Meandric polygons
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Abstract

The notion of meandric polygons is introduced in this paper. A
bijection exists between the set of meandric polygons and that of
closed meanders. We use these polygons to enumerate the set of
meanders which have fixed number of arcs of the meandric curves
lying above and below the horizontal line at a given point.

1 Introduction

In this paper we introduce the meandric polygons in order to represent the
closed meanders. This contributes to the study of a cutting problem.

We recall that a closed meander of order n is a closed self avoiding
curve, crossing an infinite horizontal line 2n times [4]. From now on, when
we refer to a meander we will mean a closed meander.

In Section 2 we present the meandric polygons, which are derived by
the transformation of the nested sets of the meanders into two Dyck paths.
There exists a bijection between the set of meanders and that of the me-
andric polygons. We study the properties of these polygons and we obtain
their construction, using strict contractions and binary trees. This section
is completed by presenting some criteria for meandric polygons.

Section 3 concerns the problem of the set of meanders which have fixed
number of arcs of the meandric curves lying above and below the horizon-
tal line at a given point. In order to enumerate these meanders, at first
we obtain an upper bound for the number of the corresponding meandric
polygons, which are constructed using binary trees. Then, by applying the
conditions for the matching property, we arrive at the exact solution of the
problem.

The following definitions and notation refer to notions that are necessary
for the development of the paper.
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A word u € {a,a} is called Dyck word if |u|, = |u|lz and for every
factorization u = pg we have |pl. > |p|a, where |ulq, |pla (resp. |ula, |pla)
denote the number of occurrences of a (resp. @) in the words u, p.

We denote the set of all Dyck words of length 2n by Dy,,. It is well known
that the cardinality of Ds, equals to the Catalan number C,, = ;%(2:)

Let u = wjug -+ ug, with u € Dy,. Two indices i, j such that i < 7,
u; = a, u; = & are called conjugates with respect to wu, if j is the smallest
element of {i + 1,7 + 2,...,2n} for which the subword w;u;t;---u; is a
Dyck word.

A Dyck path of length 2n is a lattice path in the first quadrant, which
begins at the origin (0, 0), ends at (2rn,0) and consists of steps (1,1) and
(1,-1).

A set S of disjoint pairs of [2n], such that |J {a,b} = [2n] and for

{ab}es

any {a,b},{c,d} € S we never have a < ¢ < b < d, is called nested set
of pairs on [2n]. Each pair of a nested set consists of an odd and an even
number. We denote the set of all nested sets of pairs on [2n] by Nan.
Sapounakis and Tsikouras (8] have presented a construction of Na,.

We denote by domsS all the elements of N*, that belong to any pair of
a nested set of pairs S; we recall that two nested sets S;, Sz are called
matching if domS; = domS; and domA = domB, A C S;, B € S7 imply
that either A= B =@ or domA = domS; [5}.

Finally, a permutation with repetitions ¢ = o(1)0(2):--0(2n + 1) on
[n+ 1] is called strict contraction of size 2n + 1 when

(i) e(1)=0(2n+1) =1
(i) loG+1)—o@@) =1,i=1,2,3,...,2n.

We easily notice that each meandric curve is separated by the horizontal
line into two sets of arcs. The arcs above (resp. below) the horizontal line
uniquely define an upper nested set U (resp. a lower nested set L) of Nap,.
The sets Uy L are matching [1]. Conversely, two matching nested sets S,
S’ of Na, uniquely define a meander of order n with U = S and L = §’ [5).

For example, for the meander of Figure 1 we have

U = {{1,8},{2,5},{3,4},{6,7},{9,12},{10,11}} and

L = {{1,2},{3,10}, {4,7},{5,6},{8,9}, {11,12}}.

We denote the number of closed meanders of order n by M,. Some
important results on the enumeration of M, can be found in [2] and [4].

It is well known (8] that there exists a bijection between Ds, and Naj,,
according to which each u € Ds, corresponds to an S € Nj, as follows :
{i,7} € S iff 4,7 are conjugate indices with respect to wu.

We denote by u (resp. u’) the Dyck word corresponding to U (resp.
L). Hence, the corresponding Dyck words of the meander of Figure 1 are
u = aaaddaddaadd and u' = aGacaddadaad.
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Figure 1: A meander of order 6

The same ideas have been applied in [6] where, for the presentation of
meanders, Motzkin words which are based on the Dyck words u,u’ have
been used.

