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Abstract

It is always fascinating to see what results when seemingly different
areas mathematics overlap. This article reveals one such result; number
theory and linear algebra are intertwined to yield complex factorizations
of the classic Fibonacci, Pell, Jacobsthal, and Mersenne numbers. Also,
in this paper we define a new matrix generalization of the Fibonacci
numbers, and using essentially a matrix approach we show some properties
of this matrix sequence.
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1 Introduction

There is a huge interest of modern science in the application of the Golden
Section and Fibonacci numbers [8,13 — 16]. The Fibonacci numbers f, are
the terms of the sequence {0,1,1,2,3,5,...} wherein each term is the sum of
the two previous terms, beginning with the values fo = 0, and f, = 1. Pell
numbers are defined by a recurrence relation similar to that for the Fibonacci
numbers, and grow exponentially, proportionally to powers of the silver ratio.
Pell numbers arise in the approximation of the square root of 2, in the definition
of square triangular numbers, in the construction of nearly-isosceles integer right
triangles, and in certain combinatorial enumeration problems [1]. Pell numbers
are the sequence of numbers {p,}, .y defined by the linear recurrence equation
Prtl = 2Pn + Pu—1 With pp = 0 and p; = 1. Falcén and Plaza (3] introduced
a general Fibonacci sequence that generalizes, between others, both the classic
Fibonacci sequence and the Pell sequence. In [3], Falcén and Plaza showed the
relation between the 4-triangle longest-edge (4TLE) partition and the Fibonacci
numbers, as another example of the relation between geometry and numbers,
- and many properties of these numbers are deduced directly from elementary
matrix algebra. In [4], many properties of these numbers are deduced and
related with the so-called Pascal 2-triangle. In (5], the 3-dimensional k-Fibonacci
spirals are studied from a geometric point of view. These curves appear naturally

*Corresponding author. E-mail address: hacicivciv@selcuk.edu.tr
trturkmen@selcuk.edu.tr

ARS COMBINATORIA 87(2008), pp. 161-173



from studying the k-th Fibonacci numbers {Fi »} 7., and the related hyperbolic
k-Fibonacci_functions.

The Jacobsthal numbers are the sequence of numbers {jn},cy defined by
the linear recurrence equation jn41 = jn + 2jn—1 With jo = 0 and j; = 1 (see
[9], [10]). Microcontrollers (and other computers) use conditional instructions
to change the flow of execution of a program. In addition to branch instructions,
some microcontrollers use skip instructions which conditionally bypass the next
instruction. This winds up being useful for one case out of the four possibilities
on 2 bits, 3 cases on 3 bits, 5 cases on 4 bits, 11 on 5 bits, 21 on 6 bits, 43 on 7
bits, 85 on 8 bits, ..., which are exactly the Jacobsthal numbers (see [7]).

A Mersenne number is an integer in the form:

M,=2"-1, n2>21.

Mersenne numbers are very good test cases for the special number field sieve
algorithm, so often the largest number factorised has been a Mersenne number.
As of March 2007, 22!039 — ] is the record-holder, after a calculation taking
about a year on a couple of hundred computers, mostly at NTT in Japan and
at EPFL in Switzerland [11].

In tis paper, we present the (s,t)th Fibonacci and Fibonacci matrix se-
quences in an explicit way and, by easy arguments, many properties are proven.
In particular the (s, £)th Fibonacci matrices are related with the so-called (s, t)th
Fibonacci numbers.

2 (s,t)-Fibonacci numbers and complex factor-
ization

Definition 1 (Falcon and Plaza [3]) For any integer number k > 1, the k-
Fibonacci sequence, say {Fin},en 15 defined recurrently by

Fk,n+1 = ka.n + Fk,n-l forn2>1

with initial conditions
Fk,o =0; Fk.l =1.

Now, we introduce a new generalization of the kth Fibonacci numbers. It
should be noted that the recurrence formula of these numbers depends on two
real parameters.

