BOUND FOR 2-EXPONENTS OF PRIMITIVE EXTREMAL
TOURNAMENTS
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ABSTRACT. We consider a 2-coloring of arcs on the primitive ex-
tremal tournament with the largest exponent on n vertices. This
2-colored digraph is a 2-primitive tournament. Then we think of the
2-exponent of a 2-primitive tournament. In this paper we give an up-
per bound for the 2-exponent of the primitive extremal tournament.

1. INTRODUCTION

We use the notation and terminology for digraphs as in [1]. In this
paper we let D = (V,E) be a digraph and D be a 2-coloring of D =
(V,E). A nonnegative square matrix A is primitive provided there is a
nonnegative integer k such that A¥ is entrywise positive (some authors say
strictly positive), denoted by A* >> 0. If A is primitive, the smallest integer
k such that A* has only positive entries is called the ezponent of A, denoted
by exp(A).

The following inequality was stated by Wielandt[10] and recently, Schnei-
der[8] found his original manuscript with proof.

Proposition 1.1. [8, 10] Let A be a primitive (0, 1)-matriz of order n > 2.
Then

(1) exp(4) < (n—1)*+1

Equality holds in (1) if and only if D(A) is isomorphic to Figure 1.
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FIGURE 1. The extremai i;rimitive digraph of Wielandt

As defined in [6], a positive discrete homogeneous 2D-system is described
by the equation.

@) x(h+1,k+1)=Ax(h,k+ 1)+ Bx(h +1,k), b,k € Z,h+k >0,

where A and B are n by n nonnegative matrices and the initial conditions
x(h, —h) (h € Z integers) are nonnegative n by 1 vectors. System (2) is
called the 2D-system associated with the nonnegative matrix pair (4, B).
Positive discrete homogeneous 2D-dynamical systems are used to model
diffusion processes discretely(see [5]). A component of the vector x(h, k)
typically represents a quantity such as pressure, concentration or density
at a particular site along a stream. We can view this stream as flowing left-
to-right along the line y = —z. The points (h, ~A) (h € Z) correspond to
the discrete sites h(h € Z) along the stream. The vector x(h, k) represents
the conditions at site h after h+k time-steps. Thus, x(h, —h) describes the
initial conditions at site k, the vector x(h, —h + 1) describes the conditions
at site h after 1 time-step, etc. Note that by setting ¢t = h + &k + 1, the
equation (2) indicates that conditions at site A + 1 after ¢ 4+ 1 time-steps
are determined in a linear, time and location autonomous fashion from the
conditions at site h+1 after ¢ time-steps and the conditions at site h after ¢
time-steps. Thus, at each time-step the conditions of a site are determined
by its previous conditions and the conditions of the site directly upstream
from it [9].

Definition 1.2. [9] For nonnegative integers h and k, the (h,k)-Hurwitz
product, (A,B)"*¥) of A and B is the sum of all matrices that are a
product of h A’s and k B’s.



For example, (A4, B)(*% = A and
(A,B)?®? = A’B? + ABAB + AB’A + BA>B + BABA + B*A%.

We say the pair (A, B) of nonnegative matrices is 2-primitive provided
there exist nonnegative integers h and k such that A+k > 0 and (4, B)(**) >
0. The 2-exponent of the primitive pair (A, B) of matrices is defined
to be the minimum value of h + k taken over all pairs (h, k) such that
(A, B)("*%) > 0. We write exp(A, B) for the 2-exponent of the pair (4, B).

In [6] it is shown that the nonnegative matrix pair (A4, B) has both A
and B nonzero and is 2-primitive if and only if the solutions to (2) are
eventually strictly positive. This shows that the definition of 2-primitivity
of matrix pairs truly generalizes the concept of primitivity for nonnegative
matrices.

