The crossing number of flower snarks and related graphs *

Zheng Wenping^{1,2}, Lin Xiaohui¹, Yang Yuansheng¹, Yang Xiwu¹

- Department of Computer Science, Dalian University of Technology, Dalian, 116024, P. R. China, yangys@dlut.edu.cn
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, P. R. China, wpzheng@sxu.edu.cn

Abstract. For odd $n \geq 5$, the Flower Snark $F_n = (V, E)$ is a simple undirected cubic graph with 4n vertices, where $V = \{a_i : 0 \leq i \leq n-1\} \cup \{b_i : 0 \leq i \leq n-1\} \cup \{c_i : 0 \leq i \leq 2n-1\}$ and $E = \{b_ib_{(i+1) \mod n} : 0 \leq i \leq n-1\} \cup \{c_ic_{(i+1) \mod 2n} : 0 \leq i \leq 2n-1\} \cup \{a_ib_i, a_ic_i, a_ic_{n+i} : 0 \leq i \leq n-1\}$. For n=3 or even $n \geq 4$, F_n is called the related graph of Flower Snark. We show that the crossing number of F_n equals n-2 if $1 \leq n \leq n$, and $1 \leq n \leq n$.

Keywords. crossing number, cubic graph, flower snark

1 Introduction

We consider only good drawing of a simple graph, i.e. a drawing satisfies (i) no edge crosses itself; (ii) adjacent edges do not cross; (iii) crossing edges do so only once; (iv) edges do not cross vertices and (v) no more than two edges cross at a common point. Let G be a graph with vertex set V and edge set E. We denote the crossing number of G for the plane by cr(G). If D(G) is a good drawing of G, then $\nu(D(G))$ denotes the number of the crossings in D(G). It is clear that $cr(G) \leq \nu(D(G))$. Crossing number of a graph represents a fundamental measure of non-planarity of graphs.

The crossing number of cubic graphs has been widely studied in recent years. Hliněný^[7] proved that it is NP-hard to determine the crossing number of a simple 3-connected cubic graph. The generalized Petersen graph P(n,k) is an important class of cubic graphs. Its crossing number has been

^{*}Research supported by NFSC (60373096, 60573022). Correspondence author: yangys@dlut.edu.cn (Yang Yuansheng)

Fig. 1.1 Flower snark F_5

studied in [4, 5, 9, 10]. More details about crossing number can refer to [6, 8, 12, 13, 14, 15, 16].

Snarks are simple nontrivial connected cubic graphs of chromatic index 4 (i.e. without a 3-edge-coloring). The well-known Four color theorem is equivalent to the statement that no snark is planar. The *flower snarks*[1] are an important class of snarks. Fiorini proved that the flower snarks are all hypo-Hamiltonian. More details on flower snark can refer to [2, 3, 11].

For odd $n \geq 5$, the flower snark $F_n = (V, E)$ is a simple undirected cubic graph with 4n vertices, where $V = \{a_i : 0 \leq i \leq n-1\} \cup \{b_i : 0 \leq i \leq n-1\} \cup \{c_i : 0 \leq i \leq 2n-1\}$ and $E = \{b_i b_{(i+1) \mod n} : 0 \leq i \leq n-1\} \cup \{c_i c_{(i+1) \mod 2n} : 0 \leq i \leq 2n-1\} \cup \{a_i b_i, a_i c_i, a_i c_{n+i} : 0 \leq i \leq n-1\}$. For n = 3 or even $n \geq 4$, F_n is called the related graph of flower snark. Fig. 1.1 shows the graph F_5 .

In this paper, we study the crossing number of F_n $(n \geq 3)$ to give a better understanding of their topological structure. We show that the crossing number of F_n equals n-2 if $3 \leq n \leq 5$, and n if $n \geq 6$.

