On Graceful Generalized Spiders and Caterpillars Hui Cheng ¹ Bing Yao² Xiang-en Chen Zhong-fu Zhang a. College of Mathematics and Information Science, Northwest Normal University, Lanzhou, 730070, China b. Institute of Applied Mathematic, Lanzhou Jiaotong University, Lanzhou 730070, P.R.China #### Abstract In this paper, we, by means of Rosa's α -labelling and k-graceful labelling, prove the generalized spiders, generalized caterpillars and generalized path-block chain the gracefulness to be graceful under some conditions. The some of results are stronger than that obtained in [4]. Mathematics subject classification (MSC2000):05C78 Keywords: graceful graph, labelling, spider, caterpillar #### 1. Introduction Let G be a graph with the vertex set V and edge set E. If f is an injection from V into $\{0,1,2,\cdots,|E|\}$ such that an edge uv label is |f(u)f(v) and any two edges labels are distinct, then f is said to be a graceful labelling of G and, one often say G is graceful. Rosa^[3] first introduced this graceful labelling as well as a number of other labelling for decomposing a complete graph into isomorphic subgraphs. Next, Rosa, Ringel and Kötzig have proposed a conjecture stated as this: Every tree is Skolem-graceful in [3], or all tree are perfect in [1]. Many results have been obtained in [3], [4], [5] and [6], but the conjecture of the perfect tree still is on open. The graceful problem seems to be difficult even for some special graphs. In [3], the author mentioned two important labellings: One is the $m-\alpha$ labelling f defined by Rosa which is a graceful labelling with the additional property that there is an integer m such that for each edge $uv \in E(G)$ either $f(u) \le m < f(v)$ or $f(v) \le m < f(u)$. Another one is called the *m*-graceful labelling (or arbitrary graceful) defined by a proper vertex labelling f of a connected graph G from V(G) into $\{0,1,2,\cdots,|E(G)|+m-1\}$ satisfies ${|f(u)-f(v)| | uv \in E(G)} = {m, m+1, \cdots, |E(G)| + m-1}.$ $^{^1{\}rm This}$ work was partially supported with the National Science Fund of China (Grant No. 10661007) ²Corresponding author. E-mail: yybb918@163.com All graphs mentioned are simple and continuous. The other terminology can be found in [1]. For $1 \leq i \leq m$, let $G_i(u_i, u_{i+1})$ be a connected graph of order more that two, and there are two vertices u_i and u_{i+1} of G_i that are called the initial vertex and terminal vertex of G_i , respectively. A graph-block chain H_m is defined by identifying the terminal vertex u_{i+1} of $G_i(u_i, u_{i+1})$ with the initial vertex u_{i+1} of $G_{i+1}(u_{i+1}, u_{i+2})$ into a new vertex, still write by u_{i+1} , after i runs from 1 to m, we get this graph H_m which looks like a chain, denoted by $$H_{s_k} = \bigoplus_{i=1}^{s_k} G_i(u_i, u_{i+1})$$ = $G_1(u_1, u_2) \oplus G_2(u_2, u_3) \oplus G_3(u_3, u_4) \oplus \cdots \oplus G_{s_k}(u_{s_k}, u_{s_{k+1}}).$ We call u_1 , u_{s_k+1} and u_i the initial vertex, terminal vertex and node vertex of the graph-block chain $\bigoplus_{i=1}^{s_k} G_i(u_i, u_{i+1})$, respectively, and each $G_i(u_i, u_{i+1})$ is said a node block of this graph-block chain. We will use so-called path-block graphs to construct several classes of graphs and then study their graceful property in this paper. Let u_i^k and u_{i+1}^k be two isolated vertices. A path-block graph $G_{t_i}(u_i^k, u_{i+1}^k)$ is defined by linking two isolated vertices u_i^k and u_{i+1}^k with t_i disjoint paths $$P^k_{j,m_{ij}} = v^k_{i,j,1} v^k_{i,j,2} \cdots v^k_{i,j,m_{ij}}, \ m_{ij} \ge 1, \ 1 \le j \le t_i.