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Abstract

In this paper, we, by means of Rosa’s a-labelling and k-graceful
labelling, prove the generalized spiders, generalized caterpillars and
generalized path-block chain the gracefulness to be graceful under
some conditions. The some of results are stronger than that ob-
tained in [4].

Mathematics subject classification (MSC2000):05C78
Keywords: graceful graph, labelling, spider, caterpillar

1. Introduction

Let G be a graph with the vertex set V and edge set E. If f is an
injection from V into {0,1,2,--- ,|E]|} such that an edge uv label is | f(u) —
f(v)| and any two edges labels are distinct, then f is said to be a graceful
labelling of G and, one often say G is graceful. Rosal® first introduced this
graceful labelling as well as a number of other labelling for decomposing a
complete graph into isomorphic subgraphs. Next, Rosa, Ringel and Kotzig
have proposed a conjecture stated as this: Every tree is Skolem-graceful
in [3], or all tree are perfect in [1). Many results have been obtained in
[3], [4], [5] and [6], but the conjecture of the perfect tree still is on open.
The graceful problem seems to be difficult even for some special graphs.
In [3], the author mentioned two important labellings: One is the m-a-
labelling f defined by Rosa which is a graceful labelling with the additional
property that there is an integer m such that for each edge uv € E(G) either
f(u) <m < f(v) or f(v) <m < f(u). Another one is called the m-graceful
labelling (or arbitrary graceful) defined by a proper vertex labelling f of a
connected graph G from V(G) into {0,1,2,---,|E(G)| + m — 1} satisfies
{I7(w) - f@)| | wv € E@)} = {m,m +1,--- ,|E(G)] +m - 1}.
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All graphs mentioned are simple and continuous. The other terminology
can be found in [1].

For 1 £ i < m, let Gj(ui,uiy1) be a connected graph of order more
that two, and there are two vertices u; and u;4; of G; that are called the
initial vertex and terminal vertex of G;, respectively. A graph-block chain
H,, is defined by identifying the terminal vertex u;+1 of G;(u;, u;41) with
the initial vertex uiy1 of Giy1{uit1, uit2) into a new vertex, still write by
uiy1, after ¢ runs from 1 to m, we get this graph H,, which looks like a
chain, denoted by

Hy, = @2, Giui, uiy1)
= Gl ('U.], 'LL2) ® G2(U2, u3) ® G3(U3, U4) ®&---D Gsk (usmusk-f-l)-

We call u1, uy,+1 and u; the initial vertez, terminal vertex and node
vertez of the graph-block chain @®7%,G;i(ui,uit1), respectively, and each
Gi(ui,ui41) is said a node block of thls graph-block chain.
We will use so-called path-block graphs to construct several classes of

graphs and then study their graceful property in this paper Let u¥ and

u¥,, be two isolated vertices. A path—block graph Gy, (u¥,uk, ) is deﬁned
by linking two isolated vertices uf and ¥, ; with ¢; disjoint paths

}:’k,m,J = vz‘,],lvkgﬁ " 5_1 m;jo mij 2 1 1 < .7 <t

Here, we call u} the initial vertex and u¥,, the terminal vertex of Gy, (u¥, uf,,).
respectively. Therefore,

ty i
IV(Gu (uf, uf )l =24 D myj and |E(Gy, (uf, uby ) = t: + > myj.

=1 j=1

Let si is a positive integer, given s; path-block graphs G, (uf ,u{F_H) for
1 < i < sy, we have a graph-block chain ®3%, Gy, (uf,uf, ), for speaking
conveniently and imaginably, call it the si-path-block chain and, denote it
by H,, . In this si-path-block chain, here, u¥ is the initial vertez, u¥ ,, is
the terminal vertex and, ufl 41 is the node vertez for 2 <[ < s;, and each
Ge,(u¥,ub,,) is the node block. The numbers of all vertices and edges of
H,, are:

I ( B*)l_sk+1+22‘mﬂ and lE(HBL)I—Z(t1+thJ)

i=1 j=1

Some special si-path-block graph have been proved to be graceful in
[4]. We observe some graceful graphs of large order that could be assembled
by some sp-path-block chains together.
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Definition 1. Given n (> 1) si-path-block chains H,, with 1 < k < m,
a generalized path block chain P, is obtained by linking each pair of the
initial vertices u¥ € V(H,,) and u""’1 € V(H,,,,) with an edge ufuf*! for
1<k<n-1.

