On Graceful Generalized Spiders and Caterpillars

Hui Cheng ¹ Bing Yao² Xiang-en Chen Zhong-fu Zhang

a. College of Mathematics and Information Science, Northwest Normal University, Lanzhou, 730070, China

b. Institute of Applied Mathematic, Lanzhou Jiaotong University, Lanzhou 730070, P.R.China

Abstract

In this paper, we, by means of Rosa's α -labelling and k-graceful labelling, prove the generalized spiders, generalized caterpillars and generalized path-block chain the gracefulness to be graceful under some conditions. The some of results are stronger than that obtained in [4].

Mathematics subject classification (MSC2000):05C78

Keywords: graceful graph, labelling, spider, caterpillar

1. Introduction

Let G be a graph with the vertex set V and edge set E. If f is an injection from V into $\{0,1,2,\cdots,|E|\}$ such that an edge uv label is |f(u)f(v) and any two edges labels are distinct, then f is said to be a graceful labelling of G and, one often say G is graceful. Rosa^[3] first introduced this graceful labelling as well as a number of other labelling for decomposing a complete graph into isomorphic subgraphs. Next, Rosa, Ringel and Kötzig have proposed a conjecture stated as this: Every tree is Skolem-graceful in [3], or all tree are perfect in [1]. Many results have been obtained in [3], [4], [5] and [6], but the conjecture of the perfect tree still is on open. The graceful problem seems to be difficult even for some special graphs. In [3], the author mentioned two important labellings: One is the $m-\alpha$ labelling f defined by Rosa which is a graceful labelling with the additional property that there is an integer m such that for each edge $uv \in E(G)$ either $f(u) \le m < f(v)$ or $f(v) \le m < f(u)$. Another one is called the *m*-graceful labelling (or arbitrary graceful) defined by a proper vertex labelling f of a connected graph G from V(G) into $\{0,1,2,\cdots,|E(G)|+m-1\}$ satisfies ${|f(u)-f(v)| | uv \in E(G)} = {m, m+1, \cdots, |E(G)| + m-1}.$

 $^{^1{\}rm This}$ work was partially supported with the National Science Fund of China (Grant No. 10661007)

²Corresponding author. E-mail: yybb918@163.com

All graphs mentioned are simple and continuous. The other terminology can be found in [1].

For $1 \leq i \leq m$, let $G_i(u_i, u_{i+1})$ be a connected graph of order more that two, and there are two vertices u_i and u_{i+1} of G_i that are called the initial vertex and terminal vertex of G_i , respectively. A graph-block chain H_m is defined by identifying the terminal vertex u_{i+1} of $G_i(u_i, u_{i+1})$ with the initial vertex u_{i+1} of $G_{i+1}(u_{i+1}, u_{i+2})$ into a new vertex, still write by u_{i+1} , after i runs from 1 to m, we get this graph H_m which looks like a chain, denoted by

$$H_{s_k} = \bigoplus_{i=1}^{s_k} G_i(u_i, u_{i+1})$$

= $G_1(u_1, u_2) \oplus G_2(u_2, u_3) \oplus G_3(u_3, u_4) \oplus \cdots \oplus G_{s_k}(u_{s_k}, u_{s_{k+1}}).$

We call u_1 , u_{s_k+1} and u_i the initial vertex, terminal vertex and node vertex of the graph-block chain $\bigoplus_{i=1}^{s_k} G_i(u_i, u_{i+1})$, respectively, and each $G_i(u_i, u_{i+1})$ is said a node block of this graph-block chain.

We will use so-called path-block graphs to construct several classes of graphs and then study their graceful property in this paper. Let u_i^k and u_{i+1}^k be two isolated vertices. A path-block graph $G_{t_i}(u_i^k, u_{i+1}^k)$ is defined by linking two isolated vertices u_i^k and u_{i+1}^k with t_i disjoint paths

$$P^k_{j,m_{ij}} = v^k_{i,j,1} v^k_{i,j,2} \cdots v^k_{i,j,m_{ij}}, \ m_{ij} \ge 1, \ 1 \le j \le t_i.$$

Here, we call u_i^k the initial vertex and u_{i+1}^k the terminal vertex of $G_{t_i}(u_i^k, u_{i+1}^k)$, respectively. Therefore,

$$|V(G_{t_i}(u_i^k, u_{i+1}^k))| = 2 + \sum_{j=1}^{t_i} m_{ij} \text{ and } |E(G_{t_i}(u_i^k, u_{i+1}^k))| = t_i + \sum_{j=1}^{t_i} m_{ij}.$$

