a crossed 73 (0 < i < 2) in D, say T) =
{a1b1,a1¢1,a1¢4}. By symmetry, we need only consider two cases.

Case 1. Suppose that the edge a;b; is crossed. Deleting the edges a1b,
bobz and cycs from D results in a new drawing D* with v(D*) = »(D) -1 =
0. However, since the graph corresponding to D* is a subdivision of K33 3,
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we would have v(D*) > 1, a contradiction to v(D*) = 0.

Case 2. Suppose that the edge ay¢; is crossed. Deleting the edges a;cr,

bob2 and ascs from D results in a new drawing D* with v(D*) =v(D)-1=
0. However, since the graph corresponding to D* is a subdivision of K;3,
we would have v(D*) > 1, a contradiction to v(D*) = 0. O
Lemma 4.3. cr(Fy) =3, er(F;) = 4.
Proof. Let D be an optimal drawing of F}, then by Lemma 3.1, »(D) < 3.
By Lemma 4.1, there is a crossed 7; (0 < i < 3) in D. Deleting all the
edges of T; from D results in a new drawing D* with v(D) > v(D*) + 1.
Since the graph corresponding to D* is a subdivision of Fj, we have v(D) >
er(F3) + 1. By Lemma 4.2, (D) > 3. Hence cr(Fy) = 3.

Similarly, we have er(Fs) = 4. a
Lemma 4.4. Let n > 3. Let D, be a good drawing of F,, with »(D,) <
n—1. Let X = {x),%s,...,%a-2} be a set containing n — 2 crossings in
D,,. Then, there is an injection that maps each z; € X to a Tj,, such that
z; involves an edge of Tj;.

Proof. By induction on n.

(1) For n = 3, if v(D3) < 2, then by Lemma 4.1, there exists a crossed
T; (0 £i<2)in D3. Hence, the lemma holds for n = 3.

(2) Suppose that for 3 <n <k -1, if ¥(D,) < n — 1, then there exist
n — 2 crossings involve n — 2 different edge sets of claw in D,,. For n = k,
if ¥(Dy) < k — 1, by Lemma 4.1, there exists a crossed T} (0<i<k-1).
Deleting all the edges of T; from Dy results in a new drawing D* whose
corresponding graph is a subdivision of Fx—; with v(D*) < v(Dy) -1 <
k —2. From the hypothesis of induction, there exist k — 3 crossings involve
k — 3 different edge sets of claw in D*. Hence, there exist k — 2 crossings
involve k — 2 different edge sets of claw in Dy.

From (1) and (2), we have, for n > 3, if ¥(D,) < n — 1, then there exist

n — 2 crossings involve n — 2 different edge sets of claw in D,,. a
Lemma 4.5. Forn > 4, let D,, be a good drawing of F,,. Ifvp (T,,T,) = 0
for every 0 < s <t <n -1, then ¥(D,,) > n.
Proof. For 0 <i<n-1,let H; = T;UL;UTi,; U Lt UT4. It
is easy to verify that F,[H;] is a subdivision of K33. In the drawing
of H; in D, the crossing that involves a pair of edges of T; U L; (or a
pair of Ti4» U L;41) results in a crossing between two edges incident with
one common vertex in the corresponding drawing of Kj 3, hence we have
vp, (Hi)~vp, (TiULi)-vp, (TixoULiy1) > er(Ks3). Sincevp, (13, T;) = 0,
by Lemma 2.1, we have

er(Kzs) S wp, (Hi) = vp, (Ti U L) — vp, (Tig2 U Liy1)
=vp, (13 U L, Tiz1) + vp, (Ti U Ly, Tipa U Ly )+
vp, (Tig1,Tig2 U Liya)
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= vp, (T, Tiy1) + vp,. (T3, Tiz2) + vp, (Tiv1, Tig2)+
vp,(LisTiy1) +vp, (Li, Tig2) + vp, (Liy1, Ti)+
vp.(Li+1, Tiv1) + vp, (Li, Lit1)