$$ Here, we call u_i^k the initial vertex and u_{i+1}^k the terminal vertex of $G_{t_i}(u_i^k, u_{i+1}^k)$, respectively. Therefore, $$|V(G_{t_i}(u_i^k, u_{i+1}^k))| = 2 + \sum_{j=1}^{t_i} m_{ij} \text{ and } |E(G_{t_i}(u_i^k, u_{i+1}^k))| = t_i + \sum_{j=1}^{t_i} m_{ij}.$$ Let s_k is a positive integer, given s_k path-block graphs $G_{t_i}(u_i^k, u_{i+1}^k)$ for $1 \leq i \leq s_k$, we have a graph-block chain $\bigoplus_{i=1}^{s_k} G_{t_i}(u_i^k, u_{i+1}^k)$, for speaking conveniently and imaginably, call it the s_k -path-block chain and, denote it by H_{s_k} . In this s_k -path-block chain, here, u_1^k is the initial vertex, $u_{s_k+1}^k$ is the terminal vertex and, $u_{s_i+1}^k$ is the node vertex for $1 \leq i \leq s_k$, and each $G_{t_i}(u_i^k, u_{i+1}^k)$ is the node block. The numbers of all vertices and edges of $G_{t_i}(u_i^k, u_{i+1}^k)$ is the node block. $$|V(H_{s_k})| = s_k + 1 + \sum_{i=1}^{s_k} \sum_{j=1}^{t_i} m_{ij} \text{ and } |E(H_{s_k})| = \sum_{i=1}^{s_k} \left(t_i + \sum_{j=1}^{t_i} m_{ij} \right).$$ Some special s_k -path-block graph have been proved to be graceful in [4]. We observe some graceful graphs of large order that could be assembled by some s_k -path-block chains together. Definition 1. Given n > 1 s_k -path-block chains H_{s_k} with $1 \le k \le n$, a generalized path-block chain P_n^* is obtained by linking each pair of the initial vertices $u_1^k \in V(H_{s_k})$ and $u_1^{k+1} \in V(H_{s_{k+1}})$ with an edge $u_1^k u_1^{k+1}$ for $1 \le k \le n-1$. A tree T is called a *spider* if it has a unique vertex u_0 of degree more than two, namely, $d(u) \leq 2$ for all $u \in V(T) \setminus \{u_0\}$ and, we speak of u_0 to be the center of the spider T. A *caterpillar* is a such tree when deleting all vertices of degree one from this tree the remaining graph just is a path, and this path is said the *spine* of the caterpillar. As known, any caterpillar is graceful. **Definition 2.** Given $m \ (> 2) \ s_k$ -path-block chains H_{s_k} for $1 \le k \le m$, a generalized spider S_m^* with the center u_0 is obtained by linking u_0 to the initial vertex u_1^k of H_{s_k} with an edge $u_0u_1^k$ for $1 \le k \le m$. Each H_{s_k} is called a leg of S_m^* . **Definition 3.** Given m (> 1) s_k -path-block chains H_{s_k} for $1 \le k \le m$. Let T be a caterpillar with m vertices of degree one, say v_1, v_2, \cdots, v_m . A generalized caterpillar T_m^* is obtained by identifying the vertex v_k of T with the initial vertex u_1^k of H_{s_k} into a new vertex for $1 \le k \le m$. Every H_{s_k} is called a leg of T_m^* , the spine of T is still called the spine of T_m^* . Figure 1. A graceful generalized spider S_3^* with three different legs and the center u_0 . ## 2. Main Results **Lemma 1.** Let f be a graceful labelling of G and let n be a positive integer. Then both g = |E(G)| - f and h = n + f are two graceful labellings of G too. For any edge $uv \in E(G)$, it is easy to see that $$|h(u) - h(v)| = |f(u) - f(v)| = |g(u) - g(v)|.