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Abstract

A new proof is given to the following result of ours. Let G be an
outerplanar graph with maxirnum degree A > 3. The chromatic
number x(G?) of the squarc of G is at most A+2, and x(G?) = A+1
ifA>T.

1 Introduction

Only simple graphs are considered in this paper. For a plane graph G =
(V,E, F), let A(G) and 6(C) (A and § for short) denote its maximum
vertex degree and minimum vertex degree, respectively. A vertex (or a
face) of degree k is called a k-werlez (or k-face). The degree of a face is
defined to be the length of its boundary walk. Notc that a cut edge is
counted twice. A 3-face f with x,y, z as boundary vertices is expressed as
J = [zyz]. The distance, denoted by de(u,v), between two vertices » and
v is defined to be the length of a shortest path connecting them in G. For
a vertex v € V(G), let N;(v) = {u € V(G) | dg(u,v) =i} for i = 1,2, and
put B(v) = |Ny(v) U Np(v)|.

A k-coloring of a graph G is a4 mapping ¢ from V(G) to the set of
colors {0,1,...,k — 1} such that ¢(z) # ¢(y) for every edge xy of G.
The chromatic number x(G) is the smallest integer k such that G has a k-
coloring. The square G? of a graph G is the graph defined by V(G?) = V(G)
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and two vertices u and v are adjacent in G2 if and only if 1 < dg(u,v) < 2.
Obviously, a mapping ¢ is a k-coloring of G2 if and only if ¢(u) differs from
¢(v) whenever u and v satisfy 1 < dg(u,v) < 2. Thus a k-coloring of G2 is
usually called a square-k-coloring of G.

It is obvious that x(G?) > A +1 for any graph G. This lower bound is
sharp. In fact, we have x(T?) = A + 1 for every tree T with |V(T)| > 2.
On the other hand, it is easy to sce that x(G?) < A% +1 for any graph G.
This upper bound is also sharp. The 5-cycle and the Petersen’s graph are
two examples.

Wegner [8] first investigated the chromatic number of the square of a
planar graph. He proved that x(G?) < 8 for every planar graph G with
A = 3 and conjectured that the upper bound could be reduced to 7. Re-
cently, Thomassen [5] has established Wegner’s conjecture. In (8], Wegner
also proposed the [ollowing conjecture. The upper bounds are sharp if the
conjecture is true,

Conjecture 1 Let G be a planar graph of maximum degree A. Then

o[ A+5  ifd<Ac<T
X(G)S{ 13A]+1 if A28

This conjecture still remains open. van den Heuvel and McGuinness [1)
proved x(G?) < 2A + 25 for any planar graph G. The best known result
so far is x(G?) < [5A/3] + 78 [4]. Lih, Wang and Zhu [3] established the
conjecture for a K,-minor free graph. It is shown [7] that x(G?) < A+16 for
a planar graph G of girth at least 5. In this paper, we study the chromatic
number of the square of an outerplanar graph G. It is established that
x(G?) < A(G) + 2, and x(G?) = A(G) + 1 if A(G) > 7. A different proof
of this result will appear elsewhere [2].

2 A Structural Lemma

A planar graph is called outerplanar if it has a plane embedding such that
all vertices lie on the boundary of some face. An outerplane graph G is a
particular fixed embedding of an outerplanar graph. We choose one face of
G that contains all vertices to be named the outer face of G, and we call
the other faces inner faces. The edges belonging to the boundary of the
outer face are called ouler edges and other edges inner edges. An inner
face f of G is called an endface il the boundary of f contains exactly one
inner edge, i.e., the boundary of f contains exactly two vertices of degree
3 or more. When the vertex corresponding to the outer face is deleted, the
dual graph of G is a forest of order at least 2. Thus there exist at least two
leaves which determine two endfaces of G. We use T(v) to denote the set
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of endfaces of degree 3 each of which is incident to the vertex ». For n > 3,
let Q,, denote the outerplane graph obtained by adding n edges u us, uoua,
-+, upuy inside the 2n-cycle uyvjuovauas . .. uRUR Y.

The following lemma first appcared in Wang and Zhang [6]. Its frequent
use will be implied in the proof of Lemma 2.

