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Abstract

In this paper we determine unique graph with largest spectral
radius among all tricyclic graphs with n vertices and k pendant edges.

1. Introduction

We consider only finite undirected graphs without loops or multiple edges in
this paper. Let G = (V, E) be a graph with n vertices, and A(G) bea (0,1)-
adjacency matrix of G. Since A(G) is symmetric, its eigenvalues are real.
Without loss of generality, we can write them as A\;(G) > A\(G) > -+ >
An(G) and call them the eigenvalues of G. The characteristic polynomial
of G is just det(A] — A(G)), denoted by ¢(G, ). The largest eigenvalue
p = Ai(G) is called the index of G. If G is connected, then A(G) is
irreducible and so it is well-known that \;(G) has multiplicity one and
there exists a unique positive unit eigenvector corresponding to A;(G) by
the Perron-Frobenius theory of nonnegative matrices. We shall refer to
such an eigenvector as the Perron vector of G.

The investigation of the index of graphs is an important topic in the
theory of graph spectra. The reference [6] is a wonderful survey which in-
cludes a large number of references on this topic. The recent developments
on this topic also involve the problem concerning graphs with maximal
index in a given class of graphs. '

Let H(n,n +t) denote the set of all connected graphs having n vertices
and n + ¢ edges (¢t > —1). The maximal index problem for H(n,n +t) is
solved for certain values of ¢ ([1, 2, 3, 5, 11, 12, 15, 16]).
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Now, let H(n,n +t, k) denote the set of all connected graphs having n
vertices, n + ¢ edges and k pendant vertices. A pendant vertex of G is a
vertex of degree 1. Obviously, H(n,n + ¢,k) C H(n,n +t). The maximal
index problem for this class has been solved by Wu et al. [17] for ¢t = —1
and by Guo at al. (8, 13] for 0 < ¢t < 1. The solutions of this problem
are presented in Figure 1. The graphs with maximal index in these classes
are obtained from the graphs K, K3 and K3 - K3 (coalescence of graphs
K3 and K3), respectively, by attaching k paths of almost equal length to
a vertex of maximal degree in these graphs. Here k paths P, P,,..., P,
are said to have almost equal lengths if I3, s,. .., satisfy |l; — ;| <1 for
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In this paper we give a solution of this problem for ¢ = 2. The impor-
tance of the solution to a maximal index problem in these classes come from
the fact that these graphs are the most irregular graphs in these classes.
(Here the proposed measure of irregularity is § = p — d, where p denotes
index and d the average degree.)

2. Notation and lemmas

Denote by C,, and P, the cycle and the path, respectively, each on n
vertices. Let G — z or G — zy denote the graph that arises from G by
deleting the vertex z € V(G) or the edge zy € E(G). Similarly, G+zyis a
graph that arises from G by adding an edge zy ¢ E(G), where z,y € V(G).

In order to complete the proof of our main result, we need the following
lemmas. For v € V(G), d(v) denotes the degree of vertex v and N(v)
denotes the set of all neighbors of the vertex » in G.
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Lemma 1 ([17]) Let G be a connected graph and let A (G) be the spec-
tral radius of A(G). Let u,v be two vertices of G and let d(v) be the degree
of vertez v. Suppose vy,va,...,vs € N(v)\ N(u) (1 < s < d(v)) and
z = (71,Z2,...,Zn) 18 the Perron vector of A(G), where z; corresponds to
the vertez v; (1 <i < n). Let G* be the graph obtained from G by deleting
the edges vv; and adding the edges uv; (1 < 1 < s). If zy > z,, then
A1(G*) > M(G).

Lemma 1 was first given by Wu, Xiao and Hong and it is a stronger
version of a similar lemma in [15).