Let s_k is a positive integer, given s_k path-block graphs $G_{t_i}(u_i^k, u_{i+1}^k)$ for $1 \leq i \leq s_k$, we have a graph-block chain $\bigoplus_{i=1}^{s_k} G_{t_i}(u_i^k, u_{i+1}^k)$, for speaking conveniently and imaginably, call it the s_k -path-block chain and, denote it by H_{s_k} . In this s_k -path-block chain, here, u_1^k is the initial vertex, $u_{s_k+1}^k$ is the terminal vertex and, $u_{s_i+1}^k$ is the node vertex for $1 \leq i \leq s_k$, and each $G_{t_i}(u_i^k, u_{i+1}^k)$ is the node block. The numbers of all vertices and edges of $G_{t_i}(u_i^k, u_{i+1}^k)$ is the node block.

$$|V(H_{s_k})| = s_k + 1 + \sum_{i=1}^{s_k} \sum_{j=1}^{t_i} m_{ij} \text{ and } |E(H_{s_k})| = \sum_{i=1}^{s_k} \left(t_i + \sum_{j=1}^{t_i} m_{ij} \right).$$

Some special s_k -path-block graph have been proved to be graceful in [4]. We observe some graceful graphs of large order that could be assembled by some s_k -path-block chains together.

Definition 1. Given n > 1 s_k -path-block chains H_{s_k} with $1 \le k \le n$, a generalized path-block chain P_n^* is obtained by linking each pair of the initial vertices $u_1^k \in V(H_{s_k})$ and $u_1^{k+1} \in V(H_{s_{k+1}})$ with an edge $u_1^k u_1^{k+1}$ for $1 \le k \le n-1$.

A tree T is called a *spider* if it has a unique vertex u_0 of degree more than two, namely, $d(u) \leq 2$ for all $u \in V(T) \setminus \{u_0\}$ and, we speak of u_0 to be the center of the spider T. A *caterpillar* is a such tree when deleting all vertices of degree one from this tree the remaining graph just is a path, and this path is said the *spine* of the caterpillar. As known, any caterpillar is graceful.

Definition 2. Given $m \ (> 2) \ s_k$ -path-block chains H_{s_k} for $1 \le k \le m$, a generalized spider S_m^* with the center u_0 is obtained by linking u_0 to the initial vertex u_1^k of H_{s_k} with an edge $u_0u_1^k$ for $1 \le k \le m$. Each H_{s_k} is called a leg of S_m^* .

Definition 3. Given m (> 1) s_k -path-block chains H_{s_k} for $1 \le k \le m$. Let T be a caterpillar with m vertices of degree one, say v_1, v_2, \cdots, v_m . A generalized caterpillar T_m^* is obtained by identifying the vertex v_k of T with the initial vertex u_1^k of H_{s_k} into a new vertex for $1 \le k \le m$. Every H_{s_k} is called a leg of T_m^* , the spine of T is still called the spine of T_m^* .

Figure 1. A graceful generalized spider S_3^* with three different legs and the center u_0 .

2. Main Results

Lemma 1. Let f be a graceful labelling of G and let n be a positive integer. Then both g = |E(G)| - f and h = n + f are two graceful labellings of G too.

For any edge $uv \in E(G)$, it is easy to see that

$$|h(u) - h(v)| = |f(u) - f(v)| = |g(u) - g(v)|.$$

One often say g = |E(G)| - f to be the complementary labelling of f and, h = n + f to be a n-floating labelling of f.

Lemma 2. If G has a m- α -labelling, then

- (i) G is bipartite;
- (ii) G is m-graceful for all positive integers m.

Lemma 3. Let two graphs G_1 with m_1 edges and G_2 with m_2 edges are connected and disjoint in each other, and let f_i be a graceful labelling of G_i for i = 1, 2. If f_1 is a m- α -labelling of G_1 for $m = \frac{m_1}{2}$ when m_1 is even and $m = \frac{m_1-1}{2}$ when m_1 is odd and, there are $f_1(u_0) = m$ ($u_0 \in V(G_1)$) and $f_2(v_0) = 0$ ($v_0 \in V(G_2)$), then the graph $G_1 \oplus G_2$ obtained by identifying u_0 with v_0 is graceful.

Proof. There is a subset V_1 of $V(G_1)$ so that any $u \in V_1$ satisfies that $f_1(u) \leq m$ since f_1 is an m- α -labelling of G_1 . Therefore, we can construct a labelling f of $G_1 \oplus G_2$ as this form:

$$f(v) = \begin{cases} f_1(v), & \text{if } v \in V_1; \\ f_1(v) + m_2, & \text{if } v \in V(G_1) \setminus V_1; \\ f_2(v) + m, & \text{if } v \in V(G_2), \end{cases}$$

note that f is the combination of a m_2 -graceful labelling of G_1 and a m-floating labelling of f_2 . It is not difficult to verify that the graph $G_1 \oplus G_2$ is graceful under f, as desired. \square

Lemma 4. Let $H_n = \bigoplus_{i=1}^n G_i(u_i, u_{i+1})$ be a graph-block chain where n > 2 in which each node block $G_i(u_i, u_{i+1})$ $(1 \le i \le n)$ has m_i edges. If for $1 \le i \le n-1$, every $G_i(u_i, u_{i+1})$ has an n_i - α -labelling with $f_i(u_i) = 0$ and $f_i(u_{i+1}) = n_i$ where $n_i = \frac{m_i}{2}$ when m_i is even and $n_i = \frac{m_{i-1}}{2}$ when m_i is odd; and if G_n has a graceful labelling f_n with $f_n(u_n) = 0$. Then H_n is graceful.