2 Meandric polygons

To every word u (resp. u') of Do, corresponds a Dyck path P (resp. P’)
of length 2n, which passes through the points (i, f(¢)) (resp. (%, (%)),
i=0,1,...,2n of the first quadrant (resp. fourth quadrant) of the plane,
where

_ N JfE=-1)+1, fu;=a, i€ [2n]
f(O)—Oandf(z)—{f(i_l)_l, it = a ic[on)
Fli-1)~1, ifu=aq, i€ [2n]

(resp. f'(0) =0 and f'(i) = {f'(i —1+1, ifui=a, ie2n]”

Notice that the function f’ (resp. Dyck path P’) can be considered as
the “mirror image” (with respect to the z-axis) of some function f (resp.
Dyck path P).

Those two Dyck paths P and P’, corresponding to the matching nested
sets U, L, create a polygon 7, which characterizes every meander of order
n and it will be called meandric polygon.

For example for the meander of Figure 1 we have the meandric polygon
of Figure 2.
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Figure 2: The meandric polygon of the meander of Figure 1

We notice that there exists a bijection between the set of meanders of
order n and the set of meandric polygons.

Obviously, from the previous, every couple of nested sets S,5' € Ny,
(matching or not), translated into Dyck paths, defines a polygon passing
through the points (0,0) and (2n,0), which is inscribed in the square de-
fined by the vertices (0,0), (n,n), (2n,0) and (n, —n). The set of all those
polygons is denoted by II,,. Since the number of all Dyck paths of length
2n is equal to C,,, we deduce that the number of all polygons of I1,, is equal

to C2.
If p; = uyug - - - u; (resp. p} = ujuy---ul) is a subword of the Dyck word
u (resp. v') fori=1,2,...,2n— 1, then we have the following proposition.

Proposition 2.1 Let 7 be a meandric polygon of I1,,. Then, f(i) = |pi|la —
|pila (resp. |f'(D)| = Ipila — IPila), i € [2n - 1].

Proof. Indeed, the segment of the Dyck path which corresponds to the
subword p; = ujuz---u; (resp. pj = ujuy---uj) goes up |pils (resp. |pils)
times and down |p;|5 (resp. |p|s) times, until it passes through the point
(2, (1)) (resp. (i, f'(3)))- o

We introduce the sequences f = (f(i))iefzn—1] 2nd /' = (17'() )ie(zn-1),
for every meandric polygon. We remark that if we include the terms f(0) =
f(2n) = f'(0) = f'(2n) = 0, then they define a unique meandric polygon.
Hence, we shall use the notation of (f, f') in order to define a meandric
polygon 7 of II,,.

For example, for the meandric polygon of Figure 2 we have
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1(2|3]|4|5(6[7]|8|9]|10]11
flrj2(3)2f1j2|1(0f1]2]1
fflrfoji1l2(3f2f{1]2|1f({o0f1

The terms of these sequences express the heights of the vertices of a
2n~1
meandric polygon of II, and their sum ) (f(¢) + |f(Z)]) expresses its

=
area. This is an immediate application of thie well-known formula by Pick
[7] according to which the area of a simple lattice polygon equals to I+ % -1,
where I is the number of interior lattice points and B is the number of
boundary lattice points. In the case of meandric polygons we have that the

area is equal to 22—:11 (@) +2§l(|f'(i)| -1+ -1= 221”(2') +|f'(&)) -

(2rn—1)+(@n—1) = 22‘()*@) F1F@)).

From the sequences f and f/, we obtain the sequences f = (f(2n —
))ieizn-1)» ' = (|f'(2n — 9)])icj2n-1) and we deduce the following proposi-
tion.

Proposition 2.2 If (f, f') defines a meandric polygon of I,, then (f’, f),
(f, f") and (f', f) define also meandric polygons of Il,,.

Proof. The pairs (f, f), (f', ), (f, ), (', f) define meandric polygons
corresponding to the basic symmetries of meanders. In fact, the meander
corresponding to (f’, f) is the reflection of the meander corresponding to
(f, ') with respect to the horizontal line, ( £ F ) is the reflection of (f, f’)
with respect to the vertical line and finally ( f’ , f) is the 180° rotation of
(£, ). O

We remark that the above sequence f can be related to a strict contrac-
tion o. In fact, from every strict contraction o we can deduce the sequence
f, through the relation f(i) = o(: +1) — 1.