A two-colored digraph is a digraph whose arcs are colored red or blue.
We allow loops and multiple colored arcs from i to j. There is a natu-
ral correspondence between two-colored digraphs and nonnegative matrix
pairs. With each two-colored digraph D we associate a pair (A4, B) of (0, 1)-
matrices where the (i, j)-entry of A is 1 if and only if there is a red arc from
i to j, and the (7, j)-entry of B is 1 if and only if there is a blue arc from
i to j. For each pair (A, B) of nonnegative n by n matrices, we associate
the 2-colored digraph, D(A4, B), with vertices 1,2,...,n, a red arc from
to j if a;; > 0 and a blue arc from ¢ to j if b;; > 0. An (h,k)-walk from
i to j in D is a walk from ¢ to j consisting of h red arcs and k blue arcs.
One can easily show that the (i, )-entry of (4, B)®*) is strictly positive
if and only if there is an (h, k)-walk in D(A, B) from i to j. Given a walk
w in D, we write r(w) and b(w) for the numbers of red and blue arcs that
w has in it, and we call the column vector

T'('UJ) ={r\w
® [b(w) ] = (r(w), bw))

the composition of w. The two-colored digraph D is strongly connected
provided for each pair (7, j) of vertices there is a walk in D from i to j. We
say the 2-colored digraph D is 2-primitive provided the associated matrix

pair (A, B) is 2-primitive and the 2-ezponent of D is defined to be the 2-
exponent of (A, B). The matrix pair (A, B) is 2-primitive if and only if



there exist nonnegative integers h and k with h + % > 0 such that for each
pair (i, j) of vertices there exists an (h, k)-walk in D(4, B) from i to j.

Definition 1.3. [9] Let D be a 2-colored digraph and let C = {v1,72,-.-,7c}
be the set of all cycles of D. Set M be the 2 by ¢ matriz whose ith column
is the composition of i, and (M) be the additive subgroup of Z2 generated
by the columns of M. We call M the cycle matrix of D.

In Definition 1.3, (M) = Z2? implies that M has at least two linearly
independent columns. Moreover, since each closed walk of D can be de-
composed into cycles of D, the composition of each closed walk of D belongs
to (M).

Let n < ¢. The content of the n by ¢ matrix M, denoted by content(M),
is defined to be 0 if the rank of M is less than n and to be the greatest
common divisor of the determinants of the n by n submatrices of M, oth-
erwise.

A tournament of order n is a digraph which can be obtained from the
complete graph K, by assigning a direction to each of its edges. Let A be
the adjacency matrix of a tournament. Then A is a (0, 1)-matrix satisfying
the equation

A+ AT=7J-1

where J is the matrix of all ones and is called a tournament matriz [1]. In
this paper, we consider the 2-primitivity and the bound for 2-exponents of
2-colored tournaments.

In Section 2, we introduce some known results on tournaments and 2-
primitivity of 2-colored digraphs.

In Section 3, we consider a primitive tournament with the largest ex-
ponent n + 2, and we find an upper bound for the 2-exponent of D and
(h, k)-walks from ¢ to j for all i,j € V(D) satisfying our upper bound for
2-exponent.

Many applications of 2-primitivity can be found in [5, 9].

2. PRELIMINARIES

In [7], Moon and Pullman showed the following interesting facts about
tournaments.
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FIGURE 2. The irreducible tournament T}

Proposition 2.1. [7] Each vertez of an irreducible tournament T,, when
n > 3, is contained in at least one simple cycle of each length £, 3 < { <.

Proposition 2.2. [7] A tournament T, is primitive if and only if n > 4
and Ty, is irreducible.

Proposition 2.3. (7] If T,,, where n > 5, is an irreducible tournament
with exponent denoted by exp(Ty), then 3 < exp(Tp) < n+2.

Dulmage and Mendelsohn [3] have shown that there are gaps in the
exponent set of primitive matrices, i.e., that not every integer between 1
and (n — 1)2 + 1 can be realized as the exponent of a primitive matrix
in general. Moon and Pullman showed that there is essentially only one
irreducible tournament T (see Figure 2) and it has exponent 9 since

..., T8 = , T9 = J.
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In fact, there are six structurally different irreducible tournaments T3
(cf. Davis [2]) and they realize the exponents 4, 6 and 7. Dulmage and
Mendelsohn showed that there are no gaps, however, in the exponent set
of larger primitive tournaments.

Proposition 2.4. Ifn > 6 and 3 < k < n+ 2 then there is a primitive
tournament on n vertices with ezponent k.