Proof. Using the mathematical induction. When identifying the terminal vertex u_n of the node block $G_{n-1}(u_{n-1},u_n)$ with the initial vertex u_n of the node block $G_n(u_n,u_{n+1})$, the graph-block chain $G_{n-1}\oplus G_n$ is graceful by Lemma 3, and there is a graceful labelling g such that $g(u_{n-1})=0$ for the initial vertex u_{n-1} of the graph-block chain $G_{n-1}\oplus G_n$. Suppose the lemma holds for $G=G_2\oplus G_3\oplus\cdots\oplus G_n$, so this graph has a graceful labelling f so that $f(u_2)=0$. Therefore, the graph $G_1\oplus G$ obtained by identifying the terminal vertex u_2 of $G_1(u_1,u_2)$ with the initial vertex u_2 of the graph-block chain G is graceful by Lemma 3. The proof is completed. \Box

We come to consider a special class of s_k -path-block chains, that is, each node block $G_b(u_i^k, u_{i+1}^k)$ is defined by linking two isolated vertices u_i^k and u_{i+1}^k by b disjoint paths with the same length a-2, as the form

$$P_{j,a-2}^k = v_{i,j,1}^k v_{i,j,2}^k v_{i,j,3}^k \cdots v_{i,j,a-1}^k, \ a \ge 2, \ 1 \le j \le b. \tag{1}$$

To avoid confusion, we use the symbol $G_b^a(u_i^k, u_{i+1}^k)$ instead of $G_b(u_i^k, u_{i+1}^k)$, and refer $G_b^a(u_i^k, u_{i+1}^k)$ as the (a, b)-regular path-block.

Lemma 5. Let $m = \frac{ab}{2}$ where a is of even and b is of odd, then each (a,b)-regular path-block $G_b^a(u_i^k, u_{i+1}^k)$ has an m- α -labelling f so that $f(u_i^k) = 0$ and $f(u_{i+1}^k) = m$.

Proof. First case, we deal with the case of b = 1. By the notation of the form (1), we give directly a labelling f to $G_1^a(u_i^k, u_{i+1}^k)$ as follows.

(i) Let $f(u_i^k) = 0$ and $f(u_{i+1}^k) = \frac{a}{2}$;

(ii) Let $f(v_{i,j,2t-1}^k) = a+1-t$ for $1 \le t \le \frac{a}{2}$ and $f(v_{i,i,2t}^k) = t$ for $1 \le t \le \frac{a}{2} - 1.$

It is not difficult to see f is a $\frac{a}{2}$ - α -labelling of $G_1^a(u_i^k, u_{i+1}^k)$.

Second case is on $b \ge 2$, more or less, it is similar with one of b = 1. We set a labelling g to $G_b^a(u_i^k, u_{i+1}^k)$ as this:

(iii) Let $g(u_i^k) = 0$, $g(u_{i+1}^k) = \frac{ab}{2}$; (v) For $1 \le j \le b$, set $g(v_{i,j,2t-1}^k) = (a+1-t)b - (j-1)$ for $1 \le t \le \frac{a}{2}$ and $g(v_{i,j,2t}^k) = 1 + (t+1)b - 2j$ for $1 \le t \le \frac{a}{2} - 1$.

Next, for $1 \le t \le \frac{a}{2} - 1$ we can estimate

$$g(v_{i,j,2t}^k) = 1 + (t+1)b - 2j \le \frac{ab}{2} - 1 < \frac{ab}{2}$$

and for $1 \le t \le \frac{a}{2}$ there is

$$g(v_{i,j,2t-1}^k) = (a+1-t)b - (j-1) \ge (a+1-\frac{a}{2})b - (j-1)$$
$$= b\left(\frac{a}{2}+1\right) - j + 1 = \frac{ab}{2} + b - j + 1 \ge \frac{ab}{2} + 1 > \frac{ab}{2},$$

it shows that g is a $\frac{ab}{2}$ - α -labelling of $G_b^a(u_i^k, u_{i+1}^k)$, as desired.