2 Basic lemmas

Let A, B be two disjoint subsets of E(G). In a drawing D, the number of the crossings crossed by an edge in A and another edge in B is denoted by $\nu_D(A, B)$. The number of the crossings that involve a pair of edges in A is denoted by $\nu_D(A)$. So $\nu(D) = \nu_D(E(G))$. In a drawing D, an edge is said to be clean in D if it is not crossed by any other edge, otherwise, it is crossed in D. An edge set is clean in D if all its edges are clean, otherwise, it is crossed in D. A crossed edge (set) involves the crossing on it, and vice versa. A pair of edge sets (A, B) is a crossed-pair if $\nu_D(A, B) > 0$. Let X be a subset of V(G) or of E(G) for a graph G. Then G[X] denotes the subgraph of G induced by X.

Fig. 3.1 A good drawing of F_3

Fig. 3.2 A good drawing of F_4

Fig. 3.3 A good drawing of F_5

Fig. 3.4 A good drawing of F_6

The following are crucial, but elementary, observation.

Lemma 2.1. Let A, B, C be mutually disjoint subsets of E(G). Then,

$$\nu_D(C, A \cup B) = \nu_D(C, A) + \nu_D(C, B),
\nu_D(A \cup B) = \nu_D(A) + \nu_D(B) + \nu_D(A, B).$$

3 Upper bounds for F_n $(n \ge 3)$

Lemma 3.1. $cr(F_n) \le n-1$ for $3 \le n \le 5$ and $cr(F_n) \le n$ for $n \ge 6$. **Proof.** We show good drawings of F_n (n=3,4,5) with n-1 crossings in Fig. 3.1-3.3, hence, $cr(F_n) \le n-1$ for $3 \le n \le 5$. Fig. 3.4 shows a good drawing of F_6 with 6 crossings. This drawing can be extended to produce a good drawing of F_n $(n \ge 6)$ with n crossings. Hence, $cr(F_n) \le n$ for $n \ge 6$.

4 Crossing number of F_n $(n \ge 3)$

There are one 2n-cycle, one n-cycle and n claws in F_n by the definition of the graph F_n . For $0 \le i \le n-1$, let

$$\begin{array}{lcl} S_i & = & F_n[\{a_i,b_i,c_i,c_{i+n}\}], \\ T_i & = & E(S_i) = \{a_ib_i,a_ic_i,a_ic_{n+i}\}, \\ L_i & = & \{b_ib_{i+1},c_ic_{i+1},c_{n+i}c_{n+i+1}\}, \\ E_i & = & T_i \cup L_i. \end{array}$$

Fig. 3.5 X_0

In this paper, the subscripts of the vertices in 2n-cycle are read modulo 2n and all the other subscripts are read modulo n unless specified otherwise. Now, we divide the edge set of F_n into n mutually disjoint subsets $E_0, E_1, \ldots, E_{n-1}$, i.e., $E = \bigcup_{i=0}^{n-1} E_i$ and $E_i \cap E_j = \emptyset$ $(0 \le i \ne j \le n-1)$. **Lemma 4.1.** For $n \geq 3$, let D be a drawing of F_n . If all T_i $(0 \leq i \leq n-1)$ are clean in D, then $\nu(D) \geq n$.

Proof. For $0 \le i \le n-1$, we define function $f_D(i)$ counting the number of crossings in the drawing D as $f_D(i) = \nu_D(E_i) + \nu_D(E_i, E - E_i)/2$. Then, by Lemma 2.1, we have $\nu(D) = \sum_{i=0}^{k} f_D(i)$.

Suppose that there exists an i $(0 \le i \le n-1)$ satisfying $f_D(i) < 1$, say $f_D(0) < 1$. Let $X_0 = T_0 \cup T_1 \cup L_0$. Since $T_0 \cup T_1$ is clean and $f_D(0) < 1$, X_0 is uniquely drawn as shown in Fig. 3.5. The plane is divided into 3 regions r_1 , r_2 and r_3 .