For the sequence f and the strict constraction ¢ we have that |f(i +
1) - f(?)| = lo(i +2) — o(i + 1)] = 1. Also, the relations ¢(2) = ¢(2n) = 2
always hold and imply the relations f(1) = f(2n — 1) = 1. So, there
exists a bijection between the set of the sequences f and that of the strict
contractions o.

We can see an example in the following table.

c|1]2]1[2]3[4[3]4[3[2][1
Floftjol1|2|3[2[3[2(1]0

Now, in order to construct the sequences f and f’, we use the binary
trees, which produce the strict contractions. More specifically, in [8], for
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the determination of the strict contractions of size 2n + 1 a binary tree
Aon 4 is used, which satisfies the following properties:

(i) The vertices lie on 2n + 1 levels and correspond to the possible values
of o(3), 1 € [2n + 1].

(ii) Each vertex is labeled by an integer v € [2n + 1], so that the root is
labeled by 1 and each left (resp. right) child of a vertex v is labeled
by v — 1 (resp. v+ 1).

(iii) If a vertex v belongs to the k*h level, then v < min{k,2n + 2 — k}.

So, we have the following result.

Proposition 2.3 A binary tree To, -1 of height 2n—1 and with each vertex
labeled by an integer v € {0,1,2,...,n}, such that

(i) the root is labeled by 1,

(it) each left (resp. right) child of a vertex v is labeled by v—1 (resp. v+1),
(iii) if a vertex v belongs to the e" level then v < min{e,2n — e},

produces the C, finite sequences f.

Proof. Indeed, if we reduce the numbers of the labels of the vertices of the
tree Agp4 by 1 and we omit the first and the last level, we obtain the tree
T5n.—1. In this tree every path from the root to a leaf, corresponds to a
sequence f. O

For example, for meanders of order 4 we have the following binary tree
T3, providing C; = 14 sequences f.

Figure 3: The binary tree T7.

Proposition 2.4 If 7 is @ meandric polygon and
j=min{ke {i+1,i+2,...,2n}: f(i - 1) = f(k) < f(k-1) = f(i)},
then (i,7) € U.
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Proof. From the relations f(i — 1) < f(i) and f(k) < f(k — 1), we deduce
that u; = @ and u = @. Since for these indices 7, we have that i < j,

u; = a, u; = & and j is the smallest element of {i + 1,7+ 2,...,2n} for
which the subword u;u;4 - --u; is a Dyck word, we conclude that ¢, j are
conjugate indices. Thus, {i,j} € U. O

In order to determine whether a polygon p of II, is meandric, we
label the consecutive steps of the Dyck path P (resp. P’) correspond-
ing to the nested sets S, (resp. §’) with the numbers 1,2,...,2n (resp.
1,2,...,(2n)’). Practically, according to Proposition 2.4 we remark that
{i,7} € S if the i and j steps “are facing each other” and there is no other
intermediate step between them.

With vertices the middle points of these steps, we create a hamilto-
nian cycle hs = [1,41,4}, 35,42, i3, .. .,15, 1], with (1,4,) € S, (¢},45) € &,
(i2,43) € S,...,(i5,1) € S'.

Proposition 2.5 A polygon p of I, is meandric iff there exists one hamil-
tonian cycle hs of length 4n.

Proof. Let m be a meandric polygon of IT,. Then, its corresponding nested
sets U, L are matching. By the definition of matching sets, this means that
U, L do not have proper subsets both using the same elements of [2n]; hence,
a hamiltonian cycle of length less than 4n cannot be defined.

Conversely, if there exists a hamiltonian cycle of length 4n, then all the
elements of [2n]| “are used” by the nested sets S, S’ and hence there does
not exist any pair of proper subsets of S, S’ using the same elements of [2n].
Thus, S, S’ are matching. O

Obviously, when there exists a hamiltonian cycle of length less than 4n,
then the polygon is not meandric.

Figure 4: A non-meandric polygon
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For example, for the polygon p produced by the nested sets

S = {{1,4},{2,3},{5,12},{6,7},{8,9}, {10,11}}
§'={{1,8},{2,7'},{3,6},{4,5'}, {9, 10'}, {11',12}}

we obtain the hamiltonian cycle
hs =[1,4,4',5',5,12,12/,11’,11,10,10',9',9, 8,8, 1']
of length 16 < 24. Thus p is not a meandric polygon (see Figure 4).