Lemma 6. Let $m = \frac{ab}{2}$ where b is of even and a = 2r for an odd r. Then the (a,b)-path-block $G_b^{\tilde{a}}(u_i^k,u_{i+1}^k)$ has an m- α -labelling f so that $f(u_i^k)=0$ and $f(u_{i+1}^k) = m$.

Proof. By the notation of the form (1), we give directly a labelling fof $G_b^a(u_i^k, u_{i+1}^k)$ as this:

- 1) Let $f(u_i^k) = 0$, $f(u_{i+1}^k) = \frac{ab}{2}$;
- 2) For $1 \le j \le b$, let $f(v_{i,j,2t-1}^k) = (a+1-t)b (j-1)$ with $1 \le t \le \frac{ab}{2}$;
- 3) When $r \ge 5$ and $1 \le j \le bf(v_{i,j,2}^k) = 1 + 2(b-j)$; and $f(v_{i,i,a-2}^k) = 1 + 2(b-j)$ $\frac{ab}{2} + 1 - 2j;$
 - 4) For $r \ge 5$ and $2 \le j \le b$, let $f(v_{i,j,6}^k) = 2 + 2(b-j)$ and

$$f(v_{i,j,2t}^k) = \left\{ \begin{array}{ll} 2 + (t+3)b - 2j, & \text{for } 2 \leq t < \frac{a}{2} - 2, t \text{ is even;} \\ 1 + (t-1)b - 2j, & \text{for } 5 \leq t < \frac{a}{2} - 1, t \text{ is odd;} \end{array} \right.$$

- 5) For $r \ge 5$ and j = 1, let $f(v_{i,1,2t}^k) = tb$ with $2 \le t \le \frac{a}{2} 2$ and t is 2 and odd; $f(v_{i,1,2t}^k) = (t+1)b 1$, with $2 < t \le \frac{a}{2} 1$ and t is even.
- 6) For r=3 and $1 \le j \le b-1$, let $f(v_{i,1,2}^k) = 2(b-j)$; for $1 \le j \le b-2$, set $f(v_{i,1,4}^k) = 3(b+1) 2j-4$, $f(v_{i,b-1,4}^k) = 1$, $f(v_{i,b,2}^k) = 3b-1$, $f(v_{i,b,4}^k) = 2b$.

When r = 1, 3, it is easy to see this labelling is a graceful $\frac{ab}{2}$ - α -labelling of $G_b^a(u_i^k, u_{i+1}^k)$.

Similarly, for $r \geq 5$, this labelling f is an injection from $V(G_b^a(u_i^k, u_{i+1}^k))$ into the set $\{0, 1, 2, \dots, ab\}$ and the labels of all edges of $G_b^a(u_i^k, u_{i+1}^k)$ are: for $1 \leq j \leq b$,

$$|f(v_{i,j,2t-1}^k) - f(v_{i,j,2}^k)| = (a-1-t)b+j, \ t=1,2,$$

$$|f(v_{i,j,2t-1}^k) - f(v_{i,j,a-2}^k)| = \left(\frac{a}{2} + 1 - t\right)b + j, \ t = \frac{a}{2} - 1, \frac{a}{2}.$$

And when $2 \le j \le b$,

$$|f(v_{i,j,2t-1}^k) - f(v_{i,j,6}^k)| = (a-1-t)b + j - 1, \ t = 3,4,$$

$$|f(v_{i,j,2t-1}^k) - f(v_{i,j,2t}^k)| = \left\{ \begin{array}{ll} (a-2-2t)b+j-1, & \text{for } 2 \leq t < \frac{a}{2}-2, \ t \text{ is even}; \\ (a+2-2t)b+j, & \text{for } 5 \leq t < \frac{a}{2}-1, \ t \text{ is odd}; \end{array} \right.$$

$$|f(v_{i,j,2t+1}^k) - f(v_{i,j,2t}^k)| = \left\{ \begin{array}{ll} (a-3-2t)b+j-1, & \text{for } 2 \leq t < \frac{a}{2}-2, \ t \text{ is even;} \\ (a+1-2t)b+j, & \text{for } 5 \leq t < \frac{a}{2}-1, \ t \text{ is odd;} \end{array} \right.$$

When j = 1,

$$|f(v_{i,1,2t-1}^k) - f(v_{i,1,2t}^k)| = \left\{ \begin{array}{ll} (a+1-2t)b, & \text{for } 2 \leq t \leq \frac{a}{2}-2, \ t \text{ is } 2 \ and \ odd; \\ (a-2t)b+1, & \text{for } 2 < t < \frac{a}{2}-1, \ t \text{ is even;} \end{array} \right.$$

$$|f(v_{i,1,2t+1}^k) - f(v_{i,1,2t}^k)| = \begin{cases} (a-2t)b, & \text{for } 2 \le t \le \frac{a}{2} - 2, \ t \text{ is 2 and odd;} \\ (a-1-2t)b+1, & \text{for } 2 < t \le \frac{a}{2} - 1, \ t \text{ is even;} \end{cases}$$