Lemma 1 Let G be a 2-connected oulerplanar graph with at least 5 ver-
tices. Then

(1) G contains at least two 2-verlices;

(2) every vertex is adjacent to at most two 2-vertices;

(3) for any two 2-vertices u and v, N1(u) # Ny(v).

Lemma 2 Let G be a 2-connected outerplane graph with A > 3 and G ¥
Qn for alln > 3. Then Lhere exists a 2-verter v such thatl

(i) B(v) S B A>T, and

(i) Bx) <A+1ifALS.

Proof. First assume that A > 7. To prove (i) by contradiction, we let G
be a counterexample outerplane graph. Thus

B(v) > A+ 1> 8 for every 2-vertex v of G. (*)

Claim 1. If a 2-vertex » is adjacent to two vertices x and y such that
da(z) < de(y), then de(y) > 4 il zy ¢ F(C), and de(y) > 5 il zy € E(G).

Suppose that zy ¢ [(G) and de(y) < 3. Then B(v) = |Ny(v)| +
[N2(v)| € 24 (de(z) = 1) + (de(y) — 1) < 6 < A, contradicting (x). If
zy € E(G) and d¢(y) < 4, we have B(v) = |[Ni(v)| + |[No(v)| < 2+ (4 -
2) + (4 — 2) = 6, again contradicting (*).

Claim 1 implies that every 2-vertex of G is adjacent to at most one other
2-vertex. Furthermore, using () repeatedly and discussing case by case,
we can show the following Claim 2.

Claim 2. Every 2-vertex v occurs in one of the following configurations
(B1)-(B6):

(B1) a path zvuy such that dg(u) = 2 and min{de(z),de(¥)} > A -1;
(B2) a path zvy with dg(y) = dg(z) such that the following hold:
Il zy € E(G), then cither dg(z) 2 5, or dg(z) = 4 and T'(z) =
{[zvy]};
If zy ¢ I5(G), then cither dg(x) > 4, or dg(z) =3 and T(z) = 0;
(B3) two vertex-disjoint. endfaces [zvy] and [wuz] joined by an outer edge
yw such that dg(u) = 2, dg(y) = dg(w) = 3, and dg(z) = de(z) = A;
(B4) two edge-disjoint. endfaces [zvy] and [yuz] with a common vertex
y such that d¢(u) = 2, de(y) = 4, and min{dg(z),dc(2)} > A —1;
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(B5) a subgraph obtained from (B4) by removing the edge yz;

(B6) a subgraph obtained from (B4) by removing the vertex u, and
furthermore by removing the edge zz (if zz € E(G)), such that either
dg(z) > 4, or dg(z) = 3 and T(2) = 0.

For a 2-vertex v, we define the following operations (7;) to (73).

(m1) If (B1) or (B2) holds, we remove v (and » for (B1)) then add the
edge zy to G (provided zy ¢ E(G).)

(m2) If (B3) or (B4) holds, we remove u,v,y (and w for (B3)) then add
the edge zz to G (provided zz ¢ F(G).)

(3) If (B5) or (B6) holds, we remove v,y (and u for (B5)) then add the
edge zz to G (provided zz ¢ E(G) in (B5).)

Let vy, v2,---, v be all the 2-vertices of G which are arranged in the
boundary of the outer face in clockwise direction. We first carry out (1)
to (73) for vy, then for vg,v3, - -, ¥y, in their order. Let I be the resultant
graph. It is easy to see that /H is a 2-connected outerplane graph. Let ¢
be an arbitrary vertex of H. Then t € V(G) and dg(t) > 3. We want to
show that dy(t) > 3, i.e., the operations (71) to (73) do not lead to new
2-vertices.

However, Lemma 1 asserts that §(H) = 2. A contradiction is produced.

Since ¢ is adjacent to at most two 2-vertices in G by Lemma 1, it lies
on the common boundarics of at most Lwo endfaces of G. Moreover, the
operations (71)-(73) and the structures of (B1)-(B6) imply that at most
one 3-vertex or 4-vertex is removed in the meantime when some 2-vertex
adjacent to ¢ is deleted. Ience at most four neighbors of ¢ in G are removed.
This implies that dy(t) 2 dg(t) —4 2 3 il dg(t) 2 7.

