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Abstract

The maximum possible toughness among graphs with n vertices
and m edges is considered for m > [n%/4]. We thus extend re-
sults known for m > n|n/3]. When n is even, all of the values are
determined. When n is odd, some values are determined, and the
difficulties are discussed, leaving open questions.

1 Terminology

A graph G = (V,E) is an (n,m)-graph if |V| = n and |E| = m. The
toughness [1] of a non-complete graph G = (V, E) is

7(G) =min{w(%\ls) :SCVandw(G\S) > 1},

where w(G \ S) is the number of components in the graph resulting from
the removal of the vertices in S from G. A separating set S for which the
toughness 7(G) = |S|/w(G \ S) is said to be a 7-set for G. Similarly, a
separating set S for which the connectivity x(G) = |S| is called a x-set.
Among all (n, m)-graphs, the maximum toughness [1, 2, 4, 5] is denoted by
Ta(m). An (n, m)-graph G is said to be maximally tough if 7(G) = T, (m).

For a fixed value of n, a study of the values T,(m) naturally splits
into r-indexed intervals [nr/2] < m < [n(r+1)/2], in which r is the
maximum possible minimum degree. Of course, r = |2m/n|. For m in the
rt* interval, Th(m) < /2. Thus, if we show that T,([nr/2]) = r/2, then
the computation of T, is completed in that interval.
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A standard approach to constructing maximally tough graphs is to avoid
K 3-centers. These are vertices with three neighbors that are not adjacent
to each other. Matthews and Sumner [7] show that, if a graph G is K 3-
free, then 7(G) = x(G)/2. All standard notation and terminology not listed
here can be found in (8.

2 Introduction

In this paper, we improve upon part (ii) of the following result, which gives
the maximum toughness when edges are relatively abundant.

Theorem 2.1 ([1, 4]). Letn>3. If
(i) v is even, or
(i) r 2 23],

then T ([3F]) = 5.

Theorem 2.1 is a consequence of the [act that the relevant Harary graphs
[6] are maximally tough. Part (ii) handles the cases in which m > n|n/3].
The following result, which we prove at the end of Section 3, improves upon
Theorem 2.1(ii) and handles the cases in which n is even and m > n?/4.

Theorem 2.2. Letn be even and r > §. Then T, (%) = §.

When =n is odd, a strong result like Theorem 2.2 is not possible. The
first failing occurs when » = 13 and r = 7. In [3], it is shown that

Tis46) = & < 3 = Tis(a7) (2.1)

We can extend this result somewhat. Of course, in light of Theorem 2.1(i),
it suffices to focus on the cases in which 7 is odd. The following three results
are proven in Section 4.

Theorem 2.3. Let n be odd and r = ﬂ"ZL‘“).

(a) Ifn=1 (mod 4), then T.([F] +1) = 5.

(b) [fn=3(mod 4) and n > 19, then To([F1+1) > 5 — 3.
Theorem 2.4. [fn=1(mod 4) and r = 2§, then T,([F]) > 5 - L.

Theorem 2.3(b) leaves room for improvement when n = 3 (mod 4) and
n > 19. However, the following result, which we have been unable to
generalize, leaves no room for improvement when n=15and r=9.
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Proposition 2.5. T)5(68) = %.

We see in (2.1) that equality holds in Theorem 2.4, when n» = 13. A
sense of the difficulties involved in establishing equality in general can be
gained by reading, in Section 5, the proof of the following result.

Proposition 2.6. T}7(77) = 3.

