Some designs related to group actions
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Abstract

Some designs using the action of the linear fractional groups
La(q), g = 11, 13, 16, 17, 19, 23 are constructed. We will show that
Lx(qg) or its automorphism group acts as the full automorphism group
of each of the constructed designs except in the case g = 16. For de-
signs constructed from L2(16), we will show that L2(16), L2(16) : 2,
L2(16) : 4 or Si7 can arise as the full automorphism group of the
design.
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1 Introduction

Considering the primitive actions of the Janko groups J; and J2, Key and
Moori in [4] constructed designs, codes and graphs that have the above
groups acting as automorphism group. Observing the results of [4] the
authors conjectured that in certain cases the automorphism group of the
design obtained by a primitive representation of a simple group G will have
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the automorphism group Aut(G) as its full automorphism group. But later
in [5] they found counter examples to the above conjecture. We also found
another counter example for the conjecture in this paper. However it is
interesting to apply the above method to other groups and their primitive
representations to construct designs and groups and verify the above con-
Jjecture. Our intention in this paper is to consider some linear fractional
groups La(q) for certain g. Primitive permutation representations of these
groups are given in (3] and our computations use the GAP system described
in [6].

2 Definitions

Let F, denote the Galois field with ¢ = p™ elements, where p is a prime
number and n € N. For a detailed definition of the linear fractional group
Ly(q) we may refer the reader to [2]. The group of all the invertible 2 by 2

b
matrices | y with entries in F, is denoted by GL3(g). The projective
c

b
linear transformation associated with @ al ad — be # 0, is defined as
c

follows. Adjoin the symbol co to F,; and define the following permutation
fape.d of FgU{oo}:

fa,b.c,d : FQU {00} - Fq U {00}

it ifre F,— {—2} and c #0,
ooif:c=—-‘c!andc¢0,
2 if r = o0 and ¢ # 0,
oo if z =00 and ¢ = 0.

Then the set of all such mappings is denoted by PGL(g), i.e.
PGL3(q) = {fabc,d | @,b,c,d € Fy, ad — bec # 0}.

fa,b,c,d(x) =

The projective special linear group in dimension 2 is also called the linear
fractional group and it is denoted by either PSLy(g) or L2(g) and consists
of the following elements

Lo(q) = { fap,c,d | asb,c,d € Fy, ad—bc € qu}
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where FE denotes the set of non-zero squares in F.

For the structure of the maximal subgroups of the groups Ls(g) that we
are concerned with we refer the reader to [3]. The notation for designs is
standard, and as in [1]. Let D = (P,B,Z) be an incidence structure with
point set P and block set B and incidence relation Z. For p € P and B € B
we will write pZ B if and only if (p, B) € Z. Then D is called a t — (v, k, \)
design if |P| = v, and |B| = k for each B € B, and every t points of P
is incident with precisely A blocks of B. The design is called symmetric if
the number of points v is equal to the number of blocks b. The number of
blocks through a set of s points is denoted by A, and is independent of the
set if s < ¢. It is easy to deduce that

v—§ k—s
A=A (t—-s)/(t—s)

where A = );. Here we remark that D is also an s— (v, k, \;) design as well.
A t—(v,k, X) design is called trivial if every subset of P with cardinality

k is a block of B, ie. b = Z . The dual of the incidence structure

D = (P,B,I) is D' = (B,P,T); hence if D is a t — (v, k, A) design, then
D! is a design with b points such that the size of every block is A;. The
incidence matrix of a structure D = (P, B,T) is a |P| x | B| matrix A whose
rows are labeled by points in P and whose columns are labeled by blocks in
B and the entry (p, B) € P x B is equal to 1 if and only if p is incident with
B, otherwise it is zero. Therefore A is a matrix with entries 0 or 1 and the
incidence matrix of D! is A* which is the transpose of A. Two structures
D =(P,B,I) and D' = (P',B',T') are called isomorphic if there is a one
to one correspondence 6 : P —s P’ with the following property:

pIB < 6(p)I 6(B),pc P, B € B.

