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Abstract

In this paper, we consider the relationship between the toughness
and the existence of fractional f-factors. It is proved that a graph
G has a fractional f-factor if ¢(G) > # - %i. Furthermore, we
show that the result is best possible in some sense.
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1 Preliminaries

The graphs considered here will be finite undirected graph which may have
multiple edges but no loops. Let G be a graph. We use V(G) and E(G)
to denote its vertex set and edge set, respectively. Let S and T be two
disjoint subsets of V(G). E¢(S,T) denotes the set of edges of G having
one vertex in S and the other in T. For a vertex z € V(G), we write Ng(z)
for the set of vertices of V(G) adjacent to z and use dg(z) and §(G) for the
degree and minimum degree of G. A subset S of V(G) is called a covering
set (an independent set) of G if every edge of G is incident with at least
(at most) one vertex of S. We use G[S] and G — S to denote the subgraph
of G induced by S and V(G)\ S.

Let g and f be two integer-valued functions defined on V(G). A span-
ning subgraph F of G is called a (g, f)-factor if g(z) < dr(z) < f(z) holds
for all z € V(F). A (g, f)-factor is called a k-factor if g(z) = f(z) = k. Let
h: E(G) — [0,1] be a function. A function k is called a fractional (g, f)-
factor if and only if g(z) < h(E;) < f(z) holds for any vertex =z € V(G),
where h(E;) = 3 . p_h(e), Ex = {e € E(G)|eis incident with z in E(G)}.
If g(z) = f(z) or g(z) = f(z) = k, then a fractional (g, f)-factor is called
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a fractional f-factor or a fractional k-factor. In particular, a fractional
[0,1]-factor is also called a fractional matching and a fractional 1-factor is
also called a fractional perfect matching[9,10]. Other terminologies and
notations not defined here can be found in [2,10].

A graph is t-tough if for any S C V(G) and w(G — S) > 1, we have
|S] > tw(G — S) holds where w(G — S) denotes the number of components
of G — S. A complete graph is t-tough for any positive real number ¢t. If G
is not complete, there exists a largest ¢ such that G is t-tough. This number
is called the toughness of G and denoted by t(G). We define ¢(K,) = .
If G is not complete, t(G) = min{ﬁ%ﬁ C V(G),w(G — S) 2 2}. The
toughness of a graph was first introduced by Chvétal in [4]. Since then,
much work has been contributed to the relations between toughness and
factors of a graph. The following result confirmed a conjecture stated by
Chvital.

Lemma 1.1 Let G be a graph. If G is k-tough, |V(G)| > k+ 1 and
k|V(G)| is even, then G has a k-factor.

The result is sharp since for any positive real number ¢, there exists
a graph G that has no k-factor with ¢(G) > k — ¢[5]. P. Katerinis stud-
ied toughness and the existence of f-factors and [a, b]-factors[6]. Recently
many authors are studying fractional factors. In [8] G.Liu and L. Zhang
discussed the sufficient condition of fractional k-factors with k£ > 1 related
to toughness.

Lemma 1.2 Let G be a graph with |V(G)| > 2. Then G has a fractional
I-factor if t(G) > 1.

Lemma 1.3 Let k > 2 be an integer. A graph G has a fractional
k-factor if t(G) > k — }.

J.Cai and G.Liu gave a result of fractional f-factors and Stability Num-
ber(3]. In this paper, we consider the relationship between the toughness
and the existence of fractional f-factors.

Theorem 1.4 Let G be a graph and f an integer-valued function on
V(G) satisfying a < f(z) Sbwith1<a<bandb>2 forallz € V(G) .
Ift(G) 2 -l%'-" - b—'bLl, then G has a fractional f-factor.

Obviously, we can obtain Lemma 1.3 with a = f(z) = b for all z €
V(G). From the example of [8], our result is also sharp in the sense of
f(x) =k for all z € V(G).

2 Proof of theorem

In [1] R.P. Anstee gave a necessary and sufficient condition for a graph to
have a fractional (g, f)-factor which Liu and Zhang gave a new proof(7].
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Lemma 2.1 A graph G has a fractional f-factor if and only if for any
subset S C V(G),
f(8) = f(T) + de-s(T) 2 0,

where T = {z € V(G)\ S,dc-s(z) < f(z) —1}.

To prove the result, the following lemmas are also needed.

Lemma 2.2[4] If a grapk G is not complete, then t(G) < 36(G).