= vp,(Li, Tis1) + vp, (Li, Tiv2) + vp, (Liy1, Ti)+

vp, (Li+1, Tis1) + vp, (Li, Lit). (4.1)
n-1
Since E(F,) = U (T: U L;), vp,(T:) =0 and vp, (T3, T;) = 0, we have
i=0
n—1n-1
Z 2 UDn n’L )+ Z UDu(L )+ Z UDn(Li!Lj)'
i=0 j=0 0<icjsn~—1
(4.2)
From (4.1), for n > 4, we have
n=n cr(Ka 3)
< E ['/Dn (Lis Tiy1) +vp, (Li, Tiy2) + vp, (Li+1, T3)+
1,—
vD, (Lit1, Tig1) + vp, (Li, Lit1)]
n-1 n—1
= E% UDn (L1 1+1 + z: UDu(L”I;'FZ) + Z VDn (L1+13T)+
=
n—1
;) vp, (Liy1, Tig1) + E vp, (Li, Lit1)
n—1
= EUVD.,(L‘HTTt+1 + Z VD, LMI’t+2 + Z vp,, L;,T’, l)+
i= =0
n—-1
Zo vp,(Li, Ti) + Z vp,(Li, Liy1)
3=
n—1 i42
= 3 Z vp, (Li, T;) + Z vp,(Li; Lit1)
i=0 j=i-1
—1n-1
< Z Y. v, (Ti L) + Z vp,(Li)+ 2 vp.(Li,Ly).
i=0 j=0 0<i<jsn—1
From (4.2), v(Dy) > n. O

Lemma 4.6. For n > 4, let D,, be a good drawing of F,,. If »(Dy,) 2 n—1,
t.hen there exist at least n — 3 different crossed-pairs (T, T;) (0 < s <t <
—1)in D,.
P1 oof. By induction on n.
(1) For n = 4, if v(D4) < 3, then by Lemma 4.5, there exists at least
one crossed-pair (T3,7T5) (0 < i < j £ 3) in D4. Hence, the lemma holds
for n = 4.
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(2) Suppose that for 4 < n < k-1, if v(D,) < n -1, then there
exist at least n — 3 different crossed-pairs of edge sets of claw in D,. For
n =k, if v(Dy) < k — 1, then by Lemma 4.5, there exists a crossed-pair
(TT;) 0<i<j<k- 1) in D;. Deleting all the edges of T} from D
results in a new drawing D* whose corresponding graph is a subdivision of
Fie—1. Then, v(D*) < v(D}) -1 < k—2. From the hypothesis of induction,
there exist at least k — 4 different crossed-pairs of edge sets of claw in D*.
Hence, there exist at least k — 3 different crossed-pairs of edge sets of claw
in Dy.

From (1) and (2), we have, for n > 4, if v(D,,) < n — 1, then there exist
n — 3 different crossed-pairs of edge sets of claw in D,,. 0
Lemma 4.7. cr(F;) = 6.

Proof. By Lemma 3.1, cr(F5) < 6. We need only to prove that er(Fg) >
6. By contradiction, suppose that there is an optimal drawing D of Fg such
that v(D) < 5. By Lemma 4.4, there are 4 crossings involve 4 different edge
sets of claw in D. By Lemma 4.6, there are 3 different crossed-pairs of edge
sets of claw in D. Thus, there exists a T; (0 < ¢ < 5) involve at least 2
crossings. Deleting all the edges of T} from D results in a new drawing
of a subdivision of F; with at most v(D) ~ 2 < 3 crossings, contradicting
cr(Fy) = 4. O
Lemma 4.8. ¢#(F,) =n for n > 6.

Proof. By induction on n.

(1) By Lemma 4.7, er(Fg) = 6.

(2) Suppose that for 6 < n < k—1, er(F,) = n. Consider the case n = k.
By Lemma 3.1, cr(F}) < k. We need only to prove that er(F,) > k. By
contradiction, suppose that there is an optimal drawing D of F}, such that
v(D) < k- 1. By Lemma 4.2, there is a crossed T; (0 <i < k — 1) in D.
Deleting all the edges of T} from D results in a new drawing of D* whose
corresponding graph is a subdivision of Fr_;. Then by the hypothesis of
induction, ¥(D) > v(D*) + 1 > k. A contradiction to »(D) < k — 1.

From (1) and (2), er(F,) > n for n > 6. ]
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