In this case we will write D=D’. The structure D is called self-dual if
D=D'.

An isomorphism of D onto itself is called an automorphism of D. The
set of all the automorphisms of D is a group and it is denoted by Aut(D).
If the incidence matrix of the structure D is A, then Aut(D) consists of
precisely the pairs (P,Q), where P is a permutation of the rows of A and
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@ is a permutation of the columns of A such that PAQ = A. Note that P

as a permutation of rows (columns) of A can be viewed as a permutation
matrix.

3 Method

The method of construction is in accordance with Proposition 1 of [4]. But
we can describe the general case as mentioned in page 155 of [2]. Let G
act on a set Q of size n. Let B C Q with |[B| > 2. Then D = (,B%,¢€) is
an incidence structure, where BS = {B9 | g € G}, where Gp denotes the
global stabilizer of B under G. If the action of G on 2 is t-homogeneous
and |B| > t, then D = (2, B®,€) is at — (v, k, \) design with parameters,

o k v k v
sesees(9) ()=t (o 2

Now in the special case that the action of G on ) is transitive we have
t = 1 and will obtain a 1-design D with parameters 1 — (n, k,r), where
7 =[G : Gp)%. If for a point w € 2 we have |G| = |G.|, which happens
if the action of G on  is primitive and B # {w} is an orbit of G, on Q,
then the design D has parameters 1 — (n, k, k).

The construction of the 1-designs continues as follows: Consider a group
which acts primitively on a set €2 of size n. Take w € §2 and let A be an
orbit with |A| = k > 1 of the stabilizer G,, on Q. Then A is the block set
of a symmetric design with parameters 1 — (n, k, k). If the action of G on
Q is 2-transitive, then G,,, w € Q, has only two orbits {w} and Q — {w} on
£ and the design obtained in this way is trivial. In our investigations we
will not consider trivial designs.

Note that according to [4] the above construction gives a self-dual block
design and G acts as an automorphism group of this design, i.e. G <
Aut(D) and as a permutation group on the set of blocks is primitive as
well.
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4 Primitive actions of the groups Ly(q),
g=11,13,16,17,19 and 23

Before starting to explain the designs obtained from each group, we will
give some information about the tables below. The maximal subgroups of
L(q) up to conjugacy are given in [3], and the shapes of these are given in
the second column of the table. Degree denotes the index of the maximal
subgroup in the group. # indicates the number of orbits of the stabilizer
of a point in the action of the group on the set of right cosets of a maximal
subgroup. The rest of the entries after # are devoted to the length of the
orbits of a point stabilizer, where an entry of the form m(n) indicates n
orbits of length m. The number beneath each orbit length is the order of
the automorphism group of the design. Note that if the entry under # is 2,
then this means that the action of the group on the set of the cosets of the
subgroup is 2-transitive and hence the design obtained is trivial and will
not be considered. All the calculations have been carried out using GAP.

Tables 1-6 give information we need about the groups Ly(q), ¢ = 11, 13,
16, 17, 19 and 23. According to these tables we have the following results.

1. Ly(11) is the full automorphism group of the design with parameters
1 - (55,3,3) and 1 — (55,6,6). But Aut(Ly(11)) = Ly(11) : 2 is the full
automorphism group of the design with parameters 1 — (55,12, 12).

2. L3(13) is the full automorphism group of the designs with parameters
1-(91,12,12),1-(91,6,6) and 1—(78,7,7), but Aut(L»(13)) = Ly(13) : 2
is the full automorphism group of the designs with parameters 1— (91, 4,4),
1-(91,6,6), 1 —(91,3,3) and 1 — (78, 14, 14).