A tree T is called a spider if it has a unique vertex up of degree more
than two, namely, d(u) < 2 for all u € V(T') \ {uo} and, we speak of ug to
be the center of the spider T. A caterpillar is a such tree when deleting
all vertices of degree one from this tree the remaining graph just is a path,
and this path is said the spine of the caterpillar. As known, any caterpillar
is graceful.

Definition 2. Given m (> 2) si-path-block chains H,, for 1 <k <m, a
generalized spider S}, with the center up is obtained by linking ug to the
initial vertex uf of H,, with an edge uouf for 1 < k < m. Each H,, is
called a leg of S},.

Definition 3. Given m (> 1) si-path-block chains H,, for 1 < k < m.
Let T be a caterpillar with m vertices of degree one, say vy,v2, - ,Um.
A generalized caterpillar T}, is obtained by identifying the vertex vy of T
with the initial vertex uf of H,, into a new vertex for 1 < k < m. Every
H,, is called a leg of T};,, the spine of T is still called the spine of T;,.

8 ' 30 20 28
40 1 43 14/ \/ >22

33
39 12 36 15 ity \ /\
38 10 35 13 29 16 27 18
7 . :/'31

37 8 34 1

Figure 1. A graceful generalized spider S3 with three different legs and the
center uo.

2. Main Results

Lemma 1. Let f be a graceful labelling of G and let n be a positive integer.
Then both g = |E(G)| — f and h = n + f are two graceful labellings of G
too.

For any edge uv € E(G), it is easy to see that

|h(u) — h(v)] = f(x) — (V)| = |g(x) — g(v)].

One often say g = |E(G)| — f to be the complementary labelling of f and,
h =n+ f to be a n-floating labelling of f.
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Lemma 2. If G has a m-a-labelling, then
(?) G is bipartite;
(i2) G is m-graceful for all positive integers m.

Lemma 3. Let two graphs G with m; edges and G, with my edges are
connected and disjoint in each other, and let f; be a graceful labelling of G;
fori=1,2. If f1 is a m-a-labelling of G, for m = %L when m; Is even and
m = ™21 when m, is odd and, there are fi(up) = m (uo € V(G1)) and
f2(vo) = 0 (vo € V(G2)), then the graph G, ® G obtained by identifying
up with vo is graceful.

Proof. There is a subset V] of V(G;) so that any u € V) satisfies that
fi(u) £ m since f; is an m-o-labelling of G;. Therefore, we can construct
a labelling f of G, ® G5 as this form:

fi(v), ifveV;
flv)= fL(w) +ma, if‘UGV(G])\Vl;
f2(0)+m, ifveV(Gs),
note that f is the combination of a ma-graceful labelling of G; and a m-

floating labelling of fa. It is not difficult to verify that the graph G, & G;
is graceful under f, as desired. O

Lemma 4. Let H, = ®}_,Gi(ui, ui+1) be a graph-block chain wheren > 2
in which each node block G;(u;,uit1) (1 < i < n) has m; edges. If for
1<i<n-1,every G;(ui,ui+1) has an n;-a-labelling with f;(u;) = 0 and
fi(uiq1) = n; where n; = i when m; is even and n; = 1"—{—1 when m; is
odd; and if G,, has a graceful labelling f, with fn(u,) = 0. Then H, is

graceful.