$$ One often say g = |E(G)| - f to be the complementary labelling of f and, h = n + f to be a n-floating labelling of f. **Lemma 2.** If G has a m- α -labelling, then - (i) G is bipartite; - (ii) G is m-graceful for all positive integers m. **Lemma 3.** Let two graphs G_1 with m_1 edges and G_2 with m_2 edges are connected and disjoint in each other, and let f_i be a graceful labelling of G_i for i = 1, 2. If f_1 is a m- α -labelling of G_1 for $m = \frac{m_1}{2}$ when m_1 is even and $m = \frac{m_1-1}{2}$ when m_1 is odd and, there are $f_1(u_0) = m$ ($u_0 \in V(G_1)$) and $f_2(v_0) = 0$ ($v_0 \in V(G_2)$), then the graph $G_1 \oplus G_2$ obtained by identifying u_0 with v_0 is graceful. **Proof.** There is a subset V_1 of $V(G_1)$ so that any $u \in V_1$ satisfies that $f_1(u) \leq m$ since f_1 is an m- α -labelling of G_1 . Therefore, we can construct a labelling f of $G_1 \oplus G_2$ as this form: $$f(v) = \begin{cases} f_1(v), & \text{if } v \in V_1; \\ f_1(v) + m_2, & \text{if } v \in V(G_1) \setminus V_1; \\ f_2(v) + m, & \text{if } v \in V(G_2), \end{cases}$$ note that f is the combination of a m_2 -graceful labelling of G_1 and a m-floating labelling of f_2 . It is not difficult to verify that the graph $G_1 \oplus G_2$ is graceful under f, as desired. \square Lemma 4. Let $H_n = \bigoplus_{i=1}^n G_i(u_i, u_{i+1})$ be a graph-block chain where n > 2 in which each node block $G_i(u_i, u_{i+1})$ $(1 \le i \le n)$ has m_i edges. If for $1 \le i \le n-1$, every $G_i(u_i, u_{i+1})$ has an n_i - α -labelling with $f_i(u_i) = 0$ and $f_i(u_{i+1}) = n_i$ where $n_i = \frac{m_i}{2}$ when m_i is even and $n_i = \frac{m_{i-1}}{2}$ when m_i is odd; and if G_n has a graceful labelling f_n with $f_n(u_n) = 0$. Then H_n is graceful. **Proof.** Using the mathematical induction. When identifying the terminal vertex u_n of the node block $G_{n-1}(u_{n-1},u_n)$ with the initial vertex u_n of the node block $G_n(u_n,u_{n+1})$, the graph-block chain $G_{n-1}\oplus G_n$ is graceful by Lemma 3, and there is a graceful labelling g such that $g(u_{n-1})=0$ for the initial vertex u_{n-1} of the graph-block chain $G_{n-1}\oplus G_n$. Suppose the lemma holds for $G=G_2\oplus G_3\oplus\cdots\oplus G_n$, so this graph has a graceful labelling f so that $f(u_2)=0$. Therefore, the graph $G_1\oplus G$ obtained by identifying the terminal vertex u_2 of $G_1(u_1,u_2)$ with the initial vertex u_2 of the graph-block chain G is graceful by Lemma 3. The proof is completed. \Box We come to consider a special class of s_k -path-block chains, that is, each node block $G_b(u_i^k, u_{i+1}^k)$ is defined by linking two isolated vertices u_i^k and u_{i+1}^k by b disjoint paths with the same length a-2, as the form $$P_{j,a-2}^k = v_{i,j,1}^k v_{i,j,2}^k v_{i,j,3}^k \cdots v_{i,j,a-1}^k, \ a \ge 2, \ 1 \le j \le b. \tag{1}$$ To avoid confusion, we use the symbol $G_b^a(u_i^k, u_{i+1}^k)$ instead of $G_b(u_i^k, u_{i+1}^k)$, and refer $G_b^a(u_i^k, u_{i+1}^k)$ as the (a, b)-regular path-block. **Lemma 5.** Let $m = \frac{ab}{2}$ where a is of even and b is of odd, then each (a,b)-regular path-block $G_b^a(u_i^k, u_{i+1}^k)$ has an m- α -labelling f so that $f(u_i^k) = 0$ and $f(u_{i+1}^k) = m$. **Proof.