Assume that 5 < dg(t) < 6. We first notice that ¢ is not incident to any
endface [uvt] such that dg(v) = 2 and dg(u) = 3 by (). I dy(t) < 2, then
t must belong to at least one configuration (B4) in G with zz € E(G) by
(m1) to (73). Thus some 2-vertex v in (BB4) satisfies B(v) < 7, contradicting
(*). Therefore dy(t) > 3.

Assumc that dg(t) = 4. Then |T(¢t)] < 1 (otherwise, ¢t would be removed
by (72)), and t does not occur on any configuration (B4) with zz € E(G)
by (). I[|T'(¢)] =0, then dy(t) = dg(t) =4. Il [T(¢)| =1, then dy(t) >
4-1=3by (n) and (73).

Assume that d¢(t) = 3. We claim that |T(t)] = 0, thus dy(t) = de(t) =
3. Suppose on the contrary that ¢ is incident to some endface [tuz] in G
with dg(u) = 2. Let y denote the neighbor of ¢ in G that differs from » and
z. Then it is easy Lo see that dg(z) = A and zy ¢ E(G) by (*). In this
case, ¢ should be removed from G by (2) or (73). This is a contradiction.

Now we prove (ii). If G contains a 2-vertex v adjacent to two other 2-
vertices, then B(v) < 242 =41 < A+ 1. If G contains a 2-vertex v lying on
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the boundary of some endface of degree 4, then S(v) < 2+(A-1)+1-1=
A + 1. So we assume that every endface of G is of degree 3. When A = 3,
there exists a 2-vertex v in any cndface to make 8(v) < 4= A+ 1. Assume
A = 4. Let [zyz] be an endface with dg(y) = 2. If min{dg(z), dc(z)} < 3,
then B(y) < 5. Assume dg(z) = dg(z) = 4. If z lies on the boundary
of some other endface [uvz] such that dg(v) = 2 and uz € E(G), then
B(y) < 5. Otherwise, we repeat the previous argument to show eventually
G is isomorphic to Qy, where n = |G]/2. This contradicts the definition of
G. A similar argument works for z. Finally assume that 5 < A < 6 and
supposc that the lemma is false. Then G possesses the following properties:

(a) G has no endface [zyz] with dg(y) = 2 such that either dg(z) =
dg(z) = 4 or min{dg(z),dc(z)} = 3;

(b) G has no two edge-disjoint endfaces [zvy] and [yuz] such that dg(v) =
dg(u) =2, de(y) =4, and zz € E(C).

Let /I denote the outerplane graph obtained from G by doing the fol-
lowing:

(1) removing all 2-vertices;

(2) if v is a 4-vertex incident to two endfaces [vuz] and [vwy] with
dg(u) = de(w) = 2, then we remove v and afterward add the edge xy.

Analogously to the proofl for (i), we can show §(/I) > 3, which con-
tradicts the fact that §(//) = 2 by Lemma 1. The proof of the lemma is
complete. ]

3 Coloring the Square

Let G be a connected graph of maximum degree A. It is straightforward
to verify the following facts. I A = 0, then x(G?) = 1. If A = 1, then
x{(G?)=2. If A=2and Gis apath, then x(G2) =3=A+1. fA=2
and G is a cycle, then 3 < x(G?) £ 5. Moreover, x(G?) =3=A+1ifand
only if [V(G)| = 0 (mod 3); x(G?) =5 = A +3 if and only i |[V(G)| = 5.
Thus we always assume A > 3 in the sequel.

The following lemma is an casy observation,

Lemma 3 Let z be a cul vertex of the graph G. Let the vertez sets of the

components of G —x be V1, Va,...,Vin. Lel G; be the subgraph induced by

Viu{z} fori=1,2,...,m. Then x(C?) = max{da(z)+1,x(G?), x(G%). ...,
(G2}

Lemma 4 For anyn > 3, x(Q2) = 5 except x(Q3}) = x(Q3) = x(Q2) =

Proof. For every n > 3, it is easy to show that 5 < x(Q2) < 6. Since
Q3 is isomorphic Lo Kg and Q3 contains Kg as a subgraph, we derive
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x(Q3%) = x(Q3) = 6. Notc that, for any square-k-coloring of Q7, every
color class V;, 0 < ¢ < k — 1, contains at most three vertices. If |V;| = 3,
then V; contains at least two 2-vertices. Since Q7 has seven 2-vertices, there
are at most three ¢’s such that |V;| = 3. This implies that the number of
colors that are assigned to at most two vertices is at least 3. Thus k& > 5,
ie., x(Q3) =6.