FIGURE 3. A primitive tournament D of order n with
largest exponent n + 2

3. EXPONENTS OF EXTREMAL PRIMITIVE TOURNAMENTS

In this section we consider a primitive tournament D with exponent
n + 2 which is the largest possible exponent by Proposition 2.3. Then we
consider a 2-coloring of arcs on D, so the 2-colored D is 2-primitive, and
we show exp(D) < 4n + 5.

The following lemma shows that the digraph in Figure 3 is a primitive
extremal tournament having the largest exponent n + 2.

Lemma 3.1. [7, 11] Let D = (V, E) with V = {1,2,...,n}, (n > 3) and
E={Gi+1)]1<i<n—-1}U{(%]) | 3<j+2<i<n} bea digraph
as is in Figure 3. Then D is a strongly connected tournament of order n
and exp(D) =n + 2 whenn > 5.

An upper bound for 2-exponents of 2-primitive digraphs is given in
Lemma 3.2.

Lemma 3.2. [9] Let D be a strongly connected, 2-colored digraph with cycle
matriz M. For each pair (i,j) of vertices let p;; be a path from ¢ to j and
let w be a closed walk that goes through all of the vertices of D. Suppose

thatz = [ 27 22 --- 2z |T is a nonnegative, integer vector such that
each system
My = | i)
b(pi;)



has an integer solution x;; with 2 > X;;. Then D is 2-primitive and
exp(D) < h+ k, where h and k are defined by

h|_|rw)
[k}—[b(w)}-*-Mz'

Now we take an extremal primitive tournament D with the largest ex-
ponent and consider a 2-colored digraph D of it.

From now on, we only consider a 2-colored digraph D which is a 2-
primitive digraph on the underlying digraph D in Figure 3 with the given
cycle matrix M as all 3-cycles, 4-cycles and the n-cycle in D have only one
blue arc. As we can see, each vertex in D is contained in a 3-cycle and
4-cycle and there are (n — 2) 3-cycles, (n — 3) 4-cycles, (n — 4) 5-cycles, ...
, two (n — 1)-cycles, and one n-cycle. When we give this 2-coloring to the
underlying digraph, we still have remaining uncolored arcs in large cycles.
So we can find a bound on the exponent in the following theorem.

Theorem 3.3. Let D be a 2-primitive tournament on the underlying di-
graph D in Figure 8 with a cycle matriz M as all 3-cycles, 4-cycles and the
n-cycle in D have only one blue arc. Then

(4) exp(D) < 4n + 5.

Moreover, there are (3n + 3,n + 2)-walks from i to j for alli,j € V.

Proof Since each vertex in D is contained in a (2,1)-cycle and a (3,1)-
cycle, each walk from 7 to j consists of a path p;; and a collection of
(2,1)-cycles and (3, 1)-cycles. So we can use the 2 x 2 submatrix of cycle
matrix M, that is, M; = i’ f . Note that for each pair of vertices
i and j of D there exists a path p;; from 7 to j with r(p;;) < n —1 and

b(pi;) < 1. In fact, there are (k,0) and (¢,1)-paths for 0 < k¥ <n —1 and

0<<n—2 Let
v | _ | (i)
[v]‘M‘ [b(pij)]



Thick arcs: red
. Dotted arcs: blue

FIGURE 4. A 2-primitive tournament with exp(D) = 4n +5

T
After we find integer solutions [ u v ] for each path in case b(p;;) =0

or 1, we can easily see that [ v I < [ n; 1 ] Hence, it follows that
v

h 3 2 n—1
k 11 3
3n+3
n+2
Therefore, exp(D) < h+ k = 4n + 5 by Lemma 3.2. Here we don’t need to
have a closed walk that goes through all of the vertices of D in Lemma 3.2

since we can find (3n + 3,n + 2)-walk of length 4n + 5 from ¢ to j for all
i,j € V(D) as in Remark 3.4. O