Hence the label set of all edges of the $G^a_b(u^k_i, u^k_{i+1})$ just is equal to $\{1, 2, \dots, ab\}$, that means the (a, b)-regular path-block $G^a_b(u^k_i, u^k_{i+1})$ is graceful and, f is a $\frac{ab}{2}$ - α -labelling, as required. \square

Theorem 7. Given an n-path-block chain $H_n = \bigoplus_{i=1}^n G_{b_i}^{a_i}(u_i^k, u_{i+1}^k)$ where every path-block $G_{b_i}^{a_i}(u_i^k, u_{i+1}^k)$ is (a_i, b_i) -regular. If for each pair of a_i and b_i $(1 \le i \le n)$ there are that b_i is odd and a_i is even, or b_i is even and $a_i = 2r_i$ when r_i is odd, then H_n is graceful.

By Lemma 4, 5 and 6, we are able to prove Theorem 7 above. Notice that there may be some two distinct a_s and a_t , so Theorem 7 is very stronger than the result obtained in [4].

Figure 2. An 2-path-block chain H_2 has a graceful labelling.

Let H_n be a n-path-block chain $\bigoplus_{i=1}^n G_{b_i}^{a_i}(u_i^k, u_{i+1}^k)$ where every $G_{b_i}^{a_i}(u_i^k, u_{i+1}^k)$ is (a_i, b_i) -regular and, for each pair of a_i and b_i $(1 \le i \le n)$ there are that b_i is odd and a_i is even, or b_i is even and $a_i = 2r_i$ when r_i is odd, we then say that H_n satisfies "the OE-condition" in the following results.

Theorem 8. If H_n satisfies the OE-condition, then a generalized spider S_m^* in which each leg is equal to H_n is graceful.

Proof. By Theorem 7, $H_n = \bigoplus_{i=1}^n G_{b_i}^{a_i}(u_i^k, u_{i+1}^k)$ is graceful. Therefore,

$$r = |E(H_n)| = \sum_{i=1}^n a_i b_i$$
 and $s = |V(H_n)| = \sum_{i=1}^n (a_i - 1)b_i + n + 1$.

 H_n has the initial vertex u_1^k , the node vertices u_2^k, \dots, u_n^k and the terminal vertex u_{n+1}^k . By Lemma 4, there is an $\frac{r}{2} - \alpha$ -labelling f of H_n such that $f(u_1^k) = 0$ and $f(u_{n+1}^k) = \frac{r}{2}$. Symmetrically, we can consider u_{n+1}^k to be the initial vertex and u_1^k to be the terminal vertex in H_n , so there is another $\frac{r}{2} - \alpha$ -labelling f' of H_n such that $f'(u_{n+1}^k) = 0$ and $f'(u_1^k) = \frac{r}{2}$. Let g and g' be the complementary labellings of f and f' respectively, notice that $g(u_1^k) = g'(u_{n+1}^k) = r$ by the definition of the complementary labelling of a labelling.

A generalized spider S_m^* have m(1+r) edges, let u_0 be its center vertex. For $1 \leq k \leq m$, let $v_{i,j,l}^k$ $(0 \leq l \leq a_i)$ be the vertices of the jth $(1 \leq j \leq b_i)$ path of the ith node block $G_{b_i}^{a_i}(u_i^k, u_{i+1}^k)$ $(1 \leq i \leq s_k)$ on the kth leg H_{s_k} of S_m^* where $v_{i,j,0}^k = u_i^k, v_{i,j,a_i}^k = u_{i+1}^k$. Define a labelling ϕ on the vertices set of S_m^* as follows:

$$\phi(u^1_{i,j,l}) = \left\{ \begin{array}{ll} f(u^1_{i,j,l}), & \text{if } f(u^1_{i,j,l}) \leq \frac{r}{2}; \\ f(u^1_{i,j,l}) + (m-1)r + m, & \text{otherwise.} \end{array} \right.$$

$$\phi(u_{i,j,l}^2) = \begin{cases} f'(u_{i,j,l}^2) + \frac{1}{2}r + 1, & \text{if } f'(u_{i,j,l}^2) \leq \frac{r}{2}; \\ f'(u_{i,j,l}^2) + (m - \frac{3}{2})r + m, & \text{otherwise.} \end{cases}$$

$$\phi(u_{i,j,l}^{2t+1}) = \left\{ \begin{array}{ll} f(u_{i,j,l}^{2t+1}) + tr + t + 1, & \text{if } f(u_{i,j,l}^{2t+1}) \leq \frac{r}{2}; \\ f(u_{i,j,l}^{2t+1}) + (m-t-1)r + m - t, & \text{otherwise}. \end{array} \right.$$

with t is odd, $1 < 2t + 1 \le m$.