Lemma 2.3(8] Let G be a graph and let H = G[T) such that dg(z) =
k —1 for every z € V(H) and no component of H is isomorphic to Kj
where T C V(G) and k > 2. Then there exists an independent set I and
the covering set C = V(H)\ I of H satisfying

1

k+1)m'

1
V) < (k= g57M, IC|<(k-1-

Lemma 2.4(8] Let G be a graph and let H = G[T) such that §(H) > 1
and 1 < dg(z) < k—1 for every x € V(H) where T C V(G) and k > 2.
let Ty, -+, Te—1 be a partition of the vertices of H satisfying dg(z) = J
for each z € T; where we allow some T; to be empty. If each component
of H has a vertex of degree at most k — 2 in G, then G has a mazimal
independent set I and a covering set C = V(H) \ I such that

k-1 k-1
>k —g)e; <Y (k- 2)(k - j)ij,
j=1 j=1

where ¢; = [CNTj| and ij = |INT}| for everyj=1,---,k—1.

Proof of Theorem 1.4. Suppose, by the contrary, that there exists
an integer-valued function f satisfying all the conditions of the theorem,
but G has no fractional f-factors. From Lemma 2.1 there exists a subset
S of V(G) such that

f(T) - de-s(T) > f(8), (1)

where T = {z € V(G)\S|dg-s(z) < f(z)—1}. Obviously, dg_s(z) < b—1
forall z € T. By Lemma 2.2, we have §(G) > 2t(G) > 2(%—""’71) > b+1.
Therefore S # @ by (1). Let [ be the number of the components of H' =
G[T] which are isomorphic to K and let Ty = {z € V(H')|dg-s(z) = 0}.
Let H be the subgraph obtained from H'—T by deleting those components
isomorphic to Kj.

If [V(H)| =0, then a|S| < f(S) < f(T) — dg-s(T) < b|Tp| + bl namely
1< 8] < &(|To| +1). Hence ! + |Tp| > & and w(G — S) > | + |Tp|. Clearly
I+ |To| 2 1. If I+ |To| > 1 or w(G — S) >l + |Tp|, then w(G — S) > 1 and

b
i(G) < w(IGS_'S) < ﬂl(f;‘;l,:;l) = %, This contradicts that t(G) > # —otl
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Jfw(G - 8)=1+4|To| =1, then dg_s(z) =b—1 or dg-s(z) = 0 for
€ V(G)\ S. Since dg_s(z) + |S| = de(z) = 6(G) > 2t(G), we have
IS| > 2¢(G) — (b—1) > t(G) > £ = £(|Ty| + 1), a contradiction.

Now we consider that |V(H)| > 0and §(H) > 1. Let H = HyUH, where
H, is the union of components of H which satisfies that dg_g(z) = b—1
for every vertex z € V(H;) and Hy = H — Hy. By Lemma 2.3, Hy has a
maximum independent set /; and the covering set C; = V(H;) — I; such
that

8] ele

V() S (b= I 2
and ]
(Gl S (b=1= 7 InL Q)

On the other hand, it is obvious that §(H2) > 1 and A(Hz) < b—1.
Let T; = {z € V(H2)|dg-s(z) = j} for 1 < j < b—1. By the definition
of H and Hy we can also see that each component of H; has a vertex of
degree at most b—2 in G- S. According to Lemma 2.4, Hy has a maximal
independent set I, and a covering set Cy = V(Hs) — I, such that

b—-1 b—1
D b=g)e; <3 (b= 2)(b - 3)ij, (4)
ji=1 i=1

where ¢;.= |Co NTj| and i; = |l N Tj| for every j = 1,---,b— 1. Set
W=V(G)—S—-Tand U = SUC, UC,U(Ng(ls) "W). Then since
|2 + |(Na(I2) "N W)| < Y0) ji; we obtain

b—1

U] < IS1+1C1 + ) _ dis (5)
=1
and
b-1
w(G-U)2to+1+|NhI+3 4, (6)
i=1
where ty = |Tp|. Let t(G) =t. Then when w(G —U) > 1, we have
U] 2 tw(G - U). (7)

In addition, the above inequation also holds when w(G—U) = 1, since from
Lemma 2.2, |U} > dg_s(z)+|S] 2 dg(z) 2 2t > tw(G—-U) forany z € T'.
By (5), (6) and (7) we have
b1
S| +1C1l = D (¢ = 5)is + t(to + 1) + t| 1. C)

=1
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- - 2 2 .
Beca.useofium'izi"—IM < 9%"—"{—1, we have t < "—‘;"—"—"”'Tl. It is
also a contradiction.

1 a
case 2 b—b+—l+ab—a— 71 > at
In this case we have

b l1+a b 1 +b b+1

t<—+b———m——-1<—+b—-—=--1< -
<etiTaman " lletiTyTls b
This also contradicts the condition of Theorem. a
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