Definition 2 For any real numbers s,t; the (s,t)th Fibonacci sequence, say
{Fn (8,t)}nen 18 defined recurrently by

Foyi(s,t) =8F, (8,t) + tFp_1(s,t) forn2>1, (1)
with Fy (s,t) =0, Fi(s,t)=1.
We assume t # 0, as well as s% + 4t #0.
Particular cases of the previous definition are:

o If s =t = 1, the classic Fibonacci sequence is obtained:

R (11 1) =F, (11 1) + Fa (1) 1) forn>1,
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with Fp(1,1) =0, Fi(1,1)=1:
{F.(1,1)},e8=10,1,1,2,3,5,8,13,...}.
o If s =2 and t = 1, the classic Pell sequence appears:
Fon1(2,1)=2F,(2,1)+ F-1(2,1) forn2>1,
with F5(2,1) =0, F;(2,1)=1:
{Fa(2,1)},en =1{0,1,2,5,12,29,...}.
e If s =1 and t = 2, the classic Jacobsthal sequence is obtained:

Fur1(1,2)=F,(1,2) + 2F,-1(1,2) forn>1,

with F5(1,2) =0, F;(1,2)=1:
{Fn(1,2)},en =1{0,1,1,3,5,11,21,...}.
o If s =3 and ¢t = —2, the Mersenne sequence appears:
Fop1(3,-2)=3F,(3,-2)-2F,_1(1,2) forn2>1,
with F(3,-2) =0, F1(3,-2)=1:
{Fa(3,-2)},en=1{0,1,3,7,15,...}.

In the sequel we will write simply Fy,, fn, Pn, jn, and m,, instead of F, (s,t),
F,(1,1), F,, (2,1), F,, (1,2), and F, (3, —2), respectively.

Binet’s formulas are well known in the Fibonacci numbers theory (7]. In
our case, Binet’s formula allows us to express the (s,¢)th Fibonacci number in
function of the roots « and B of the following characteristic equation, associated
to the recurrence relation (1) :

r?=gsr+t. (2)

Theorem 3 The nth (s, t)-Fibonacci number is given by

a™ - "
B=="p

where o and 8 are the roots of the characteristic equation (2), and a > 8.

Proof. The roots of characteristic equation (2) are o = m;ﬂﬁ, and 8 =
";%EE. Note that
a+f=3s and aff = —t,

a—B=1+/s2+4t.

Therefore, the general term of the (s,t)-Fibonacci sequence may be expressed

in the form:
F,=Cia™+ Czﬁ",
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for some coefficients C) and C,. The constants C; and C, are determined by
the initial conditions

0 = C+0Cy,
1 = Cia+C8.

Now, after -some algebra we get C) = -;_Lﬂ- = —Cj from where the result is
obtained. w

Next Theoren gives us the complex factorization of the (s, t)th Fibonacci se-
quence. In [2], it is showed how the classic Fibonacci and Lucas numbers arise as
determinants of some tridiagonal matrices, and given the complex factorizations
of the classic Fibonacci and Lucas sequences.

Theorem 4 The (s,t)th Fibonacci numbers {F,}>, satisfy, forn > 1,

Foa = klj1 (3 - 2ivheos -117:-_1‘:1) ' )
and [ ( | ‘)]
. sin [(n + 1) cos™! sy
proot. Foa= /2 i (cos—l (-%t&))

In order to derive (3), we introduce the sequence of matrices {M, (s,t) ,n = 1,2, ...

where M, (s,t) is the n x n tridiagonal matrix with entries mgx = 3,1 <k < n,
and Mg—1 k = My k-1 = ivt, 2 < k < n, with i = v/=1. That is,

s i/t
Wt s iV
M, (s,t) = ivt s
RPN AV
ivi s
Then the successive determinants of M,, (s, t) are given by the recursive formula:

|M1 (31 t)l = s

|Mz (s,t)] = &% +1t,

[Mp (8,t)] = 8|Mn-1(s,t)|+t|Mn_2(s,t)],n2>3.

Therefore, we write
Fot1 =My (s,t)],n 2 1. @)

We now introduce another sequence of matrices {G,,n = 1,2, ...}, where G,, is
the n x n tridiagonal matrix with entries g;; = 0,1 < j < n, and gj—1,; =
9ij-1=1,2<j £n. Thatis,
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Then, note that My, (s,t) = sI+iVtGn. Let Aj, j = 1,2, .., n, be the eigenvalues
of the matrix G, (with associated eigenvectors x;). Then, for each j,

M, (s,t)z; = [sI + i\/ZGn] z;
[s + i\/t:./\j] x;.