** First case, we deal with the case of b = 1. By the notation of the form (1), we give directly a labelling f to $G_1^a(u_i^k, u_{i+1}^k)$ as follows. (i) Let $f(u_i^k) = 0$ and $f(u_{i+1}^k) = \frac{a}{2}$; (ii) Let $f(v_{i,j,2t-1}^k) = a+1-t$ for $1 \le t \le \frac{a}{2}$ and $f(v_{i,i,2t}^k) = t$ for $1 \le t \le \frac{a}{2} - 1.$ It is not difficult to see f is a $\frac{a}{2}$ - α -labelling of $G_1^a(u_i^k, u_{i+1}^k)$. Second case is on $b \ge 2$, more or less, it is similar with one of b = 1. We set a labelling g to $G_b^a(u_i^k, u_{i+1}^k)$ as this: (iii) Let $g(u_i^k) = 0$, $g(u_{i+1}^k) = \frac{ab}{2}$; (v) For $1 \le j \le b$, set $g(v_{i,j,2t-1}^k) = (a+1-t)b - (j-1)$ for $1 \le t \le \frac{a}{2}$ and $g(v_{i,j,2t}^k) = 1 + (t+1)b - 2j$ for $1 \le t \le \frac{a}{2} - 1$. Next, for $1 \le t \le \frac{a}{2} - 1$ we can estimate $$g(v_{i,j,2t}^k) = 1 + (t+1)b - 2j \le \frac{ab}{2} - 1 < \frac{ab}{2}$$ and for $1 \le t \le \frac{a}{2}$ there is $$g(v_{i,j,2t-1}^k) = (a+1-t)b - (j-1) \ge (a+1-\frac{a}{2})b - (j-1)$$ $$= b\left(\frac{a}{2}+1\right) - j + 1 = \frac{ab}{2} + b - j + 1 \ge \frac{ab}{2} + 1 > \frac{ab}{2},$$ it shows that g is a $\frac{ab}{2}$ - α -labelling of $G_b^a(u_i^k, u_{i+1}^k)$, as desired. **Lemma 6.** Let $m = \frac{ab}{2}$ where b is of even and a = 2r for an odd r. Then the (a,b)-path-block $G_b^{\tilde{a}}(u_i^k,u_{i+1}^k)$ has an m- α -labelling f so that $f(u_i^k)=0$ and $f(u_{i+1}^k) = m$. **Proof.** By the notation of the form (1), we give directly a labelling fof $G_b^a(u_i^k, u_{i+1}^k)$ as this: - 1) Let $f(u_i^k) = 0$, $f(u_{i+1}^k) = \frac{ab}{2}$; - 2) For $1 \le j \le b$, let $f(v_{i,j,2t-1}^k) = (a+1-t)b (j-1)$ with $1 \le t \le \frac{ab}{2}$; - 3) When $r \ge 5$ and $1 \le j \le bf(v_{i,j,2}^k) = 1 + 2(b-j)$; and $f(v_{i,i,a-2}^k) = 1 + 2(b-j)$ $\frac{ab}{2} + 1 - 2j;$ - 4) For $r \ge 5$ and $2 \le j \le b$, let $f(v_{i,j,6}^k) = 2 + 2(b-j)$ and $$f(v_{i,j,2t}^k) = \left\{ \begin{array}{ll} 2 + (t+3)b - 2j, & \text{for } 2 \leq t < \frac{a}{2} - 2, t \text{ is even;} \\ 1 + (t-1)b - 2j, & \text{for } 5 \leq t < \frac{a}{2} - 1, t \text{ is odd;} \end{array} \right.$$ - 5) For $r \ge 5$ and j = 1, let $f(v_{i,1,2t}^k) = tb$ with $2 \le t \le \frac{a}{2} 2$ and t is 2 and odd; $f(v_{i,1,2t}^k) = (t+1)b 1$, with $2 < t \le \frac{a}{2} 1$ and t is even. - 6) For r=3 and $1 \le j \le b-1$, let $f(v_{i,1,2}^k) = 2(b-j)$; for $1 \le j \le b-2$, set $f(v_{i,1,4}^k) = 3(b+1) 2j-4$, $f(v_{i,b-1,4}^k) = 1$, $f(v_{i,b,2}^k) = 3b-1$, $f(v_{i,b,4}^k) = 2b$. When r = 1, 3, it is easy to see this labelling is a graceful $\frac{ab}{2}$ - α -labelling of $G_b^a(u_i^k, u_{i+1}^k)$. Similarly, for $r \geq 5$, this labelling f is an injection from $V(G_b^a(u_i^k, u_{i+1}^k))$ into the set $\{0, 1, 2, \dots, ab\}$ and the labels of all edges of $G_b^a(u_i^k, u_{i+1}^k)$ are: for $1 \leq j \leq b$, $$|f(v_{i,j,2t-1}^k) - f(v_{i,j,2}^k)| = (a-1-t)b+j, \ t=1,2,$$ $$|f(v_{i,j,2t-1}^k) - f(v_{i,j,a-2}^k)| = \left(\frac{a}{2} + 1 - t\right)b + j, \ t = \frac{a}{2} - 1, \frac{a}{2}.$$ And when $2 \le j \le b$, $$|f(v_{i,j,2t-1}^k) - f(v_{i,j,6}^k)| = (a-1-t)b + j - 1, \ t = 3,4,$$ $$|f(v_{i,j,2t-1}^k) - f(v_{i,j,2t}^k)| = \left\{ \begin{array}{ll} (a-2-2t)b+j-1, & \text{for } 2 \leq t < \frac{a}{2}-2, \ t \text{ is even}; \\ (a+2-2t)b+j, & \text{for } 5 \leq t < \frac{a}{2}-1, \ t \text{ is odd}; \end{array} \right.