$$\phi(u_{i,j,l}^{2t+2}) = \left\{ \begin{array}{ll} f'(u_{i,j,l}^{2t+2}) + \frac{1}{2}(2t+1)r + t + 2, & \text{if } f'(u_{i,j,l}^{2t+2}) \leq \frac{r}{2}; \\ f'(u_{i,j,l}^{2t+2}) + (m-t-\frac{3}{2})r + m - t, & \text{otherwise}. \end{array} \right.$$

with t is odd, $1 < 2t + 2 \le m$.

$$\phi(u_{i,j,l}^{2t+1}) = \left\{ \begin{array}{ll} g(u_{i,j,l}^{2t+1}) + tr + t + 2, & \text{if } g(u_{i,j,l}^{2t+1}) \leq \frac{r}{2}; \\ g(u_{i,j,l}^{2t+1}) + (m-t-1)r + m - t + 1, & \text{otherwise}. \end{array} \right.$$

with t is even, $1 < 2t + 1 \le m$.

$$\phi(u_{i,j,l}^{2t+2}) = \left\{ \begin{array}{ll} g'(u_{i,j,l}^{2t+2}) + (t+\frac{1}{2})r + t + 2, & \text{if } g'(u_{i,j,l}^{2t+2}) \leq \frac{r}{2}; \\ g'(u_{i,j,l}^{2t+2}) + (m-t-\frac{3}{2})r + m - t, & \text{otherwise}. \end{array} \right.$$

with t is even, $1 < 2t + 2 \le m$. Only u_0 is not labelled, so we let $\phi(u_0) = (m-1)r + m$.

It is straight forward to verify that ϕ is a mapping from the vertex set of S_m^* into $\{1,2,\cdots,ms+1\}$. The labels set of all edges of S_m^* is $\{1,2,\cdots,m(1+r)\}$. Therefore, S_m^* is a graceful, as desired. \square

Corollary 9. Let S_m^* be a generalized spider with m legs H_{s_k} for $1 \le k \le m$. If each leg H_{s_k} $(1 \le k \le m)$ satisfies the OE-condition and, any two legs of S_m^* have the same number of edges, then S_m^* is graceful.

Theorem 10. Let P_t^* be a generalized path-block chain with t s_k -path-block chains H_{s_k} $(1 \le k \le t)$. If each H_{s_k} satisfies the OE-condition and, $|E(H_{s_k})| = |E(H_{s_{k+1}})|$ for any odd k with respect to $1 \le k \le t-1$, then P_t^* is graceful.

Proof. By theorem 7, every leg $H_{s_k}=\bigoplus_{i=1}^{s_k}G_{b_i}^{a_i}(u_i^k,u_{i+1}^k)$ of P_t^* is graceful for $1\leq k\leq t$, and H_{s_k} has $r_k=\sum_{i=1}^{s_k}a_ib_i$ edges. By Lemma 5 and Lemma 6, for $1\leq k\leq t$ and k is odd, there is a $\frac{r_k}{2}$ - α -labelling f_k of H_{s_k} such that $f_k(u_1^k)=0$ and $f_k(u_{s_k+1}^k)=\frac{r_k}{2}$; and for $1< k\leq t$ and k is even, there is a $\frac{r_k}{2}$ - α -labelling g_k of H_{s_k} such that $g_k(u_{s_k+1}^k)=r_k$ and $g_k(u_1^k)=\frac{r_k}{2}$.

Let $v_{i,j,l}^k$ $(0 \le l \le a_i)$ be the vertices of the jth $(1 \le j \le b_i)$ path of the ith node block $G_{b_i}^{a_i}(u_i^k, u_{i+1}^k)$ $(1 \le i \le s_k)$ on the kth leg H_{s_k} of P_t^* where $v_{i,j,0}^k = u_i^k$ and $v_{i,j,a_i}^k = u_{i+1}^k$. We come to define a labelling ψ of P_t^* as follows:

$$\psi(u_{i,j,l}^k) = \begin{cases} f_k(u_{i,j,l}^k) + \frac{1}{2} \sum\limits_{x=1}^{k-1} r_x + \frac{1}{2}(k-1), & \text{if } f_k(u_{i,j,l}^k) \leq \frac{r_k}{2}; \\ f_k(u_{i,j,l}^k) + \sum\limits_{x=k+1}^{t} r_x + \frac{1}{2} \sum\limits_{x=1}^{k-1} r_x + \frac{2t-k-1}{2}, & \text{otherwise.} \end{cases}$$

with $1 \le k \le t$, k is odd.

$$\psi(u_{i,j,l}^k) = \begin{cases} g_k(u_{i,j,l}^k) + \frac{1}{2} \sum_{x=1}^{k-1} r_x + \frac{1}{2}k, & \text{if } g_k(u_{i,j,l}^k) \leq \frac{r_k}{2}; \\ g_k(u_{i,j,l}^k) + \sum_{x=k+1}^{t} r_x + \frac{1}{2} \sum_{x=1}^{k-1} r_x + \frac{2t-k}{2}, & \text{otherwise.} \end{cases}$$

with $1 < k \le t$, k is even.