Proof. Using the mathematical induction. When identifying the ter-
minal vertex u, of the node block Gy,—1(un—1,uy) with the initial vertex u,
of the node block Gy (un, un+1), the graph-block chain G, ® G, is grace-
ful by Lemma 3, and there is a graceful labelling g such that g(un,—;) =0
for the initial vertex u,—; of the graph-block chain G,_; ® G,. Suppose
the lemma holds for G = G2 ® G5 & - - - ® G,,, so this graph has a graceful
labelling f so that f(uz) = 0. Therefore, the graph G; & G obtained by
identifying the terminal vertex ug of Gq(u1,uz) with the initial vertex ug of
the graph-block chain G is graceful by Lemma 3. The proof is completed.
()}

We come to consider a special class of sg-path-block chains, that is,
each node block Gu(uf,uf,,) is defined by linking two isolated vertices uf
and u{{,_l by b disjoint paths with the same length a — 2, as the form

k k k k k .
Pja—2 =510 52Y53 " Vija-1> 022, 1 <5 <D (1)
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To avoid confusion, we use the symbol G§(uf, u¥, ) instead of Gy (uf,uf, ),
and refer G (u¥, uk, ) as the (a, b)-regular path-block.

Lemma 5. Let m = % b where a is of even and b is of odd, then each (a, b)-
regular path- block G“(uz ,uf,,) has an m-a-labelling f so that f(uf) =0

and f(ufy,) =

Proof. First case, we deal with the case of b = 1. By the notation of
the form (1), we give directly a labelhng [ to G2{uf,uf, ) as follows.

(z) Let f(uk) =0 and f(u1+1) - 2a

(i1) Let f(vf;0_1) =a+1—tforl <t <% and f(vfjm) =t for
1<t<§$-1

It is not difficult to see f is a %-a-labelling of G§(uf, uf,,).

Second case is on b > 2, more or less, it is similar with one of b = 1.
We set a labelling g to G (u¥, u? +1) as this:

(i) Let g(uf) = 0, g(ut, ) =

(v) For 1 < j < b, set g(vf; 5, 1)—-(a-i-l—t)b (-1 for1<t<§
and g(vf,,,) =1+ (¢ +1)b—2jfor 1<t < §-1.

Next, for 1 <t < § — 1 we can estimate

ab ab

-‘7("5°,j,zz)=1+(t+1)b—2jg7_1<7

and for 1 <t < 5 there is
. . a .
9(”?,;',2:-1) =(a+1-t)h-(G-1)2(a+1- —)b -(G-1)

ab ab
b( +1)—J+1=‘§‘+b ]+1>7+1>2

it shows that g is a —-a-labelhng of G§ (uf, ub _H), as desired. O

Lemma 6. Let m = ? where b is of even and a = 2r for an odd r. Then
the (a, b)-path-block G§(uf,u¥, ) has an m-a-labelling f so that f(u¥) =0
and f(uf, ) =m

Proof. By the notation of the form (1), we give directly a labelling f
of G¢(uf,uk, ) as this:

1) Let £(uf) = 0, f(uly) = %

2)For1 <j<b,let f(v”m D=(a+1-t)b—(j—1) with 1 <t < %;

3) Whenr>5and1<j < bf(vw'z) =14 2(b - j); and f(”z.a.n— )
2 4125

4)Forr>5and 2< j <b,let f(v,lfjvﬁ) =2+2(b-j) and

-

f(k ) = 24+ (t+3)0—2j5, for2<t<§—2,tiseven;
Via2t! T 14 (¢ - 1)b—-2j, for5<t< & —1,¢isodd;
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5)Forr>5and]—1letf(uzt)—tbw1th2<t< —2andtis2
and odd; f(vf; 5,) = (t+1)b—1,with2 <t < & —1andt1seven

6) Forr=3and1<j<b-1, letf(v“z)—2(b Jhifor1<j<
b—2, set f(uf, ) =8(b+1)—2i — 4, f(vk,_14) = 1, f(vk,,) = 3b—1,
F(vEs ) = 2b.