$$ $$|f(v_{i,j,2t+1}^k) - f(v_{i,j,2t}^k)| = \left\{ \begin{array}{ll} (a-3-2t)b+j-1, & \text{for } 2 \leq t < \frac{a}{2}-2, \ t \text{ is even;} \\ (a+1-2t)b+j, & \text{for } 5 \leq t < \frac{a}{2}-1, \ t \text{ is odd;} \end{array} \right.$$ When j = 1, $$|f(v_{i,1,2t-1}^k) - f(v_{i,1,2t}^k)| = \left\{ \begin{array}{ll} (a+1-2t)b, & \text{for } 2 \leq t \leq \frac{a}{2}-2, \ t \text{ is } 2 \ and \ odd; \\ (a-2t)b+1, & \text{for } 2 < t < \frac{a}{2}-1, \ t \text{ is even;} \end{array} \right.$$ $$|f(v_{i,1,2t+1}^k) - f(v_{i,1,2t}^k)| = \begin{cases} (a-2t)b, & \text{for } 2 \le t \le \frac{a}{2} - 2, \ t \text{ is 2 and odd;} \\ (a-1-2t)b+1, & \text{for } 2 < t \le \frac{a}{2} - 1, \ t \text{ is even;} \end{cases}$$ Hence the label set of all edges of the $G^a_b(u^k_i, u^k_{i+1})$ just is equal to $\{1, 2, \dots, ab\}$, that means the (a, b)-regular path-block $G^a_b(u^k_i, u^k_{i+1})$ is graceful and, f is a $\frac{ab}{2}$ - α -labelling, as required. \square Theorem 7. Given an n-path-block chain $H_n = \bigoplus_{i=1}^n G_{b_i}^{a_i}(u_i^k, u_{i+1}^k)$ where every path-block $G_{b_i}^{a_i}(u_i^k, u_{i+1}^k)$ is (a_i, b_i) -regular. If for each pair of a_i and b_i $(1 \le i \le n)$ there are that b_i is odd and a_i is even, or b_i is even and $a_i = 2r_i$ when r_i is odd, then H_n is graceful. By Lemma 4, 5 and 6, we are able to prove Theorem 7 above. Notice that there may be some two distinct a_s and a_t , so Theorem 7 is very stronger than the result obtained in [4]. Figure 2. An 2-path-block chain H_2 has a graceful labelling. Let H_n be a n-path-block chain $\bigoplus_{i=1}^n G_{b_i}^{a_i}(u_i^k, u_{i+1}^k)$ where every $G_{b_i}^{a_i}(u_i^k, u_{i+1}^k)$ is (a_i, b_i) -regular and, for each pair of a_i and b_i $(1 \le i \le n)$ there are that b_i is odd and a_i is even, or b_i is even and $a_i = 2r_i$ when r_i is odd, we then say that H_n satisfies "the OE-condition" in the following results. **Theorem 8.** If H_n satisfies the OE-condition, then a generalized spider S_m^* in which each leg is equal to H_n is graceful. **Proof.** By Theorem 7, $H_n = \bigoplus_{i=1}^n G_{b_i}^{a_i}(u_i^k, u_{i+1}^k)$ is graceful. Therefore, $$r = |E(H_n)| = \sum_{i=1}^n a_i b_i$$ and $s = |V(H_n)| = \sum_{i=1}^n (a_i - 1)b_i + n + 1$. H_n has the initial vertex u_1^k , the node vertices u_2^k, \dots, u_n^k and the terminal vertex u_{n+1}^k . By Lemma 4, there is an $\frac{r}{2} - \alpha$ -labelling f of H_n such that $f(u_1^k) = 0$ and $f(u_{n+1}^k) = \frac{r}{2}$. Symmetrically, we can consider u_{n+1}^k to be the initial vertex and u_1^k to be the terminal vertex in H_n , so there is another $\frac{r}{2} - \alpha$ -labelling f' of H_n such that $f'(u_{n+1}^k) = 0$ and $f'(u_1^k) = \frac{r}{2}$. Let g and g' be the complementary labellings of f and f' respectively, notice that $g(u_1^k) = g'(u_{n+1}^k) = r$ by the definition of the complementary labelling of a labelling. A generalized spider S_m^* have m(1+r) edges, let u_0 be its center vertex. For $1 \leq k \leq m$, let $v_{i,j,l}^k$ $(0 \leq l \leq a_i)$ be the vertices of the jth $(1 \leq j \leq b_i)$ path of the ith node block $G_{b_i}^{a_i}(u_i^k, u_{i+1}^k)$ $(1 \leq i \leq s_k)$ on the kth leg H_{s_k} of S_m^* where $v_{i,j,0}^k = u_i^k, v_{i,j,a_i}^k = u_{i+1}^k$. Define a labelling ϕ on the vertices set of S_m^* as follows: $$\phi(u^1_{i,j,l}) = \left\{ \begin{array}{ll} f(u^1_{i,j,l}), & \text{if } f(u^1_{i,j,l}) \leq \frac{r}{2}; \\ f(u^1_{i,j,l}) + (m-1)r + m, & \text{otherwise.