We can also apply the following criteria, before the application of the
previous necessary and sufficient condition.

Proposition 2.6 Let p € II,,. If any of the following conditions holds,
then the polygon p is not meandric.

(i) f(i)+ f'(1) =0, f(i), f'(5) # O, for everyi € [2n —1].
(i1) There ezists at least one i € [2n — 1], such that f(i) = f'(i) = 0.
(iii) There ezists at least one i € [2n — 1], such that f(i) = f(i +2) =
FEG+1D)+1land f/G)=f'(i+2)=f(:+1)-1.
(iv) There erists at least one pair (i,7) € [2n — 1] x [2n — 1], such that
f@) = £(4), f'G) = f'(4) and f(k) > f(i), f'(k) < f'(é), for every
ke {i+1,i+2,...,j—1}.

Proof. Indeed, the polygon p is not meandric, since in every one of the above
cases we can form respectively the following hamiltonian cycles, which are
of length 4 (less than 4n):

(i) [1,2n, (2n)', 17, (i) [1, k, k', 1'], where k is the first element of [2n —1]
with f(k) = f'(k) =0, (iii) [¢,s+ 1,z + 1),¢], (iv) ¢ +1,5,7, (i +1)]. O

3 Cutting problem

Let a meander of order n. For any i € [2n — 1] we consider the vertical line,
passing through the middle point of the segment (2,7 + 1), which we call
the i-line. We denote by 8(¢) and &'(i) respectively, the number of arcs of
the meandric curve, which intersect the i-line and lie above and below the
horizontal line, which we call numbers of cuttings.

It is obvious that (i) (resp. 8'(¢)) is the number of pairs of the nested
set U (resp. L) of the meander, that contain i between their elements.

For example, for the meander of Figure 1 we have for i = 5, the numbers
of cuttings (5) = 1 and 6'(5) = 3.

Jensen, in the well known transfer matrix algorithm [2] introduces the
signature (h,S) where h is the number of loop-ends below the horizontal
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line and S is the integer whose binary representation corresponds to the
configuration of loop-ends. Although, the direction is completely different,
we would like to underline the relations between the numbers of cuttings
0(2), (i) and the signature (h, S): 6(¢) = |S| — h, ¢'(i) = h.

We denote the sequences of the numbers of cuttings by § = (8(2))ie2n-1j
and ¢’ = (9'(i))ie[2n—1|-

For the meander of Figure 1 we have the following sequences of numbers
of cuttings.

112|13(4(5]6]718[9]10]11
g |1(213|2|1(2|1|0|1] 2|1
gl1(oj1f2]|3j2|1(2|1]0]|1

Since the sum 6(z) + 6'(¢) is always even, the numbers 6(z), ¢'(¢) are of
the same parity.

From the left side of the i-line of the meander there can be at most i
arcs that have traces on it; the same argument holds for the right side, with
2n—1 arcs. So, we have that 6(z) < min{i,2n—14} and ¢'(¢) < min{i, 2n—i}.

We observe that 8(z) < n, for every ¢ # n and 6(n) < n. The case 8(n) =
n is obtained for the meanders of order n, with nested set U = {{¢,2n +
1—4}:4=1,2,...,n}. Finally we have that 6(¢), ¢'(¢) € {0,1,...,n} and
obviously §(1) = 6(2n — 1) = ¢'(1) = §'(2n — 1) = 1. Thus, we obtain the
following proposition.

Proposition 3.1 For the sequences 8 and §' we have that:
(i) i, 8(i) and &' (i) have the same parity.
(ii) max{6(s),6'(:)} < min{i,2n — i}, i € [2n — 1].
(i) 0GE+1) - 03)| =16'(¢ +1) - 0'(3)| = 1.
Proposition 3.2 The sequences f and 6 (resp. f' and 8') coincide.