When r = 1, 3, it is easy to see this labelling is a graceful “—”-a-labelhng
of G} (uz ’ u1+1)

Slmllarly, for r > 5, this labelling f is an injection from V(Gb (uk,ub )
into the set {0,1,2,---,ab} and the labels of all edges of GZ(u¥, u} _,_1) are:
for 1 <j<b,

lf( 1,5,2t— l) - f(lug,c,jﬂ)l = (a -1- t)b+.7: t=1,2,

|f(’Uf,j,2t—1) f(”m,a 2)| = ( +1- t)b+‘7’ = g -L
And when 2 < j <),

|f(”ﬁj,2t—1) - f(vf,j,ﬁ)l =(a—1-t)b+5-1, t=23,4,

(a=2-2t)b+35—1, for2<t<§ -2, tiseven;
(a+2-2t)b+ 3, for5<t<-—-1, t is odd;

{ (a—-3-2tb+3j—1, for2<t<§ -2, tiseven;

g
5

|f (”f,j,zt-l)—f (”ﬁj.ztﬂ =

|f(”:!c,j,2z+1)—f(1’§.j,2z)| =
When j =1,

(a+1-2t)b+ 37, for5<t<§ -1, tisodd;

(a+1-2t)b, for2<t<$§ -2, tis2 andodd;

k —f(F =
L (vir,26-1)=f (v52,20)] (a-2t)b+1, for2<t<§—1, tiseven;

k & _ | (a—2t)b, for2<t<-—2,tis2andodd;
£ (via.2041)—f (02001 = { (@—1-2t)b+1, for2<t< 2 -1, tiseven;

Hence the label set of all edges of the G¢ (u¥ t+1) justisequalto {1,2,--- ,ab},
tha.t means the (a, b)-regular path-block Gb (uf,uk,,) is graceful and f is
a—labellmg, as required. O

Theorem 7. Given an n-path-block chain H, = ®!.,G}! (uk,u¥, ) where
every path-block G}: (uf,uf,,) is (a;, b;)-regular. If for each pair of a; and
b (1 <i<m) l;here are that b; is odd and e; is even, or b; is even and
a; = 2r; when r; is odd, then H,, is graceful.

By Lemma 4, 5 and 6, we are able to prove Theorem 7 above. No-
tice that there may be some two distinct a¢; and a;, so Theorem 7 is very
stronger than the result obtained in [4].
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74 9 69 14 64 19 59 24 54

— 49 32 45 3 41
73 7 68 12 63 17 58 22 53
o 72 5 67 10 62 15 57 20 52 N\ 48 29 44 35 40N
47 27 43 33 39
71 3 66 8 61 13 56 18 51
> 46 28 42 30 38

70 1 65 6 60 11 55 16 50

Figure 2. An 2-path-block chain H2 has a graceful labelling.

Let H,, be a n-path-block chain ®, G}’ (u¥,uf,,) where every Gyl (uf,uby))
is (a4, b;)-regular and, for each pair of a; and b; (1 < i < n) there are that
b; is odd and a; is even, or b; is even and a; = 2r; when r; is odd, we then
say that H,, satisfies “the OE-condition” in the following results.

Theorem 8. If H,, satisfies the OE-condition, then a generalized spider
S, in which each leg is equal to H,, is graceful.

Proof. By Theorem 7, H, = &}, G} (uf,u¥, ) is graceful. Therefore,

n n
r=|E(H,)| =) aib; and s = [V(Ha)| = ) (a; — 1)b; +n +1.

i=1 i=1

H, has the initial vertex u¥, the node vertices u%,--- ,u* and the terminal

vertex uX ;. By Lemma 4, there isan § — a— labellmg f of Hy such that
f(u¥) = 0 and f(uk _,_1) = %. Symmetrically, we can consider uf,, to be
the initial vertex and u¥ to be the terminal vertex in H,, so there i 1s another
£ - a- labelling f’ of H, such that f/(uf,,) = 0 and f'(uf) = Z. Let g
and g’ be the complementary labellings of f and f’ respectively, notlce that
g(u¥) = g’'(uk ) = r by the definition of the complementary labelling of a
labelling.