The following Remark 3.4 shows that for each pair of vertices ¢ and j in
3n+3

D there exists a walk w;; from ¢ to j with composition +92

Remark 3.4. For the equality in (4) we can find a (3n + 3,n + 2)-walk
from 7 to j for all 4,7 € V in Figure 4. For the case of i = j, without loss of
generality, we take (4, j) = (1,1). Our walk that starts at vertex ¢ = 1 goes
one time around (2, 1)-cycle and goes to vertex 2 along a red arc, then goes
one time around (2, 1)-cycle and goes to vertex 3 along a red arc. Similarly
repeat up to vertex n— 1 and go to n along a red arc. Now we go two times
around (3, 1)-cycle and finally go to j = 1 along a blue arc. Then we have
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a composition

3 2 n-1| | 3n+3

11 3 | | n+2 |
Therefore if ¢ = j, since (h, k)-walk is a closed walk, it is just made of arcs
on (n — 1) (3,1)-cycles and three (2, 1)-cycles.

For the case of i # j, let p;; be a path from ¢ to j. Note that all (k, k)-
walks from ¢ to j in D are composed of the path p;; and cycles. Our walk
that starts at vertex ¢ goes to vertex j along the path p;;, then we find
a closed walk from vertex j to vertex j by the similar way for the case
i = j. This closed walk which is made of (2, 1)-cycles and (3, 1)-cycles has
(3n + 3 — r(pij))-red arcs and (n + 2 — b(pi;))-blue arcs. We now have a
composition

r(pij) + 3n+3-r(p;j) | _| 3n+3
b(pi;) n+2-bpy) | | n+2 |’

As we have seen, we analyzed the case of 2-primitive tournament which
is dense!, and we now have a linear order O(n!) upper bound as expected.

REFERENCES

[1] R.A.Brualdi and H.J. Ryser, Combinatorial Matriz Theory - Encyclopedia of Math-
ematics and its Applications, Cambridge University Press, Cambridge, MA, 1991.

[2] R. L. Davis, Structures of dominance relations, Bull. Math. Biophys., 16 (1954),
131-140.

(3] A. L. Dulmage and N. S. Mendelsohn, Graphs and matrices, Graph Theory and
Theoretical Physics, F. Haray, 167-277, Academic Press, 1967.

[4] F. M. Dong, K. L. Teo, C. H. C. Little and M. D. Hendy, Chromaticity of some
families of dense graphs, Discrete Math., 258 (2002), no. 1-3, 303-321.

[5] E. Fornasini, A 2D systems approach to river pollution modeling, Multidim. Syst.
Sign. P. 2 (1991), 233-255.

[6] E. Fornasini and M. Valcher, Directed graphs 2D state models and characteristic
polynomials of irreducible matrix pairs, Linear Algebra Appl. 263 (1997), 275-310.

[7] J.W. Moon and N.J. Pullman, On the powers of tournament matrices, J. Comb.
Theory 3 (1967), 1-9.

[8] H. Schneider, Wielandt’s proof of the exponent inequality for primitive nonnegative
matrices, Linear Algebra Appl., 853 (2002), 5-10.

[9] B.L. Shader and S. Suwilo, Exponent of nonnegative matrix pairs, Linear Algebra
Appl. 363 (2003), 275-293.

[10] H. Wielandt, Unzerlegbare, nicht negative matrizen, Math. Z., 52 (1950), 624-648.

1 Density of graph means the ratio of the number of edges and vertices of graph. {4]

11



[11] X.M. Ye, Primitive exponents of tournaments and the characterizations of their
extreme digraphs, Fujian Shifan Dazue Xuebao Ziran Kezue Ban 15 No. 3 (1999),
22-25.

SANG-GU LEE, DEPARTMENT OF MATHEMATICS, SUNGKYUNKWAN UNIVERSITY, SU-
WON, 440-746, REPUBLIC OF KOREA
E-mail address: sglee@skku.edu

HAN-GuUk SEOL, DEPARTMENT OF MATHEMATICS, DAEJIN UNIVERSITY, POCHEON 487-
711, REPUBLIC OF KOREA
E-mail address: shk@math.skku.ac.kr

JEONG-MO YANG, OFFICE OF INNOVATION STRATEGY, KOREA RESEARH FOUNDATION,
SEOUL, 137-748, REPUBLIC OF KOREA
E-mail address: jmyang@krf.or.kr

12