Therefore, p; = s+ivith, k = 1,2,..,n, are the eigenvalues of M, (s,t). It was
determined the A;’s as
nk
= - —, k=1,2,..
Ak 2cosn+l’ 12v ' 1y
in [2]. Thus, if we consider that the determinant of M, (s,t) is the product of
the its eigenvalues and the equality (4), then we have

Fn+1 = ﬁ (3—2?:\/2005 mk )

k=1 Tl'l'].

Now we will think of Chebyshev polynomials of the second kind as being gen-
erated by determinants of successive matrices of the form

2z 1
1 22 1
A(z,n) = 1 2z )
1
1 2z

where A (z,n) is n x n. Hence, we obtain

IMn (S, t)l = intn/2 (5)

Then the successive determinants of A (—"sm‘,n) are given by the recursive

formula:

A(_zs\/f,l) _ _is t,

T2t
A(—%{—E,Q) = -iti_l’
() - S

t 2 2

Note that this family of determinants can be expressed as the Chebyshev poly-
nomials of the second kind for y = —%té. Thus, for ¢ = cos™! (-”’ft&) we

get . .
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It now folows from (4), (5) and (6) that
sin [(n + 1) cos™! (—"2“)]
o o ()

Consequently, the proof is completed. =

Faia ="

3 (s,t)-Fibonacci matrix sequence

In this section, a new matrix generalization of the Fibonacci numbers is intro-
duced. It should bé noted that the recurrence formula of these matrices depends
on two integral parameters.

Definition 5 For any integer numbers s,t; the (s,t)th Fibonacci matriz se-
quence, say {Fn (s,t)}, N is defined recurrently by

Fnt1(8,t) = 8Fn (5,t) + tFna (s,t) forn2>1,

with Fo (s,t) = I, Fy(s,t)= ( ), where I is the 2 X 2 unit matriz.

s 1
t 0
We assume t # 0, as well as s2 + 4t # 0. In the sequel we will write simply
Fn instead of Fy (s,t).
Now, we have the following lemma.
Lemma 6 For any integer n > 1 holds:
— Fn+1 Fn
Fn = ( tF, tF,— ) ’
Proof. (By induction) Forn=1:
— s 1 _ F2 F)
“T“(t 0)‘(tF, tFo)

since Fy =0, F} = 1, and F; = s. Let us suppose that the formula is true for

n—1: F P
- n n-1
]:"_l - ( tFn—l tFn—2 ) ’
Then,
-1:" = an—l +tfn_2

_ Fn Fn—l Fn-l Fn—2

= ° ( tFa-y tFap ) +t ( tFay tFa3 )

— Fn+l Fn

- tF, tF,.,
a

Particular cases are:
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o If s =t =1, for the classic Fibonacci sequence, we obtain:

=B )

o If s =2 and t = 1, for the classic Pell sequence we have:
_f Pny1 Pn
Fn= ( Pn Pn-1 ) ’
o If s=1 and ¢t =2, for the classic Jacobsthal sequence we get:
= [ Jntr Jn
Fn ( %n  2n-1 ) '
e If s =3 and t = -2, for the Mersenne sequence we obtain:
_ Mp41 My
Fa= ( -2m, -2mp-1 )
Lemma 7 Fpn = FinFn for any integers m,n 2 0.

Proof. We use the second principle of finite induction on n to prove this lemma.
Let n = 0. _Then, the lemma yields F;, = FnFo since Fp = I. Now assume
that

Fmtn =FmFn forn <N.

Then,

Fomin41l = 8Fpyn +tFmin-1
= SFuFN+tFnFn-1
= Fm[sFn +tFn-1]

FmFN41-
u

3.1 Sum formulas for (s,t)th Fibonacci matrix sequence

In this section, we now shall show some properties for the sum of terms of the
(s, t)-Fibonacci matrix sequence.