Let G be connected graph and let uv € E(G). The graph G,, is
obtained from G by subdividing the edge uv, i.e. adding a new vertex w
and edges wu,wv in G — uv. Hoffman and Smith define an internal path
of G as a walk vovy...v; (s > 1) such that the vertices vg,v;,...,v, are
distinct, d(vo) > 2, d(vs) > 2 and d(v;) = 2, whenever 0 < i < s. And s is
called the length of the internal path. An internal path is closed if vy = v,.
They prove the following result.

Lemma 2 ([9]) Let uv be an edge of the connected graph G on n ver-
tices.

1° If uv does not belong to an internal path of G, and G # C,, then
A(Gup) > Mi(G).

20 If uwv belongs to an internal path of G, and G # W,,, where W, is
shown in Figure 2, then \(Gy,y) < M1(G).

W,>—o o—< o
=

Fig.2 Fig.3

Lemma 3 ([7, 10]) Letv be a vertez of the non-trivial connected graph
G, and let G(k,l) (k > 1 > 1) denote the graph obtained from G by adding
pendant paths of lengths k and | at v (Figure 3). Then \(G(k,1)) >
M(G(k+1,1-1)).

The following result is often used to calculate the characteristic poly-
nomials of graphs.

Lemma 4 ([14]) Letv be a vertez of G and C(v) be the set of all cycles
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of G that contain v. Then
$(G,A) = A(G-v,2) = Y ¢G-u-vN)-
(u,v)EE(G)
2 ) $(G-V(2),N),
ZeC(v)

where G — V(Z) is the graph obtained by removing from G the vertices
belonging to Z.

Lemma 5 ([4], p. 19) Let Ay > A2 2 --- 2 A, be the eigenvalues of
a graph G and py > pg 2> -+ 2 pm eigenvalues of an induced subgraph H.
Then the inequalities

A1'&—1rl.+i < wi < A‘l (i=1!"')m)
hold.

Thuseg. ifm=n—-1,wehave \; 2> 1 2 A2 > 2> -+- 2 ptin_1 2 An.
Also A\; > p, if G is connected.

Lemma 6 ([4], p. 54) IfG1,Ga,...,G: are the components of a graph
G, then we have

¢(Gl A) = ¢(G11 A) N ¢(G25 A) e ¢(Gt: A) .

Lemma 7 If the graphs G and H have ezactly one eigenvalue greater
than some constant a and if ¢(H, A\1(G)) < 0, then A\(G) < A1 (H).

Denote by G (i =1,...,5) tricyclic graphs presented in Figure 4. Let
G:(n, k) be the graph on n vertices obtained from G} by attaching k paths
of almost equal lengths to a vertex v of maximal degree (i = 1,...,5).
Then Gi(n, k) € H(n,n + 2, k).
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Lemma 8

(a) n>k+7 = AM(Gi(n, k) > A1 (Gi(n, k) A
AI(G;(’": k)) > /\1(G§(n, k));

(6) n>k+5 = Mi(Gi(n, k) > A1(G3(n, k)) A
A1 (G;(n’ k)) > AI(Gi(‘n’, k)):
(©) n=k+6AKk<3 = M\(Ci(n k) > (Gin,k)):
n=k+6A k>4 = X\(Gi(n k) > \(Ci(n k).

Proof. First, we prove

n 2 k+ 7= AM(Gi(n,k)) > A (Gs(n, k).

The vertex of G}(n, k) that has degree k + 6 is denoted by v. Also, the
vertex of Gg(n, k) that has degree k + 5 is denoted by v. Denote by ! the
maximal number of vertices of a path attached to the vertex v of Gg(n, k)
and by m the minimal number of vertices of a path attached to the vertex
v of Gi(n, k). If so, then m = [ — 1.

Let G be the graph analogous to G%(n, k) in which all paths attached
to vertex v have [ vertices. Also, let H be the graph analogous to G}(n, k)
in which all paths attached to vertex v have m vertices.