Now assume n > 5 and n # 7. It suffices to construct a square-5-coloring
of @, in every possible case.

If n = 0 (mod 5), we color the sequence of vertices uy, vy, u2, %2, -, Un, Un
with repeated uses of the color sequence 0, 1, 2, 3, 4.

If n =1 (mod 5), we first color u; and u, with 0, up and us with 1, ua
and ug with 2, vy, 3,25 with 3, and v,, v4, v with 4. Then we color the
sequence of vertices uy, vz, ug, vg, - * -+, Uy, ¥y With repeated uses of the color
sequence 0, 3, 1, 2, 1.

Ifn =2 (mod 3) and n > 12, we first color uy,uq,u7,u19 With 0,
ug, ug, ug, uyy With 1, ug, ug, ug, u12 with 2, vy, v3, vs, v7,v9, 11 with 3, and
V9, U4, Vg, U8, V10, ¥12 With 4. Then we color the sequence of vertices u,3,
V13, %14, V14, * -, Un, Up With repeated uses of the color sequence 0, 3, 1, 2,
4.

If n = 3 (mod 5), we first color vy, v, vs,v7 with 0, u;,u4,ve with 1,
ug, Vg, ur With 2, vg, us, ug with 3, and ua, ug, vg with 4. Then we color the
sequence of vertices ug, vg, 110, Y10, ' **,Un, Un With repeated uses of the
color sequence 1, 2, 0, 3, 4.

If n = 4 (mod 5), we first color uy,u4, u7 with 0, ug,v4,ve, vs With 1,
v9, us, U7, Vg With 2, vy, v3,v5, ug with 3, and ug3, ug, ug with 4. Then color
the sequence of vertices uyq, v10, %211, Y11, * **, Un, Un With repeated uses of
the color sequence 0, 3, 1, 4, 2. (]

Theorem 5 If G is an oulerplanar graph with A > 3, then x(G?) < A+2.

Proof. We proceed by induction on the order |V(G)|. We may suppose
the connectedness of G. If [V(G)| < 4, the theorem holds trivially. Let G
be an outerplanar graph with A > 3 and |V(G)| > 5. Suppose that v is a
cut vertex of G, i.e., G = G,UG,U- - -UG,, such that V(G;)NV(G;) = {u}
for all © # j. If A(G:) > 3, then, by the induction hypothesis, x(G?) <
A(G))+2< A+2. If A(G:) €2, then x(C?) <5< A+ 2 as remarked in
the beginning of this section. Thus x(G?) < A +2 by Lemma 3.

Now suppose that G is 2-connected. Il (G is isomorphic to @y, for some
n > 3, then x(G?) < 6 = A +2 by Lemma 4. Otherwise, there is a 2-vertex
v € V(G) such that 8(v) < A+1 by Lemma 2. Let z and y be the neighbors
ofv. Il zy & E(C), let H = C — v + zy; otherwise let H = G — v. By
the induction hypothesis, /1 has a squarc-(A + 2)-coloring. We can extend
this coloring to the graph G since the vertex v has at most A + 1 forbidden
colors whereas the number of colors used is A + 2. a
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Using Lemma 2, and similarly to the proof of Theorem 5, we have the
following,

Theorem 6 If G is an outerplanar graph with & > 7, then x(G?) = A+1.

For an outerplanar graph G with A = 3 and containing a 5-cycle Cs,
we have x(G?) > x(C2) = 5. Thus x(G?) = 5 = A + 2 by Theorem 5.
Lemma 4 asserts that there exist outerplanar graphs G with A = 4 and
x(G?) =6 = A + 2. In contrast, we would like to pose the following.

Conjecture 2 Every outerplanar graph G with 5 < A < 6 has x(G?) =
A+1.
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