Theorem 8 For s+t #1

w _ 1 Fopo+thp1—s—t Fop+tF, -1
k§1f"‘"s+t-1( tFo +t2F, —t tF, +t?F,_, -t ]’ ™)

Proof. In this proof, we assume that s +¢ # 1. Let S,, be the sum of the first
n terms Fi. That is,
Sp=F1+Fat ..+ Fn

The argument here is the same that used in the proof of the sum of the n first
terms of a geometric numerical progression: since, from Lemma 7,

SpFi=F+F+ .+ Fop,
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then
Sa (Fr = Fo) = Fns1 — F1.

Since det (F; — Fo) =1 — (s +t) # 0, F1 — Fo is invertible. And, therefore,

Sn = (Far1 = F1) (F1 — Fo) ™.

Note, now, that

Fapr —F1=

On the other hand,

~ .

Fia-1
tF,

Foyo—3s
tFn+l“"t

( )

_{s-1 1 -1 _ 1 1 1
f’_}"’_( t —1)”(}-‘_}-") _s+t—1(t 1—3)'
Therefore we get
S = 1 Foj2a+tFapn—s—t Fpp+tF, -1
T stt—=1\ tFha+tF-t  tF+tF,_, -t

which completes the proof. m

Corollary 9 If s =t =1, for the classic Fibonacci sequence:

n
kzl fivrr = farz+fos1—2=far3 -2,
n
kzlfk = fu+l +fn -1= fn+2 - ls
n
kzl fe-r = fatfaar—1=fap1 -1,

and, if s =2 and t = 1, for the

classic Pell sequence:

n 1
kZl Pea1l = 3 (Prt2 +Pns1 - 3),
=1 X
Pk = E(Pn+1+Pn—1),
k=1
n 1
z Dk-1 = 5 (Pn +Pn-1- 1) )
k=1

and, if s=1 and t = 2, for the

classic Jacobsthal sequence:

L 1,. .
2 Jker = ) (Jn+2 + 24n41—3),
k=1
LI, 1, .
ik = §0n+1+2.7n“1),
k=1
I 1. .
Z Jk-1 = 'é' (Jn + 2.711.—! - l) .
k=1
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Proof. The terms aj;,a;2 and asz of both sides of the equality (7) are equal,
the formulas is obtained. ®

By summing up the first n even terms of the (s,t)th Fibonacci matrix se-
quence we abtain the following theorem.

Theorem 10 Fort-s#1andt+s#1,

i Fa = 1 Fapny3 — t’an.H -2 42— (1 - l) Fonya + étFan“ -8
= (s-t+1)(t+s-1) tFyn42 — BFy, — st (t—t2) Fanga + st?Fon + 2 -t J°
Proof. In this proof, we assume that ¢t — s # 1 and ¢t + s # 1. The proof is
similar to the proof of Theorem 8, and we only show an outline of it. The sum
is.
Som=Fo+Fs+..+Fon.
Since det (F2 — Fo) # 0, Fo — Fy is invertible. By multiplying by 7, and, after
some algebra, we get:
Son = (Fansz - F)(Fa-Fo)!

1 (Fz,....s—s’-t Fapy2 -3 1-¢ ]
(s—-t+1)(t+s-1) tFonyp — 8t thony, ~t st l-t—a’)

1 Fant3 —3Fongy — 82 + 12 —¢ (1-F
— n m+2 + 8tFany) — 8
(s—t+l)(t+a—1)( tFon4a = t3Fpn — st (t= ) Prags + st?Fon +12 - ¢

from where the result is obtained. ®

Corollary 11 If s =t =1, for the classic Fibonacci sequence:

f: faewr = fanez = faner1 —1

k=1
= f2n+2"11
n
2 foe = faar—1,
k=1
n
Y foe-1 = fon,
=)

and, if s =2 and t = 1, for the classic Pell sequence:

n 1
Y Paksr = 7(P2n4a —Pans1 —4)
k=1
1
= 5(2m42-2),
L] 1
Z P = 5 (P2n+l - 1) )
k=1
n 1
E D2k-1 = 5?275'
k=1

It is seen that in a similar way, many formulas for partial sums of the (s, t)th
Fibonacci matrix sequence may be obtained and particularized for different
values of s and t.