} \end{array} \right.$$ $$\phi(u_{i,j,l}^2) = \begin{cases} f'(u_{i,j,l}^2) + \frac{1}{2}r + 1, & \text{if } f'(u_{i,j,l}^2) \leq \frac{r}{2}; \\ f'(u_{i,j,l}^2) + (m - \frac{3}{2})r + m, & \text{otherwise.} \end{cases}$$ $$\phi(u_{i,j,l}^{2t+1}) = \left\{ \begin{array}{ll} f(u_{i,j,l}^{2t+1}) + tr + t + 1, & \text{if } f(u_{i,j,l}^{2t+1}) \leq \frac{r}{2}; \\ f(u_{i,j,l}^{2t+1}) + (m-t-1)r + m - t, & \text{otherwise}. \end{array} \right.$$ with t is odd, $1 < 2t + 1 \le m$. $$\phi(u_{i,j,l}^{2t+2}) = \left\{ \begin{array}{ll} f'(u_{i,j,l}^{2t+2}) + \frac{1}{2}(2t+1)r + t + 2, & \text{if } f'(u_{i,j,l}^{2t+2}) \leq \frac{r}{2}; \\ f'(u_{i,j,l}^{2t+2}) + (m-t-\frac{3}{2})r + m - t, & \text{otherwise}. \end{array} \right.$$ with t is odd, $1 < 2t + 2 \le m$. $$\phi(u_{i,j,l}^{2t+1}) = \left\{ \begin{array}{ll} g(u_{i,j,l}^{2t+1}) + tr + t + 2, & \text{if } g(u_{i,j,l}^{2t+1}) \leq \frac{r}{2}; \\ g(u_{i,j,l}^{2t+1}) + (m-t-1)r + m - t + 1, & \text{otherwise}. \end{array} \right.$$ with t is even, $1 < 2t + 1 \le m$. $$\phi(u_{i,j,l}^{2t+2}) = \left\{ \begin{array}{ll} g'(u_{i,j,l}^{2t+2}) + (t+\frac{1}{2})r + t + 2, & \text{if } g'(u_{i,j,l}^{2t+2}) \leq \frac{r}{2}; \\ g'(u_{i,j,l}^{2t+2}) + (m-t-\frac{3}{2})r + m - t, & \text{otherwise}. \end{array} \right.$$ with t is even, $1 < 2t + 2 \le m$. Only u_0 is not labelled, so we let $\phi(u_0) = (m-1)r + m$. It is straight forward to verify that ϕ is a mapping from the vertex set of S_m^* into $\{1,2,\cdots,ms+1\}$. The labels set of all edges of S_m^* is $\{1,2,\cdots,m(1+r)\}$. Therefore, S_m^* is a graceful, as desired. \square Corollary 9. Let S_m^* be a generalized spider with m legs H_{s_k} for $1 \le k \le m$. If each leg H_{s_k} $(1 \le k \le m)$ satisfies the OE-condition and, any two legs of S_m^* have the same number of edges, then S_m^* is graceful. **Theorem 10.** Let P_t^* be a generalized path-block chain with t s_k -path-block chains H_{s_k} $(1 \le k \le t)$. If each H_{s_k} satisfies the OE-condition and, $|E(H_{s_k})| = |E(H_{s_{k+1}})|$ for any odd k with respect to $1 \le k \le t-1$, then P_t^* is graceful. **Proof.** By theorem 7, every leg $H_{s_k}=\bigoplus_{i=1}^{s_k}G_{b_i}^{a_i}(u_i^k,u_{i+1}^k)$ of P_t^* is graceful for $1\leq k\leq t$, and H_{s_k} has $r_k=\sum_{i=1}^{s_k}a_ib_i$ edges. By Lemma 5 and Lemma 6, for $1\leq k\leq t$ and k is odd, there is a $\frac{r_k}{2}$ - α -labelling f_k of H_{s_k} such that $f_k(u_1^k)=0$ and $f_k(u_{s_k+1}^k)=\frac{r_k}{2}$; and for $1< k\leq t$ and k is even, there is a $\frac{r_k}{2}$ - α -labelling g_k of H_{s_k} such that $g_k(u_{s_k+1}^k)=r_k$ and $g_k(u_1^k)=\frac{r_k}{2}$. Let $v_{i,j,l}^k$ $(0 \le l \le a_i)$ be the vertices of the jth $(1 \le j \le b_i)$ path of the ith node block $G_{b_i}^{a_i}(u_i^k, u_{i+1}^k)$ $(1 \le i \le s_k)$ on the kth leg H_{s_k} of P_t^* where $v_{i,j,0}^k = u_i^k$ and $v_{i,j,a_i}^k = u_{i+1}^k$. We come to define a labelling ψ of P_t^* as follows: $$\psi(u_{i,j,l}^k) = \begin{cases} f_k(u_{i,j,l}^k) + \frac{1}{2} \sum\limits_{x=1}^{k-1} r_x + \frac{1}{2}(k-1), & \text{if } f_k(u_{i,j,l}^k) \leq \frac{r_k}{2}; \\ f_k(u_{i,j,l}^k) + \sum\limits_{x=k+1}^{t} r_x + \frac{1}{2} \sum\limits_{x=1}^{k-1} r_x + \frac{2t-k-1}{2}, & \text{otherwise.