Proof. The number 8(z) (resp. 8'(i)) of arcs of the meandric curve which
could intersect the i-line and lie above (resp. below) the horizontal line is
the number of the arcs that “open” before the i-position (i.e. those with
u, = a (resp. u, = a) for 1 < v < i) and do not “close” before the
i-position, (i.e. those v with conjugate indices A > ¢ and u) = & (resp.
u) = @)). Therefore, 6(7) = |pila — Ipila and 6'(3) = |pi]a — [pila; hence,
from Proposition 2.1 we conclude that 6(i) = f(i) and 8'(Z) = |f'(¢)|, for
ie2n—1]. ]

Now, we determine two specific Dyck paths, both passing through the
point (,6(¢)). The first, which we denote by f(i), uses the maximum
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permitted values of f(i), whereas the second, which we denote by f(¢), uses
the minimum permitted values of f(¢). Notice that the highest vertices of
F(4) on either side of i are peaks of two pyramids (see Figure 5). The left
pyramid starts at (8(z), 6(¢)) and ends at (¢,6(¢)) and therefore its peak is

the point ('igﬂ, %@) The right pyramid starts at (¢,6(2)) and ends at

(2n — 8(3), 6(3)), and therefore its peak is the point (i+2"2_ 8G) 2"+"2(i)'i).
We easily deduce the following proposition.

Proposition 3.3 For every i € (2n — 1] we have that f(i) < f(i) < f(i).

Similarly, the proposition holds for f’(2).
For example, for the meander of Figure 1, we have the following:

1]2[3]4]5]6[7[8]9]10] 11
Fol1]2[3]2]1(2[1|0|1| 21
o) |1 2[3|2|1|2|3[4[3]2
j@|1[o[t[o|1[0|l|o|L]O

The main problem is to find the number of meanders of order n with
given numbers of cuttings 8(2), &’ (<) at . For the existence of such meanders,
the first two conditions of Proposition 3.1 must hold.

This problem is related to the one of finding the number I1, (z; (8(2), 8’ (¢)))
of polygons of II,, with the Dyck path P passing through the point (2, 8(z))
and the Dyck path P’ passing throught the point (i, —8'(3})).

We can now deduce the following proposition.

Proposition 3.4 For the polygons of I1, we have

I (45 (6(2), 0/ (4))) = wn(4; 0(3)) - wa (36 (3)),

wn(B7) = 53 1()?2;1-)1 gy (2;1) (27¥ 1)'

Proof. It is known [3], that the number of Dyck paths from (0,0) to (i, k)
is equal to

k+1 i+l or equivalentl t:ok+1 i+l
i+l \Mi+k+1) T YR ITFi\ st )

where

2

Hence, the number of Dyck paths from (0,0) to (Z, 8(¢)) is equal to

() +1(i+1
i+1 \=EQp
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while the number of Dyck paths from (¢, 8(%)) to (2n,0) is equal to

8(i)+1 (2n—i+1
n—i+1 2n-—12—0!1!

(considering that this is equivalent to the number of Dyck paths from (0, 0)
to (2n — ¢,6(2))). Thus, the total number of Dyck paths passing through
the point (, 8(?)) is equal to

o (@)1 [i+1)[2n—i+1
wy(4;6(1)) = G+ DEn—it1) (i—g(i)) ( 2n=i=0(i) )

O
Similarly, the above formula holds for the Dyck paths P’ passing through
the point (¢, —€'(z)).
From the above we conclude the following inequality:

M, (i; (6(3),0'(3))) < I (3; (6(3), 6'(3))).

For the meandric polygon of Figure 2, where n = 6, i = 5, (i) = 1
and @'(i) = 3, there exist wg(5;1) = 32_% g) (3) = 70 Dyck paths of length
12, passing through the point (5,1) and we(5; -3) = é%(f) () = 56 Dyck
paths of length 12 passing through the point (5, —3).

The above results can be determined by the following procedure (see
Figure 5) at the lattice defined by f(2), f(¢), f'(i), 7 (i) of the meandric
polygon of Figure 2.

Figure 5: Finding the numbers w,(5;1) and w,(5; —3)

157



The binary subtrees of Ty; with vertices 1 and 3 at their 5? level define
5-14 =70 and 4 - 14 = 56 Dyck paths of length 12 passing through the
points (5, 1) and (5, —3), respectively (see Figure 6).

Figure 6: The subtrees of T};

Thus, we have M,(5;(1,3)) < 70-56 = 3920 and we restric ourselves
to the study of these polygons instead of a total of C3 = 1322 = 17424.
Applying the criteria of Proposition 2.6, and finally the condition of Propo-
sition 2.5 for the 3920 polygons, we obtain that Mg(5;(1,3)) = 468.
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