If the vertex a_2 lies in r_1 , then since $T_0 \cup T_1$ is clean, the paths $a_2 c_{n+2} c_{n+1}$ and $a_2c_2c_3\ldots c_{n-1}c_n$ would both cross the edges of $L_0\subset E_0$. A contradiction to $f_D(0) < 1$.

If the vertex a_2 lies in r_2 , then since the edge $a_2b_2 \in T_2$ is clean, the vertex b_2 has to lie in f_2 . Since $T_0 \cup T_1$ is clean, the edge b_2b_1 and the path $b_2b_3 \dots b_{n-1}b_0$ would both cross L_0 . A contradiction to $f_D(0) < 1$.

If the vertex a_2 lies in r_3 , then since $T_0 \cup T_1$ is clean, the paths $a_2c_2c_1$ and $a_2c_{n+2}c_{n+3}\dots c_{2n-1}c_0$ would both cross L_0 . A contradiction to $f_D(0) < 1$.

Hence, $f_D(i) \ge 1$ for all $0 \le i \le n-1$. Then $\nu(D) = \sum_{i=0}^k f_D(i) \ge 1$

Lemma 4.2. $cr(F_3) = 2$.

Proof. By Lemma 3.1, $cr(F_3) \leq 2$. We need only prove that $cr(F_3) \geq 2$ 2. By contradiction, suppose that there is an optimal drawing D of F_3 satisfying $\nu(D) \leq 1$.

Since the subgraph $F_3[E_0 \cup E_1 \cup T_2]$ is a subdivision of $K_{3,3}$, $\nu(D) \geq$ $cr(K_{3,3})=1$. From the hypothesis $\nu(D)\leq 1$, $\nu(D)=1$. Since $\nu(D)=1$ 1 < 3, by Lemma 4.1, there is a crossed T_i $(0 \le i \le 2)$ in D, say $T_1 =$ $\{a_1b_1, a_1c_1, a_1c_4\}$. By symmetry, we need only consider two cases.

Case 1. Suppose that the edge a_1b_1 is crossed. Deleting the edges a_1b_1 , b_0b_2 and c_0c_5 from D results in a new drawing D* with $\nu(D^*) = \nu(D) - 1 =$ 0. However, since the graph corresponding to D^* is a subdivision of $K_{3,3}$, we would have $\nu(D^*) \ge 1$, a contradiction to $\nu(D^*) = 0$.

Case 2. Suppose that the edge a_1c_1 is crossed. Deleting the edges a_1c_1 , b_0b_2 and a_2c_5 from D results in a new drawing D^* with $\nu(D^*) = \nu(D) - 1 = 0$. However, since the graph corresponding to D^* is a subdivision of $K_{3,3}$, we would have $\nu(D^*) \geq 1$, a contradiction to $\nu(D^*) = 0$. \square Lemma 4.3. $cr(F_4) = 3$, $cr(F_5) = 4$.

Proof. Let D be an optimal drawing of F_4 , then by Lemma 3.1, $\nu(D) \leq 3$. By Lemma 4.1, there is a crossed T_i ($0 \leq i \leq 3$) in D. Deleting all the edges of T_i from D results in a new drawing D^* with $\nu(D) \geq \nu(D^*) + 1$. Since the graph corresponding to D^* is a subdivision of F_3 , we have $\nu(D) \geq cr(F_3) + 1$. By Lemma 4.2, $\nu(D) \geq 3$. Hence $cr(F_4) = 3$.

Similarly, we have $cr(F_5) = 4$.

Lemma 4.4. Let $n \geq 3$. Let D_n be a good drawing of F_n with $\nu(D_n) \leq n-1$. Let $X = \{x_1, x_2, \ldots, x_{n-2}\}$ be a set containing n-2 crossings in D_n . Then, there is an injection that maps each $x_j \in X$ to a T_{i_j} , such that x_j involves an edge of T_{i_j} .

Proof. By induction on n.