3. Ly(16) is the full automorphism group of the designs with para-
meters 1 — (136,15,15), 1 — (120,17,17). The group L,(16) : 2 is the full
automorphism group of the designs with parameters 1 — (136,15, 15), 1 —
(120,17,17), 1 - (68,12,12) and 1 — (68,15, 15). The group Aut(L2(16)) =
L>(16) : 4 is the full automorphism group of the designs with parameters
1-(120,17,17) and 1—(68, 20, 20). For the full automorphism group of the
design with parameters 1 — (136, 30, 30) we have the following proposition.
But first we need a Lemma.
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Lemma 1 If G is a simple group and |G| = |Ay7|, then G=A;7.

Proof. According to the classification of finite simple groups, G is iso-
morphic to one of the groups: An alternating group A,, n > 5, a sporadic
group or a simple group of Lie type. If G=A,,, then it is clear that n = 17
and we are done. From the list of orders of the sporadic groups in [3] we see
that G cannot be a sporadic group. Therefore we examine the possibility of
G being isomorphic to a simple group of Lie type defined over a finite field
of characteristic p. Since we have assumed |G| = |Ay7|, where 7(G) = {2,
3,5, 7,11, 13 or 17}, where n(G) denotes the set of primes dividing |G|,
and therefore p may be one of the numbers 2, 3, 5, 7, 11, 13 or 17. From the
list of orders of simple groups of Lie type given in [3] we observe that the
order of G is divisible by numbers of the form p* & 1, k € N. We consider
the possible cases.

Case 1 p = 3,5, 7 or 11. In these cases the smallest k£ for which
17 | p* + 1 is 8 and the smallest [ for which 17 | p — 1 is 16. Examinations
of the above p’s and considering the numbers p"+1,r < 8and p"—1, r < 16,
we obtain primes other than primes in 7(G) which is a contradiction.

Case 2 p =2 or 13. In this case 11 | n® + 1 and 11 | n!® — 1 for both
n = 2 and 13 and similarly we obtain a contradiction.

Case 3 p = 17. From (3] we see that the order of a simple group of
Lie type is divisible by p* for some k > 1, hence in this case we must have
k=1 and G=PSLy(17), a contradiction.

Therefore G=A,7 and the Lemma is proved. m

Proposition 1 Let 2 denote the set of right cosets of a subgroup of G =
L;(16) isomorphic to D3y. Then for w € 2, the point stablizer G, has
an orbit A of length 30 and orbiting A under G we obtain a design with
parameters 1 — (136, 30, 30) whose full automorphism group is isomorphic
to S17.

Proof. It is clear that || = [L2(16) : 30] = 136. By Table 3 there is an
orbit of length 30 under the action of G, w € §, on £2. Using a program in
GAP we have obtained |Aut(D)| = 355687428096000 = 2!535537211.13.17.
Using GAP we found that Aut D has only one non-trivial normal proper
subgroup N whose order is 1 |Aut(D)|. But again using GAP we found out
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N is a simple group. Since |N| = |A;7| by the previous Lemma we deduce
that N=A,7. But ALI‘V(QZE% and Aut(D) does not contain elements of
order 34, hence Aut(D) = S17. m

Remark 1 The design D constructed in the above proposition is another
counter example to the conjecture made in [4).

4. Ly(17) is the full automorphism group of the designs with parameters
1-(153,8,8),1—-(153,16,16), 1 —(136,9,9), 1 —(102,3,3), 1 - (102,6,6),
1 - (102,8,8), 1 — (102,12,12) and 1 — (102,24,24). But Aut(Ly(17)) =
Ly(17) : 2 is the full automorphism group of the designs with parameters
1 -(153,16,16), 1 — (153,4,4) and 1 — (136,18, 18).

5. L3(19) is the full automorphism group of the designs with parameters
1-(190,9,9), 1 -(171,5,5), 1 — (171,10, 10), 1 — (57,6,6), 1 — (57, 20, 20)
and 1 - (57,30, 30). But Aut(L2(19)) = Ly(19) : 2 is the full automorphism
group of the designs with parameters 1 — (190, 18, 18) and 1 — (171, 20, 20).