} \end{cases}$$ with $1 \le k \le t$, k is odd. $$\psi(u_{i,j,l}^k) = \begin{cases} g_k(u_{i,j,l}^k) + \frac{1}{2} \sum_{x=1}^{k-1} r_x + \frac{1}{2}k, & \text{if } g_k(u_{i,j,l}^k) \leq \frac{r_k}{2}; \\ g_k(u_{i,j,l}^k) + \sum_{x=k+1}^{t} r_x + \frac{1}{2} \sum_{x=1}^{k-1} r_x + \frac{2t-k}{2}, & \text{otherwise.} \end{cases}$$ with $1 < k \le t$, k is even. Let $$W_1 = \sum_{x=1}^t r_x$$, $W_k = \sum_{x=k}^t r_x$ and $W_{k+1} = \sum_{x=k+1}^t r_x$. Under ψ and for $1 \le k \le t$, when k is odd, the edge labels set of H_{s_k} is $\{W_k + t - k, W_k + t - k - 1, \cdots, W_{k+1} + t - k + 1\}$; and when k is oven, the edge labels set of H_{s_k} is $\{W_{k+1} + t - k + 1, W_{k+1} + t - k + 2, \cdots, W_k + t - k\}$. Therefore, the edge labels set of P_t^* is $\{W_1 + t - 1, W_1 + t - 2, \cdots, 2, 1\}$. Hence, P_t^* is graceful. \square **Theorem 11.** Let T_t^* be a generalized caterpillar with t legs H_{s_k} that satisfies the OE-condition. If any two legs have the same number of edges and, any vertex w_i on the spine $P = w_1 w_2 \cdots w_p$ of T_t^* has the same number q of vertices of degree one, then this generalized caterpillar is graceful for $2 \le q \le 4$. **Proof.** In fact, this special T_t^* can be obtained by linking t generalized spider S_m^* . Suppose that each s_k -path-block chain $H_{s_k} = \bigoplus_{i=1}^{s_k} G_{b_i}^{a_i}(u_i^k, u_{i+1}^k)$ has s edges, so S_m^* has m(s+1) edges, and T_t^* has [tm(s+1)+t-1] edges. Let $(v_{i,j,l}^k)^h$ be the vertices of the ith node block $G_{b_i}^{a_i}(u_i^k, u_{i+1}^k)$ of the kth leg H_{s_k} on the kth generalized spider S_m^* with the center vertex v_o^k . Let ϕ be the graceful labels of the S_m^* that is given by theorem 8, ϕ' is the complementary labels of the ϕ . When m = 4, define the labelling F_1 of the T_t^* : $$F_1((v_{i,j,l}^k)^h) = \left\{ \begin{array}{ll} \phi(v_{i,j,l}^k) + \frac{h-1}{2}(4s+5), & \text{if } \phi(v_{i,j,l}^k) \leq 2s+3; \\ \phi(v_{i,j,l}^k) + \frac{2t-h-1}{2}(4s+5), & \text{otherwise.} \end{array} \right.$$ with $1 \le h \le t$ and h is odd. $$F_1((v_{i,j,l}^k)^h) = \left\{ \begin{array}{ll} \phi'(v_{i,j,l}^k) + \frac{h}{2}(4s+5) - 2s - 1, & \text{if } \phi'(v_{i,j,l}^k) \leq 2s + 3; \\ \phi'(v_{i,j,l}^k) + \frac{2t - h}{2}(4s+5) - 2s - 1, & \text{otherwise.} \end{array} \right.$$ with $2 \le h \le t$ and h is even. $$F_1(v_0^h) = \left\{ \begin{array}{ll} \phi(v_0^h) + (t - \frac{h+1}{2})(4s+5), & \text{if h is odd, $1 \le h \le t$;} \\ \phi'(v_0^h) + \frac{h}{2}(4s+5) - 2s - 1, & \text{if h is even, $2 \le h \le t$.} \end{array} \right.$$ We are easy to show that the F_1 is graceful. To give a graceful labels of the T_t^* for m=2,3, we give directly a graceful labelling of S_m^* in the following procedure. Let f_1 be a $\frac{s}{2}$ - α -labelling of $H_n=\bigoplus_{i=1}^n G_{b_i}^{a_i}(u_i^k,u_{i+1}^k)$ such that $f_1(v_{1,j,0}^k)=\frac{s}{2}$, $f_1(v_{n,j,a_n}^k)=0$; and f_2 be another $\frac{s}{2}$ - α -labelling of $H_n=\bigoplus_{i=1}^n G_{b_i}^{a_i}(u_i^k,u_{i+1}^k)$ such that $f_2(v_{1,j,0}^k)=0$, $f_2(v_{n,j,a_n}^k)=\frac{s}{2}$. We have that two g_1 and g_2 are the complementary labellings of two f_1 and f_2 . Now, we come to show a graceful labels ψ of the S_m^* for m=2,3 as follows: $$\psi(v_{i,j,l}^k) = \left\{ \begin{array}{ll} f_1(v_{i,j,l}^k) + \frac{k-1}{2}(s+2), & \text{if } f_1(v_{i,j,l}^k) \leq \frac{1}{2}s; \\ f_1(v_{i,j,l}^k) + (m - \frac{k+1}{2})s + m - \frac{k-1}{2}, & \text{otherwise}. \end{array} \right.