- (1) For n = 3, if $\nu(D_3) \le 2$, then by Lemma 4.1, there exists a crossed T_i $(0 \le i \le 2)$ in D_3 . Hence, the lemma holds for n = 3.
- (2) Suppose that for $3 \le n \le k-1$, if $\nu(D_n) \le n-1$, then there exist n-2 crossings involve n-2 different edge sets of claw in D_n . For n=k, if $\nu(D_k) \le k-1$, by Lemma 4.1, there exists a crossed T_i ($0 \le i \le k-1$). Deleting all the edges of T_i from D_k results in a new drawing D^* whose corresponding graph is a subdivision of F_{k-1} with $\nu(D^*) \le \nu(D_k) 1 \le k-2$. From the hypothesis of induction, there exist k-3 crossings involve k-3 different edge sets of claw in D^* . Hence, there exist k-2 crossings involve k-2 different edge sets of claw in D_k .

From (1) and (2), we have, for $n \geq 3$, if $\nu(D_n) \leq n-1$, then there exist n-2 crossings involve n-2 different edge sets of claw in D_n . \square Lemma 4.5. For $n \geq 4$, let D_n be a good drawing of F_n . If $\nu_{D_n}(T_s, T_t) = 0$ for every $0 \leq s < t \leq n-1$, then $\nu(D_n) \geq n$.

Proof. For $0 \leq i \leq n-1$, let $H_i = T_i \cup L_i \cup T_{i+1} \cup L_{i+1} \cup T_{i+2}$. It is easy to verify that $F_n[H_i]$ is a subdivision of $K_{3,3}$. In the drawing of H_i in D_n , the crossing that involves a pair of edges of $T_i \cup L_i$ (or a pair of $T_{i+2} \cup L_{i+1}$) results in a crossing between two edges incident with one common vertex in the corresponding drawing of $K_{3,3}$, hence we have $\nu_{D_n}(H_i) - \nu_{D_n}(T_i \cup L_i) - \nu_{D_n}(T_{i+2} \cup L_{i+1}) \geq cr(K_{3,3})$. Since $\nu_{D_n}(T_i, T_j) = 0$, by Lemma 2.1, we have

$$cr(K_{3,3}) \leq \nu_{D_n}(H_i) - \nu_{D_n}(T_i \cup L_i) - \nu_{D_n}(T_{i+2} \cup L_{i+1})$$

$$= \nu_{D_n}(T_i \cup L_i, T_{i+1}) + \nu_{D_n}(T_i \cup L_i, T_{i+2} \cup L_{i+1}) + \nu_{D_n}(T_{i+1}, T_{i+2} \cup L_{i+1})$$

$$= \nu_{D_n}(T_i, T_{i+1}) + \nu_{D_n}(T_i, T_{i+2}) + \nu_{D_n}(T_{i+1}, T_{i+2}) + \nu_{D_n}(L_i, T_{i+1}) + \nu_{D_n}(L_i, T_{i+2}) + \nu_{D_n}(L_{i+1}, T_i) + \nu_{D_n}(L_{i+1}, T_{i+1}) + \nu_{D_n}(L_i, L_{i+1})$$

$$= \nu_{D_n}(L_i, T_{i+1}) + \nu_{D_n}(L_i, T_{i+2}) + \nu_{D_n}(L_{i+1}, T_i) + \nu_{D_n}(L_{i+1}, T_{i+1}) + \nu_{D_n}(L_i, L_{i+1}).$$

$$(4.1)$$

Since $E(F_n) = \bigcup_{i=0}^{n-1} (T_i \cup L_i), \ \nu_{D_n}(T_i) = 0 \text{ and } \nu_{D_n}(T_i, T_j) = 0$, we have

$$\nu(D_n) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \nu_{D_n}(T_i, L_j) + \sum_{i=0}^{n-1} \nu_{D_n}(L_i) + \sum_{0 \le i < j \le n-1} \nu_{D_n}(L_i, L_j).$$
(4.2)