6. L,(23) is the full automorphism of the designs with parameters
1-(276,11,11), 1 —(253,4,4), 1~ (253,6,6), 1 —(253,8,8), 1 — (253,12, 12)
and 1—(253, 24, 24). But Aut(L2(23)) = L3(23) : 2 is the full automorphism
group of the designs with parameters 1 — (276, 22, 22) and 1 — (253,24, 24).

After examination of the automorphism groups of the designs obtained
from the primitive action of the groups La(g) for ¢ = 11, 13, 16, 17, 19 and
23 we put forward the following conjecture.

Conjecture The full automorphism group of the designs obtained in
the manner described so far, is either Ly(g) or Aut(Lz(g)) = La(q) : 2,
provided q is a prime number.

Full details of the results obtained can be found at the web site:

http://www.fos.ut.ac.ir/ “darafsheh
Those who are interested may contact the authors for the source files of
the program.
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Table 1: Orbits of the point-stabilizer of Ly(11)

no. | mazimal | degree | # length and  |Aut|
subgroup
1 Dy 55 9 3(2) 6(4) 12(2)
660 660 1320
2 | 11:5 12 |2 11(1)
3 As 11 2 10(1)
4 As 11 2 10(1)
Table 2: Orbits of the point-stabilizer of L(13)
no. | mazimal | degree | # length and  |Aut|
subgroup
1 Ay 91 11 4(3) 6(1) 12(6)
2184 2184 1092
2 Dyy 91 12 3(2) 6(4) 12(5)
2184 1092 1092
3 Dyy 78 9 7(5) 14(3)
1092 2184
4 As 1 | 2| 130)
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Table 3: Orbits of the point-stabilizer of L, (16)

no. | mazximal | degree | # length  and |Aut|
subgroup
1 Dy 136 9 | 15(7) 30(1)
4080 or 8160 355687428096000
2 D3, 120 8 | 17(7)
4080, 8160 or 16320
3 As 68 5 | 12(1) 15(1) 20(2)
8160 8160 16320
4 2¢:15 17 2 16(1)
Table 4: Orbits of the point-stabilizer of L(17)
no. | mazimal | degree | # length and  |Aut|
subgroup
1 Dye 153 |15 4(2) 8(6) 16(6)
4896 2448 2448 or 4896
2 Dy4 136 | 12 9(7) 18(4)
2448 4896
3 S 102 8 13(1) 6(1) 8(1) 12(1) 24(3)
2448 2448 2448 2448 2448
4 Sy 102 8 | 3(1) 16(1) 8(1) 12(1) 24(3)
2448 2448 2448 2448 2448
5 17:8 18 2 17(1)
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Table 5: Orbits of the point-stabilizer of L2(19)

no. | mazimal | degree | # length and  |Aut|
subgroup

1 Dis 190 |16 9(9) 18(6)
3420 6840
2 | Dao 171 | 15| 5(2) 10(8) 20(4)
3420 3420 6840
3 As 57 | 4| 6(1) 20(1) 30(1)
3420 3420 3420
4 As 57 4 6(1) 20(1) 30(1)
3420 3420 3420

5 19:9 20 2 19(1)

Table 6: Orbits of the point-stabilizer of L(23)

no. | mazimal | degree | # length and |Aut|
subgroup
1 D, 276 | 19 11(11) 22(7)
6072 12144
2 Doy 253 | 16 | 4(1) 6(2) 8(1) 12(3) 24(8)
6072 6072 6072 6072 6072
3 Sy 253 | 16 | 4(1) 6(2) 8(1) 12(3) 24(8)
6072 6072 6072 6072 6072
4 A 253 |18 6(2) 12(10) 24(5)
6072 6072 12144
5 23:11 24 12 23(1)
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