Let z be a non-null real number. Next Theorem gives us the value for the
sum of the first (s, t)th Fibonacci matrices with weights z—*.
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Theorem 12 For each non-vanishing real number z :

if_—__l_ B T LY S
szt a?-sr—t tf—ﬁ'-"r‘”t—t’f —tfar —2fe 4y )7

Proof. The proof is similar to the proof of Theorem 8. And we only consider

n
the sum S, = ¥ fﬁ, and by using elementary matrix algebra we have desired
k=1
result. m
Now, we will obtain a closed expression for lm;o Z —f
— k_

Corollary 13 For each real number, such that z > i"'—‘%ﬂ :

n Fy z
lim =—_ .
nﬁookzl zk T x2—sz—1t

(8)

Proof. For t = 1, eq. (8) is known as Livio’s formula [12]. It should be noted
that the denominator of the right-hand side of Livio’s formula is precisely the
characteristic sth Fibonacci polynomial. Now, and also by using elementary

algebra, we will obtain a closed expression for nlmgo Z £ The proof of (8) is
00 k=1

based in the so-called Binet’s formula for the (s, ¢)th Fibonacci sequence. From
Theorem 3 and 12, we have

Jim 72— (——)c# =0,

since £ > a. And, therefore

n
Particular cases are:
o If s =t =1, for the classic Fibonacci sequence is obtained:

n fk x
lim —_-—
n—-ookzlz" z22-z-1’

. - . . . L - 0
which for z = 10 gives: lim k§l & =104
e If s =2 and t = 1, for the classic Pell sequence appears:

n

k z
im 2 2o T
n—vaok_lmk 2—2.’1:—1’

which for z = 10 gives: lim 3~ &% =13 [4].
el =1
e If s =1 and ¢t = 2, for the classic Jacobsthal sequence results:

n
ik z
n-wokz_:l:ck 2—z-2’
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noo,
which for z = 10 gives: lim ) & = 32.
n—o0 k-]
e If s =3 and t = -2, for the classic Mersenne sequence is obtained:

nomy x
lim > %
n—soo kz=:1 zk T 22 -3x+2’

. _ . T LI _. 10
which for z = 10 gives: nh_‘n;o kgl =0

3.2 Generating function for the (s,t)th Fibonacci matrix
sequence

In this section, the generating functions for the Fibonacci, Pell, Jacobsthal, and
Mersenne sequences are given. As a result, these sequences are seen as the
coefficients of the power series of the corresponding generating function.

Let us suppose that (s, t)th Fibonacci matrices are the coefficients of a poten-
tial series centered at the origin, and let us consider the corresponding analytic
function A(z). The function defined in such a way is called the generating
function of the (s, t)th Fibonacci matrix sequences. So,

Az) =Fo+ Fiz+ Fox’ + . + Fnz™ +....
And then,
$A(z)z = sFox + sF12% + sFox® + ... + sFpz™ ! + ..,
tA(z) 2? = tFox? + tF128 + thzt + .. + tFz™ 2 + ..

From where, since Fpy) = 8Fp + tFn-1, Fo =1, and F; = ( ': (1) ), it is

obtained
A(z) [1 - sz — ta?] = Fo + Frz — sFoz,

and, therefore, since the term a,2 of both sides are equal, we have the following
particular cases:
o If s = ¢ = 1, the generating function for the Fibonacci sequence {fn},en
is
z
A@ =1
o If s =2 and t = 1, the generating function for the Pell sequence {pa},cn
is
z
A=) = 1-2z—z2°
e If s =1 and ¢t = 2, the generating function for the Jacobsthal sequence

{jﬂ }nGN is

T
A@) =TT
o If s =3 and t = —2, the generating function for the Mersenne Sequence is
T
A(e)= 1-3z + 222
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In (17], the dynamic behaviour of the one-dimensional family of maps 4, (z) =
1/ (1 - az — bz?) is examined, for specific values of the control parameters a
and b. This is the generating function of the generalized Fibonacci sequence
described in the (1). Also, that paper it is observed that, as the parameters
change, the behaviour of the maps progresses from periodicity through bifur-
cations to a state of chaos. Period doubling bifurcations and periodic windows
are visualised, in a manner similar to the logistic map.

4 Conclusions

New (s,t)th Fibonacci and Fibonacci matrix sequences have been introduced
and studied. Many of the properties of these sequences are proved.
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