From (4.1), for $n \geq 4$, we have

$$n = n \operatorname{cr}(K_{3,3})$$

$$\leq \sum_{i=0}^{n-1} [\nu_{D_n}(L_i, T_{i+1}) + \nu_{D_n}(L_i, T_{i+2}) + \nu_{D_n}(L_{i+1}, T_i) + \nu_{D_n}(L_{i+1}, T_{i+1}) + \nu_{D_n}(L_i, L_{i+1})]$$

$$= \sum_{i=0}^{n-1} \nu_{D_n}(L_i, T_{i+1}) + \sum_{i=0}^{n-1} \nu_{D_n}(L_i, T_{i+2}) + \sum_{i=0}^{n-1} \nu_{D_n}(L_{i+1}, T_i) + \sum_{i=0}^{n-1} \nu_{D_n}(L_{i+1}, T_{i+1}) + \sum_{i=0}^{n-1} \nu_{D_n}(L_i, L_{i+1})$$

$$= \sum_{i=0}^{n-1} \nu_{D_n}(L_i, T_{i+1}) + \sum_{i=0}^{n-1} \nu_{D_n}(L_i, T_{i+2}) + \sum_{i=0}^{n-1} \nu_{D_n}(L_i, T_{i-1}) + \sum_{i=0}^{n-1} \nu_{D_n}(L_i, T_i) + \sum_{i=0}^{n-1} \nu_{D_n}(L_i, T_i) + \sum_{i=0}^{n-1} \nu_{D_n}(L_i, T_i) + \sum_{i=0}^{n-1} \nu_{D_n}(L_i, T_i) + \sum_{i=0}^{n-1} \nu_{D_n}(L_i, L_{i+1})$$

$$\leq \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \nu_{D_n}(T_i, L_j) + \sum_{i=0}^{n-1} \nu_{D_n}(L_i) + \sum_{0 \le i < j \le n-1} \nu_{D_n}(L_i, L_j).$$

From (4.2), $\nu(D_n) \ge n$. \square Lemma 4.6. For $n \ge 4$, let D_n be a good drawing of F_n . If $\nu(D_n) \ge n-1$, then there exist at least n-3 different crossed-pairs (T_s, T_t) $(0 \le s < t \le n-1)$ in D_n .

Proof. By induction on n.

(1) For n = 4, if $\nu(D_4) \leq 3$, then by Lemma 4.5, there exists at least one crossed-pair (T_i, T_j) $(0 \leq i < j \leq 3)$ in D_4 . Hence, the lemma holds for n = 4.

(2) Suppose that for $4 \le n \le k-1$, if $\nu(D_n) \le n-1$, then there exist at least n-3 different crossed-pairs of edge sets of claw in D_n . For n=k, if $\nu(D_k) \le k-1$, then by Lemma 4.5, there exists a crossed-pair (T_i,T_j) $(0 \le i < j \le k-1)$ in D_k . Deleting all the edges of T_i from D_k results in a new drawing D^* whose corresponding graph is a subdivision of F_{k-1} . Then, $\nu(D^*) \le \nu(D_k) - 1 \le k-2$. From the hypothesis of induction, there exist at least k-4 different crossed-pairs of edge sets of claw in D^* . Hence, there exist at least k-3 different crossed-pairs of edge sets of claw in D_k .

From (1) and (2), we have, for $n \ge 4$, if $\nu(D_n) \le n-1$, then there exist n-3 different crossed-pairs of edge sets of claw in D_n . \square Lemma 4.7. $cr(F_6) = 6$.

Proof. By Lemma 3.1, $cr(F_6) \le 6$. We need only to prove that $cr(F_6) \ge 6$. By contradiction, suppose that there is an optimal drawing D of F_6 such that $\nu(D) \le 5$. By Lemma 4.4, there are 4 crossings involve 4 different edge sets of claw in D. By Lemma 4.6, there are 3 different crossed-pairs of edge sets of claw in D. Thus, there exists a T_i $(0 \le i \le 5)$ involve at least 2 crossings. Deleting all the edges of T_i from D results in a new drawing of a subdivision of F_5 with at most $\nu(D) - 2 \le 3$ crossings, contradicting $cr(F_5) = 4$.