Let
$$W_1 = \sum_{x=1}^t r_x$$
, $W_k = \sum_{x=k}^t r_x$ and $W_{k+1} = \sum_{x=k+1}^t r_x$. Under ψ and for $1 \le k \le t$, when k is odd, the edge labels set of H_{s_k} is $\{W_k + t - k, W_k + t - k - 1, \cdots, W_{k+1} + t - k + 1\}$; and when k is oven, the edge labels set of H_{s_k} is $\{W_{k+1} + t - k + 1, W_{k+1} + t - k + 2, \cdots, W_k + t - k\}$. Therefore, the edge labels set of P_t^* is $\{W_1 + t - 1, W_1 + t - 2, \cdots, 2, 1\}$. Hence, P_t^* is graceful. \square

Theorem 11. Let T_t^* be a generalized caterpillar with t legs H_{s_k} that satisfies the OE-condition. If any two legs have the same number of edges and, any vertex w_i on the spine $P = w_1 w_2 \cdots w_p$ of T_t^* has the same number q of vertices of degree one, then this generalized caterpillar is graceful for $2 \le q \le 4$.

Proof. In fact, this special T_t^* can be obtained by linking t generalized spider S_m^* . Suppose that each s_k -path-block chain $H_{s_k} = \bigoplus_{i=1}^{s_k} G_{b_i}^{a_i}(u_i^k, u_{i+1}^k)$ has s edges, so S_m^* has m(s+1) edges, and T_t^* has [tm(s+1)+t-1] edges. Let $(v_{i,j,l}^k)^h$ be the vertices of the ith node block $G_{b_i}^{a_i}(u_i^k, u_{i+1}^k)$ of the kth leg H_{s_k} on the kth generalized spider S_m^* with the center vertex v_o^k . Let ϕ be the graceful labels of the S_m^* that is given by theorem 8, ϕ' is the complementary labels of the ϕ .

When m = 4, define the labelling F_1 of the T_t^* :

$$F_1((v_{i,j,l}^k)^h) = \left\{ \begin{array}{ll} \phi(v_{i,j,l}^k) + \frac{h-1}{2}(4s+5), & \text{if } \phi(v_{i,j,l}^k) \leq 2s+3; \\ \phi(v_{i,j,l}^k) + \frac{2t-h-1}{2}(4s+5), & \text{otherwise.} \end{array} \right.$$

with $1 \le h \le t$ and h is odd.

$$F_1((v_{i,j,l}^k)^h) = \left\{ \begin{array}{ll} \phi'(v_{i,j,l}^k) + \frac{h}{2}(4s+5) - 2s - 1, & \text{if } \phi'(v_{i,j,l}^k) \leq 2s + 3; \\ \phi'(v_{i,j,l}^k) + \frac{2t - h}{2}(4s+5) - 2s - 1, & \text{otherwise.} \end{array} \right.$$

with $2 \le h \le t$ and h is even.

$$F_1(v_0^h) = \left\{ \begin{array}{ll} \phi(v_0^h) + (t - \frac{h+1}{2})(4s+5), & \text{if h is odd, $1 \le h \le t$;} \\ \phi'(v_0^h) + \frac{h}{2}(4s+5) - 2s - 1, & \text{if h is even, $2 \le h \le t$.} \end{array} \right.$$

We are easy to show that the F_1 is graceful.

To give a graceful labels of the T_t^* for m=2,3, we give directly a graceful labelling of S_m^* in the following procedure. Let f_1 be a $\frac{s}{2}$ - α -labelling of $H_n=\bigoplus_{i=1}^n G_{b_i}^{a_i}(u_i^k,u_{i+1}^k)$ such that $f_1(v_{1,j,0}^k)=\frac{s}{2}$, $f_1(v_{n,j,a_n}^k)=0$; and f_2 be another $\frac{s}{2}$ - α -labelling of $H_n=\bigoplus_{i=1}^n G_{b_i}^{a_i}(u_i^k,u_{i+1}^k)$ such that $f_2(v_{1,j,0}^k)=0$, $f_2(v_{n,j,a_n}^k)=\frac{s}{2}$. We have that two g_1 and g_2 are the complementary labellings of two f_1 and f_2 . Now, we come to show a graceful labels ψ of the S_m^* for m=2,3 as follows:

$$\psi(v_{i,j,l}^k) = \left\{ \begin{array}{ll} f_1(v_{i,j,l}^k) + \frac{k-1}{2}(s+2), & \text{if } f_1(v_{i,j,l}^k) \leq \frac{1}{2}s; \\ f_1(v_{i,j,l}^k) + (m - \frac{k+1}{2})s + m - \frac{k-1}{2}, & \text{otherwise}. \end{array} \right.$$

for $1 \le k \le m$, k is odd.