$$ for $1 \le k \le m$, k is odd. $$\psi(v_{i,j,l}^k) = \left\{ \begin{array}{ll} f_2(v_{i,j,l}^k) + \frac{s}{2} + 1, & \text{if } f_2(v_{i,j,l}^k) \leq \frac{1}{2}s; \\ f_2(v_{i,j,l}^k) + |m - \frac{3}{2}|s + m - 1, & \text{otherwise.} \end{array} \right.$$ for $2 \le k \le m$, k is even. then $\psi(v_0^h) = (m - \frac{1}{2})s + m$. Let ψ' be the complementary labelling of ψ . We can determine a graceful labelling F_2 of T_t^* when m=2 as follows. $$F_2((v_{i,j,l}^k)^h) = \left\{ \begin{array}{ll} \psi(v_{i,j,l}^k) + \frac{h-1}{2}(2s+3), & \text{if } \psi(v_{i,j,l}^k) \leq s+1; \\ \psi(v_{i,j,l}^k) + (t - \frac{h+1}{2})(2s+3), & \text{otherwise}. \end{array} \right.$$ with $1 \le h \le t$ and h is odd. $$F_2((v_{i,j,l}^k)^h) = \begin{cases} \psi'(v_{i,j,l}^k) + (h-1)(s+1) + \frac{h}{2}, & \text{if } \psi'(v_{i,j,l}^k) \leq s+1; \\ \psi'(v_{i,j,l}^k) + (2t-h-1)(s+1) + \frac{2t-h}{2}, & \text{otherwise.} \end{cases}$$ with $2 \le h \le t$ and h is even. $$F_2(v_0^h) = \left\{ \begin{array}{l} \psi(v_0^h) + (t - \frac{h+1}{2})(2s+3), & \text{if h is odd, $1 \le h \le t$;} \\ \psi'(v_0^h) + \frac{h}{2}(2s+3) - s - 1, & \text{if h is even, $2 \le h \le t$.} \end{array} \right.$$ For m=3, it is very similar, there is a graceful labelling F_3 of T_t^* as this form: $$F_3((v_{i,j,l}^k)^h) = \left\{ \begin{array}{ll} \psi(v_{i,j,l}^k) + \frac{h-1}{2}(3s+4), & \text{if } \psi(v_{i,j,l}^k) \leq \frac{3s+4}{2}; \\ \psi(v_{i,j,l}^k) + (t - \frac{h+1}{2})(3s+4), & \text{otherwise}. \end{array} \right.$$ with $1 \le h \le t$ and h is odd. $$F_3((v_{i,j,l}^k)^h) = \left\{ \begin{array}{ll} \phi'(v_{i,j,l}^k) + \frac{h-1}{2}(3s+4) + 1, & \text{if } \phi'(v_{i,j,l}^k) \leq \frac{3s+4}{2}; \\ \phi'(v_{i,j,l}^k) + \frac{2t-h-1}{2}(3s+4) + 1, & \text{otherwise}. \end{array} \right.$$ with $2 \le h \le t$ and h is even. $$F_3(v_0^h) = \left\{ \begin{array}{l} \psi(v_0^h) + (t - \frac{h+1}{2})(3s+4), & \text{if h is odd, $1 \le h \le t$;} \\ \phi'(v_0^h) + \frac{h-1}{2}(3s+4) + 1, & \text{if h is even, $2 \le h \le t$.} \end{array} \right.$$ We have finished the proof. ### References - [1] Bondy J.A. and Murty U.S.R., Graph Theory with Application, Macmillan, New York, 1976 - [2] Bela. Bollobás, *The Modern Graph Theory*, Springer-Verlag, New Tork, Inc. (1998) - [3] Joseph A. Gallian, A survey: recent results, conjectures and open problems on labeling graphs, J. Graph Theory, Vo. 13(1989) 491-504 213-229 - [4] Kathiresan K. M., Two Classes of Graceful Graphs, Ars Combinatoria. 55(2000) 129-132 - [5] J.A. Gallian, A Dynamic Survey of Graph Labelling, The Electronic journal of Combinatorics, Vo.6 (2000) - [6] A. Rosa, On certain valuations of the vertices of a graph, Theory of graphs (Internat. Symp, Rome, July 1966), Gordan and Breach, N.Y and Paris, 1967, 349355. - [7] Bing Yao, Hui Cheng and Ming Yao, Labellings of trees with larger maximal degrees, submitted