Lemma 4.8. $cr(F_n) = n$ for $n \ge 6$.

Proof. By induction on n.

- (1) By Lemma 4.7, $cr(F_6) = 6$.
- (2) Suppose that for $6 \le n \le k-1$, $cr(F_n) = n$. Consider the case n = k. By Lemma 3.1, $cr(F_k) \le k$. We need only to prove that $cr(F_k) \ge k$. By contradiction, suppose that there is an optimal drawing D of F_k such that $\nu(D) \le k-1$. By Lemma 4.2, there is a crossed T_i ($0 \le i \le k-1$) in D. Deleting all the edges of T_i from D results in a new drawing of D^* whose corresponding graph is a subdivision of F_{k-1} . Then by the hypothesis of induction, $\nu(D) \ge \nu(D^*) + 1 \ge k$. A contradiction to $\nu(D) \le k-1$.

From (1) and (2), $cr(F_n) \ge n$ for $n \ge 6$.

References

- [1] R. Isaacs, Infinite families of nontrivial trivalent graphs which are not Tait colorable, *Amer. Math. Monthly*, 82 (1975), 221C239.
- [2] A. Cavicchioli, M. Meschiari, and B. Ruini et al., A survey on snarks and new results: products, reducibility and a computer search, *Journal of Graph Theory*, 28(2)(1998), 57–86.
- [3] A. Cavicchioli, T. E. Murgolo and B. Ruini et al., Special classes of snarks, *Acta Applicandae Mathematicae*, 76(2003), 57–88.

- [4] S. Fiorini, On the crossing number of generalized Petersen graphs, Ann. Discrete Math, 30(1986), 221-242.
- [5] S. Fiorini and J. B. Gauci, The crossing number of the generalized Petersen graph P(3k, k), Mathematica Bohemica, 128(2003), 337-347.
- [6] M. R. Garey and D. S. Johnson, Crossing number is NP-complete, SIAM J. Alg. Disc. Meth., 4(1983), 312-316.
- [7] Petr Hliněný, Crossing number is hard for cubic graphs, Journal of Combinatorial Theory, B, 96(2006), 455-471.
- [8] Sandi Klavžar and Bojan Mohar, Crossing numbers of Sierpiński-Like graphs, *Journal of Graph Theory*, 50(2005), 186–198.
- [9] R. B. Richter and G. Salazar, The crossing number P(N,3), Graphs and Combinatorics, 18(2002), 381-394.
- [10] G. Salazar, On the crossing numbers of loop networks and generalized Petersen graphs, *Discrete Mathematics*, 302(2005), 243–253.
- [11] Eckhard Steffen, Classifications and characterizations of snarks, Discrete Mathematics, 188(1998), 183-203.
- [12] László A. Székely, A successful concept for measuring non-planarity of graphs: the crossing number, *Discrete Mathematics*, 276(2004), 331–352.
- [13] J. T. Thorpe and F. C. Harris, A parallel stochastic algorith for finding mappings of the rectilinear minimal crossing problem, Ars Combinatoria, 43(1996), 135-148.
- [14] Yang Yuansheng, Lin Xiaohui, Lü Jianguo and HaoXin, The crossing number of $C(n; \{1,3\})$, Discrete Mathematics, 289(2004), 107–118.
- [15] Zheng Wenping, Lin Xiaohui and Yang Yuansheng, On the crossing number of $K_m \square P_n$, Graphs and Combinatorics, To appear.
- [16] Zheng Wenping, Lin Xiaohui and Yang Yuansheng, The crossing numbers of Cartesian product of cone graph $C_m + \overline{K_l}$ with path P_n , Ars Combinatoria, To appear.