Evidently, H is an induced subgraph of G}(n,k), whereas G¥(n, k) is
an induced subgraph of G. Therefore, by Lemma 5,

A(H) £ M(Gi(n, k)
with equality if and only if n = km + 7. Also,
A1(Gs(n, k)) < Mi(G)

with equality if and only if n = kl + 6.

Thus for the proof of the inequality A1(G(n,k)) < A (Gi(n,k)) it is
sufficient to show that A1(G) < A\ (H). We do this in the following.

Because of Lemmas 5 and 6, the graphs G and H have exactly one
eigenvalue greater than 3. (This is because all components of the subgraphs
G —v and H — v are paths, and the spectral radii of paths are less than 2.
Therefore X2(G) < 2 and A(H) < 2. By direct calculation we check that
in the case n = 7, k = 1 the greatest eigenvalue of G is greater than 3.
Also, in the case n = 8, k = 1 the greatest eigenvalue of H is greater than
3. Therefore the greatest eigenvalues of G and H are greater than 3 for all
valuesofnand k (n > k+7).)

By applying Lemma 4 to the vertex v of G we obtain

H(C,A) = AG(P, N)FI(A® - 823 — 622 + 9\ + 8)¢(P1, \) —
k(X = 322 + 2)¢(Pr—1, ).
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In the analogous manner we obtain

S(H,N) = (A% =1)2¢(Pm, \)F (A3 = 7TA = 6)¢(Pm, \) —
k(A% = 1)¢(Pm—1, 7).

Denote the greatest eigenvalue of G by ». Then r > 3 and from the
above expression for ¢(G, ) it is seen that r satisfies the equation

(1) (5 —8r% —6r® +9r + 8)¢(P,,r) — k(r* — 3r% + 2)¢(Pr_1,7) = 0.
The linear difference equation (1) of order 1 has solution

k(r* —3r2 4 2)
5 —8r%—6r2+9r+8

¢(Pt,7')=( )‘ (1=0,1,2,...).

Now the inequality

(k(r* — 3r2 4-2))™!
—8r3 —6r2+9r +8)™

BHr) = k(r® = 1)26(Pm,r) (5

(FP=Tr—6)(r*=3r24+2) - (2 -1)(r> - 82 —6r2+9r +8)) <0
holds if and only if

Qr)=((rP-Tr-6)(r* -=3r2+2) = (r* = 1)(+° — 8 = 6r2 + 9r +8)) < 0,
hence if and only if
Q(r)=—r3+6r3+4r2 —5r—4<0

(the expressions r* — 3r2 + 2 and r® — 873 — 6r2 4 9r + 8 are positive for
r > 3).

Because the equation Q(r) = 0 has exactly two positive roots which
belong to the intervals (0,1), (1,3) and rlirfw Q(r) = —o0, we conclude

that Q(r) < 0.
So, ¢(H,r) < 0 and by Lemma 7 we conclude that A\ (G) < A\ (H).
The proofs of the remaining inequalities are similar and we omit them. O

3. Main result

Theorem 1 Let G be a graph in H(n,n+2,k), k> 1. Thenn 2 k+4
and the following inequalities hold:

(a) If n 2 k+7, then \1(G) < M(Gi(n,k)) and the equality holds if and
only if G = Gi(n,k);
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(0) If n=Fk+6 and k > 4, then A\ (G) < M\ (Gi(n, k) and the equality
holds if and only if G = Gi(n, k);

(c) If n=k+6 and k <3, orn=k+5, then A\1(G) < A\(G}(n, k) and
the equality holds if and only if G = Gj(n,k);

(d) If n=k+4, then A\1(G) < M\ (G5(n, k)) and the equality holds if and
only if G = G3(n, k).

Proof. The smallest tricyclic graph without pendant vertices is the
graph K, and the number n of vertices of any tricyclic graph with k > 1
pendant vertices is at least k + 4.

Chose G € H(n,n + 2, k) such that the spectral radius of G is as large
as possible. Denote the vertex set of G by {vy,vs,...,v,} and the Perron
vector of G by z = (z,,z3,...,Z,), Where z; corresponds to the vertex v;
(1<ign).