A generalized spider S}, have m(1+r) edges, let ug be its center vertex.
For 1<k <m,let 'uf’j,l (0 <1 < a;) be the vertices of the jth (1 < j < b;)
path of the ith node block G§?(uf,uf,,) (1 <i < si) on the kth leg H,,
of Sy, where vf; o = uf, '”k,g,a, = u¥, . Define a labelling ¢ on the vertices
set of Sy, as follows:

3 f(,”) if fui;0) < 5
¢(U}.j,l) = { f(uzg :) +(m-=1)r+m, otherwisle *

o J,)={ f’(um) +1lr4, if (a2, ) <

flZ; )+ (m ~-$)r+m, otherwise.
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Su2tH1) = f(u2:7+l) +ir+t+1, if fut) <5
Bt 12_7 N+ (m—t-1)r+m—t, otherwise.

withtisodd,1 <2t+1 <m.

S(utH?) = f'(u2t+2) + 3@t +1)r+t+2, if f/(uh?) <5
Lol f’(ufj 12) +(m—-t- —)r +m —t, otherwise.

with ¢ isodd, 1 <2t +2 <m.

() = Q(UZHI) +ir+t+2, if g(u;"‘fll) <L
Bt g(u )+(m—t— 1)r+m—t+1, otherwise.

withtiseven,1 <2t+1<m.

(w22 = g (u2:7+2) +(E+r+t+2, if o' (u?) < 3
Bt g (U?J )+ (m—t - r+m—t, otherw1se

with £ is even, 1 < 2t + 2 < m. Only up is not labelled, so we let ¢(up) =
(m - Dr +m.

It is straight forward to verify that ¢ is a mapping from the vertex
set of Sy, into {1,2,--- ,ms + 1}. The labels set of all edges of Sy, is
{1,2,--- ,m(1 + r)}. Therefore, S}, is a graceful, as desired. O

Corollary 9. Let S;, be a generalized spider with m legs H,, for1 <k <
m. If each leg H,, (1 < k < m) satisfies the OE-condition and, any two
legs of S}, have the same number of edges, then S, is graceful.

Theorem 10. Let P} be a generalized path-block chain with t sy-path-
block chains H,, (1 < k <t). If each H,, satisfies the OE-condition and,
|E(H,, )| = |E(Hs,,,)| for any odd k with respect to 1 < k <t —1, then
P} is graceful.

Proof. By theorem 7, every leg H,, = ®%,Gp(uf,uf,,) of Py is
graceful for 1 < k < t, and H,, has ry = zatb edges. By Lemma 5

and Lemma 6, for 1 < k <t and k is odd, there is a “r-a-labelling fi of
H,, such that fi(u¥) =0 and fi(uf ,,) = Z;andfor 1 <k <tandk
is even, there is a Zk-a-labelling gr of Hy, such that gk(usk_,_l) = 1} and

gk(ul) =
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Let 'u,'J, (0 <1 < a;) be the vertices of the jth (1 < j < b;) path of the
ith node block G}*(uf ,u,+1) (1 <4 < si) on the kth leg H, of P} where

f‘,,,o = u¥ and vzJ o = uf,,. We come to define a labelling % of P as
follows:
3 k=1 1 . I
. fk(ul",jt) + l Z Tz + §(k -1), if fk(ui,j,l) < 22&';
Y(ug ) =
fr(uk ci) + E s+ 3 E Ty 4 2= " 2=k-1' otherwise.
c=k+1 r=1
with 1 <k <t¢, k is odd.
) k=1 . ) )
o(uf; )+ 3 Z Tz + 3k, if gr(uf; ) < %

W(uf;) =
gr(uk til) z rz + Z 7z + Z5E, otherwise.

x=k+1 J‘—

with 1 < k < ¢, klseven

t
Let W, = Z e, Wi = Z re and Wiqy1 = 3 r,. Under 1 and for

=1 w=k+1
1 <k <t, when k is odd, the edge labels set of H,, is {Wy +t — k, Wy +
t—k—-1,-- ,Wigy1 +t—k+1}; and when k is oven, the edge labels set
of Hy, is {Wk+1 +t—k+1, Wi +t—k+2,-. I’l +t — k}. Therefore,
the edge labels set of P is {Wy +t - 1,W; + ¢ — ,2,1}. Hence, P is
graceful. O