$$\psi(v_{i,j,l}^k) = \left\{ \begin{array}{ll} f_2(v_{i,j,l}^k) + \frac{s}{2} + 1, & \text{if } f_2(v_{i,j,l}^k) \leq \frac{1}{2}s; \\ f_2(v_{i,j,l}^k) + |m - \frac{3}{2}|s + m - 1, & \text{otherwise.} \end{array} \right.$$

for $2 \le k \le m$, k is even.

then $\psi(v_0^h) = (m - \frac{1}{2})s + m$.

Let ψ' be the complementary labelling of ψ . We can determine a graceful labelling F_2 of T_t^* when m=2 as follows.

$$F_2((v_{i,j,l}^k)^h) = \left\{ \begin{array}{ll} \psi(v_{i,j,l}^k) + \frac{h-1}{2}(2s+3), & \text{if } \psi(v_{i,j,l}^k) \leq s+1; \\ \psi(v_{i,j,l}^k) + (t - \frac{h+1}{2})(2s+3), & \text{otherwise}. \end{array} \right.$$

with $1 \le h \le t$ and h is odd.

$$F_2((v_{i,j,l}^k)^h) = \begin{cases} \psi'(v_{i,j,l}^k) + (h-1)(s+1) + \frac{h}{2}, & \text{if } \psi'(v_{i,j,l}^k) \leq s+1; \\ \psi'(v_{i,j,l}^k) + (2t-h-1)(s+1) + \frac{2t-h}{2}, & \text{otherwise.} \end{cases}$$

with $2 \le h \le t$ and h is even.

$$F_2(v_0^h) = \left\{ \begin{array}{l} \psi(v_0^h) + (t - \frac{h+1}{2})(2s+3), & \text{if h is odd, $1 \le h \le t$;} \\ \psi'(v_0^h) + \frac{h}{2}(2s+3) - s - 1, & \text{if h is even, $2 \le h \le t$.} \end{array} \right.$$

For m=3, it is very similar, there is a graceful labelling F_3 of T_t^* as this form:

$$F_3((v_{i,j,l}^k)^h) = \left\{ \begin{array}{ll} \psi(v_{i,j,l}^k) + \frac{h-1}{2}(3s+4), & \text{if } \psi(v_{i,j,l}^k) \leq \frac{3s+4}{2}; \\ \psi(v_{i,j,l}^k) + (t - \frac{h+1}{2})(3s+4), & \text{otherwise}. \end{array} \right.$$

with $1 \le h \le t$ and h is odd.

$$F_3((v_{i,j,l}^k)^h) = \left\{ \begin{array}{ll} \phi'(v_{i,j,l}^k) + \frac{h-1}{2}(3s+4) + 1, & \text{if } \phi'(v_{i,j,l}^k) \leq \frac{3s+4}{2}; \\ \phi'(v_{i,j,l}^k) + \frac{2t-h-1}{2}(3s+4) + 1, & \text{otherwise}. \end{array} \right.$$

with $2 \le h \le t$ and h is even.

$$F_3(v_0^h) = \left\{ \begin{array}{l} \psi(v_0^h) + (t - \frac{h+1}{2})(3s+4), & \text{if h is odd, $1 \le h \le t$;} \\ \phi'(v_0^h) + \frac{h-1}{2}(3s+4) + 1, & \text{if h is even, $2 \le h \le t$.} \end{array} \right.$$

We have finished the proof.

References

- [1] Bondy J.A. and Murty U.S.R., Graph Theory with Application, Macmillan, New York, 1976
- [2] Bela. Bollobás, *The Modern Graph Theory*, Springer-Verlag, New Tork, Inc. (1998)
- [3] Joseph A. Gallian, A survey: recent results, conjectures and open problems on labeling graphs, J. Graph Theory, Vo. 13(1989) 491-504 213-229
- [4] Kathiresan K. M., Two Classes of Graceful Graphs, Ars Combinatoria. 55(2000) 129-132
- [5] J.A. Gallian, A Dynamic Survey of Graph Labelling, The Electronic journal of Combinatorics, Vo.6 (2000)
- [6] A. Rosa, On certain valuations of the vertices of a graph, Theory of graphs (Internat. Symp, Rome, July 1966), Gordan and Breach, N.Y and Paris, 1967, 349355.
- [7] Bing Yao, Hui Cheng and Ming Yao, Labellings of trees with larger maximal degrees, submitted