We first prove that each two cycles C; and C; of G have at least one
common vertex. Assume, on the contrary, that it is not true. Then there
exists a path v1,vs,...,4 which joins cycles C, and C, (v; € V(Cy),
v € V(C,), | > 2). Without loss of generality, we may assume that
z; 2 z1. Denote by v4; and vy vertices of C, which are adjacent to the
vertex v;. Then at least one of the vertices v, and v 2 is not adjacent
to the vertex v;, for example v+ (in the opposite case G is not tricyclic
graph, a contradiction). Let

G* =G - {vv1} + {vivi1} -

Then G* € H(n,n + 2,k). By Lemma 1, we have A\ (G*) > A(G), a
contradiction.

Now, we distinguish the following two cases:

Case 1. Each two cycles of G have exactly one common vertex.
Case 2. There exist two cycles of G which have more then one common
vertex.

In the first case all cycles of G have exactly one common vertex, i.e.
all three cycles Cp, C; and C; of G form a bundle which we denote by G?
(Figure 5).

In the second case there exists a spanning subgraph Hp of G which
contains three vertex disjoint paths P;,P, and P; and at most one of them
is of length 1 (Figure 6). Denote by v; and v, the common vertices of the
paths Pi,P; and P;. The vertices v, and v, are of degree 3 in Hp, and other
vertices in Hp are of degree 2. Also, there exist either the fourth path P
which joins
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(2.1) two vertices of degree 2 of Hy which do not belong to the same
path P; (i = 1,2, 3);

(2.2) one vertex of degree 3 and one vertex of degree 2 of Ho;

(2.3) two vertices of degree 3 of Ho;

or
(2.4) a cycle which has exactly one common vertex with Ho. (Their

common vertex is of degree 3 in Hp.)

I3
Py
H, S A .
Py
Fig.6

So, in the second case all cycles of G form the graph G3 (subcase 2.1),
GY (subcase 2.2), G (subcase 2.3) or G (subcase 2.4) (Figure 5).

We notice that the graphs G are functions of the corresponding param-
eters. So, G? = G(I)(ps ‘Lr)’ Gg = Gg(l)mvps Q7 3)1 Gg = Gg(l:m,P, q, 7‘),
Gy = Gy(l,m,p,q) and G = G2(I,m,p,q). These parameters are ei-
ther lengths of the corresponding paths or lengths of the corresponding
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cycles of the graphs G? (i = 1,...,5). Also, for the graphs G} (i =
1,...,5) from Figure 4 hold: G = G}(3,3,3) and |G?| > |G}| =7, G} =
G3(1,1,1,1,1,1) and |GY| > |G} = 4, G = G3(2,1,1,2,1) and |G| >
G| = 5, G5 = €3(2,2,2,1) and |G3] > |G} = 5, C} = G3(2,2,1,3) and
¢l > |G3| = 6.

Consequently, the graph G contains one of the graphs G$ — G2 as an
induced subgraph. Denote by H;(n,n + 2,k) C H(n,n + 2,k) the set of
all tricyclic graphs which contain the graph G? as an induced subgraph
(t=1,...,5). Then Hi(n,n+2,k)"Hj(n,n+2,k) =0 (i,5 = 1,...,5;
i#j) and G € UL Hi(n,n+2,k) for n > k+7, G € U}, Hi(n,n +2,k)
forn=k+6,G € U_yHi(n,n+2,k) for n=k+5 and G € Ha(n,n+2,k)
forn=k+4.