Theorem 11. Let T, be a generalized caterpillar with t legs H,, that
satisfies the OE-condition. If any two legs have the same number of edges
and, any vertex w; on the spine P = wyws - - - wp, of T, has the same number
q of vertices of degree one, then this generalized caterpillar is graceful for
2<¢<4

Proof. In fact, this special T;* can be obtained by linking ¢ generalized
spider 57,. Suppose that each sy-path-block chain Hy, = &%, Gy (uf, uf,,)
has s edges, so S}, has m(s+1) edges, and T} has [tm(s+ 1) +t—1] edges.
Let (v¥ g) )" be the vertices of the ith node block Gyl (uf,uf, ;) of the kth
leg H;, on the hth generalized spider S}, with the center vertex vP. Let
¢ be the graceful labels of the S, that is given by theorem 8, ¢’ is the
complementary labels of the ¢.

When m = 4, define the labelling Fy of the T}

h— . 13
ko\hy _ (v} Jl)'l' L(4s +5), if ¢(vi‘j‘,) <2s+3;
Flli0") = { d(v :"J D+ 2o " 2t=h-l(4s 4 5), otherwise.
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with 1 < h <t and h is odd.

Rk, = { $0h)+5Us+5)—2s—1, i ¢ol;) S 243
o ¢,(v§,j,l) + @(48 +5)—2s—1, otherwise.

with 2 < h <t and A is even.

Fi(eb) = ¢(v{;h) + (i_ btly(4s +5), if his odd, 1 <h <13
¢'(vg) +5(4s+5)—2s—1, ifhiseven,2<h <1,

We are easy to show that the F is graceful.

To give a graceful labels of the T for m = 2,3, we give directly a
graceful labelling of Sy, in the following procedure. Let f be a §-a-labelling
of H, = &%, Gy (uf, uk,,) such that f1(vf ;o) = §, 1(vE ;..) =0; and f2
be another £-a-labelling of Hy, = &%, Gy (uf,uf, ) such that fo(vf ;) =
0, fg(vﬁ'j'un) = £. We have that two g, and g, are the complementary
labellings of two f; and fo. Now, we come to show a graceful labels 9 of
the S}, for m = 2,3 as follows:

'l[)(’l)k . ) — fl(vzk,j,l) + k%l(s + 2), if fl(vf,j,l) < %3;
Lol h (vf'j’l) +(m-El)ys4+m— &1 otherwise.
forl1 <k <m,kisodd.
sty = { PO +E+L if fo(0f,) < 385
Ll fz(vf’j,l) +|m - 3|s+m—1, otherwise.
for 2 < k < m, k is even.
then ¥(v}) = (m - 3)s + m.

Let 9’ be the complementary labelling of 1. We can determine a grace-
ful labelling F, of T;" when m = 2 as follows.

b oyny _ [ WEs) + 25 (2 + ), if Y(of;) S s+ 1;
Fo((vi;0)") = { 1/1(1’53',1) + (- -’%‘—1-)(23 +3), otherwise.

with 1 < h <t and h is odd.
Yk )+ (h—1)(s+1)+ 4, if ¢/ (vf;) <s+1;

k hy _
F((vi;0)") = { ¢'(uik'j,,) +(2t—h—-1)(s+1)+ 252, otherwise.

190



with 2 < h <t and h is even.

Rl = Y(vh) + (f - "%1)(25 +3), ifhisodd,1<h <t
Y (vf)+ 2(2s+3)—s—1, ifhiseven,2<h <t.

For m = 3, it is very similar, there is a graceful labelling F3 of T} as
this form:

ko _ [ k) + 252 (3s +4), if Y(of;,) < 34
Fy((vi;,)") = { Y(vF; ) + (t - 21)(3s +4), otherwise.

with 1 < h <t and h is odd.

by [ PR+ G+, i ¢)) < B
Fs((vi.j,l) ) = { ¢'(’U§,j,l) + %(33 +4)+1, otherwise.

with 2 < h <t and h is even.

Fy(ul) = P(vf) + (ﬁ:z hi1)(3s +4), if hisodd, L Sh <t
¢ (vg) + 251 (3s+4)+1, ifhiseven, 2<h <t

We have finished the proof. O
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