Suppose that G lies in Hs(n,n + 2, k). Then n > k 4+ 6. We denote by
v1 the vertex of G¥ of degree 5 and prove that G consists of G2 with a tree
attached at v;. Assume, on the contrary, that there exists a vertex v; of
G2 such that v; # v; and there exists a tree T attached to v;. If z; > z;,
let z1,...,2, (s > 1) be the vertices of T which are adjacent to the vertex
Vg and

G* =G - {viz1,..., vz} + {v121,...,v12,:}.
Now, let z; < z; and N(vy) = {wy,w2,...,w} (¢ > 5) (Figure 5). If v; is
a vertex of C,, let

G =G~ {vnyws, ..., viwe} + {viws, . .., v;we}.
If v; is a vertex of GY of degree 2, for example on the path of length I, let
G* = G — {vywy, vyws, vyws, .. ., viwe} + {v;wy, viws, vws . . ., viw, }
If v; is a vertex of GY of degree 3, let
G* = G - {viwy, viwg, vyws, ..., 1w} + {vywy, viws, v;ws . .., v;w, } .

In all cases G* € Hs(n,n+2,k). By Lemma 1, we have A,(G*) > A(G), a
contradiction. Hence G has a unique attached tree to the vertex v, of G2.

Now we prove that each vertex v of T has degree d(v) < 2,ie., Gisa
graph G2 with k paths attached to v;. Assume, on the contrary, that there
exists one vertex v; of T' such that d(v;) > 2. Denote N(v;) = {z1,...,2,},
N(v;) = {wy,...,w:}. Thens > 3andt > 6. Assume that 2, is the root v,
of T or is joined to the root v; of T, w; and w, belong to Cy, and wg = v;
or wg is joined to v;. If 2; > z;, let

G'=C- {’viZ3, e ,‘U;‘Z,} + {v1z3, e ,‘0123} .
If z; < 3, let
G'=G -~ {'vl'wz, ey, NMWS, M Wr, ... ,vlwt}

+ {viws, ..., viws, viwr, ..., v;w }.
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Then in either case G* € Hs(n,n+2, k) and by Lemma 1, we have A, (G*) >
A1(G), a contradiction.

Moreover, we claim that the k paths attached to v; have almost equal
lengths. Assume that P,,,..., P, are the k paths. We will prove that
|l = 4| <1 for 1 <i<j<k. Assume that there exist two paths P;, and
Py, such that I} — I3 > 2, say P, = vjuquz...u,, Py, = viwyws...w,.
Let

G* =G — {uy—yup, } + {wu, } -
Then G* € Hg(n,n +2,k) and by Lemma 3, we have A,(G*) > A,(G), a
contradiction.

By the definition of G2, we have that I,m,p > 1 and at most one of
them is 1. We claim that one of them is 1 and the other two are 2. Assume,
on the contrary, that I > 3. Let P, = v1v3...v41 and viuy ... u;m (m > 1)
be a path attached to vy of GJ. Obviously, G # C, G # Wi, v1va...v141
is an internal path, and v,u; ... u,, is not an internal path. Let

G* = G — {vavs, v3vs} + {vovs, umvs} .

Then G* € Hs(n,n + 2,k). By Lemma 2, we have X;(G*) > (G), a
contradiction. Hence ! < 2. Similarly, we can verify that m < 2, p < 2,
that one and only one of I,m,p is 1 and the cycle C, has length 3. Thus
G? = Gt and G = Gi(n, k).

Similarly to the previous proof, we can verify that if G € H;(n,n+2, k)
then n > k+ 7 and G = Gi(n, k), if G € Ha(n,n+ 2,k) thenn > k+ 4
and G = G}(n,k), if G € Ha(n,n+2,k) then n > k+5 and G = G§(n, k),
if G € H4(n,n+ 2,k) then n > k+ 5 and G = G}(n, k).

By Lemma 8 we conclude that G = Gi(n, k) for n > k+7, G = G&(n, k)
forn=k+6andk >4,G=Gj(n,k)forn=k+6andk <3,orn=k+5
and G = G3(n, k) for n = k + 4. This complete the proof. O

We conclude with the following conjecture. The graph presented in the
Figure 7 is unique graph with maximal index in the class H(n,n + t, k)
(t>0).

t+1

o
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