3 Key Construction: n even

Given an integer n > 3 and a set R of integers modulo n with R = —R,
the circulant C(n, R) is the graph with vertex set V = {0,1,...,n - 1}
and edge set £ = {{i,i +j} : j € R}, where addition is taken modulo
n. Note that |V| = n and C(n, R) is |R]|-regular. When r is even, the r-
regular Harary graph [6] on n vertices H(n,) is defined to be the circulant
C(n,{i:-r/2<i<71/2,i%# 0}). When r is odd and = is even, H(n,7) is
Cn,{i:=(r-1)/2<i<(r-1)/2,i# 0} U {3}). Whenr and n are both
odd, the Harary graph H (n,r) has degree sequence r+1,r,...,r and is not
a circulant; it is obtained from H(n,r — 1) by adding (n + 1)/2 “diameter”
edges. Although, in general, the circulant C'(n, R) is not a Harary graph, it
has some properties similar to those of Harary graphs that we shall exploit.

Our proof of Theorem 2.2 comes out of the following construction. Al-
though we shall see that it is a particular circulant graph, we give an
alternate description of its construction that lends itself to the proof of
Theorem 2.2 and a later construction.

Definition 3.1 (Construction of G(n,r)). Given n even with r > n/2,
let a =7r+1-n/2. Form G(n,r) from two n/2-cliques with vertex sets
Vi = {ul,...,'u.n/g} and Vo = {'w],. ..,w,,/g} by joining each u; to the
a vertices wj,...,Wis+a—1, Where subscripts are taken modulo n/2. See
Figure 1. Note that G(n,r) has n vertices and is r-regular. Moreover,
when r is odd, it is easy to confirm that G(n,r) = C(n, R) for

R={2i:1<i<3-1}u{2i+1: 22l <i<fl 1}
Lemma 3.2. Let n be even and r > 5. Then, k(G(n,r)) =r.

Proof. Let S be a x-set for G(n,r). For j = 1,2, let §; = SN V; and
W; = V;\ S;. Note that G \ S must have two components, one induced
by W, and the other induced by W,. Moreover, G \ S cannot contain
edges joining Vi to V. Since |W,| > 1, there is some u; € W; such that
ui+1 € 5) € S. Since u; € S, it follows that w;, ..., wite-1 € S2 C S.

We claim that u;y,...,%i4e-1 € S1 € S. If not, there is some
2 € b £ a—1 such that u;p € Wi. Since u;4p € S, it lollows that
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Figure 1: G(n,r)
Withy .+« Withra—1 € S2 € S. In particular, we have w;.1,..., Wiyq € S,

and we see that it is not necessary to have u;y, € S to separate G(n, 7).
This contradicts the fact that S is a k-set and establishes our claim.

For each 1 < k < n/2, since uy is joined to w,, we must have at least
one of ux or wg in S. Our claim has shown that, for a — 1 values of k,

say c+1,...,c+ a—1, we must have both ux and wy in S. Consequently,
|S] 2 n/2+ (a — 1) =r. That is, K(G(n,r)) > r. Since a separating set of
size r is given by {wn, ..., wa,u2,..., 252}, K(G(n,7)) = 7. ]

Proof of Theorem 2.2. Since G(n,r) has two disjoint cliques of size n/2,
it is K 3-free. It now follows from Lemma 3.2 that 7(G(n,7)) =7/2. 0O

4 Key Construction: n odd

Definition 4.1 (Construction of G’(n,r)). Given n,r both odd with
r>(n+1)/2,leta=r+1-(n+1)/2. Form G'(n,r) from G(n — 1,7 — 1)
by adding a new vertex z that is joined to

ULy oy Ur41)/2s Wy oo s W(r41)/2: Wn—-1)/2y

and by joining u; to w;—, for each (r + 3)/2 < i < (n — 1)/2. See Figure 2.
Note that G’(n,7) has n vertices, deg(z) = 7 + 2, deg(w(r41)/2) =7 +1,
and all other vertices have degree r.

Lemma 4.2. Let n,r be odd with r > 251, Then, x(G'(n,1)) =T.

Proof. Let S be a s-set for G'(n,r). If z € S, then since the (r — 1)-
connected graph G(n — 1,7 — 1) is a subgraph of G'(n,r) \ {z}, we have
S| > 14+ (—=1)=r. If 2z ¢ S, then for each vertex v # z in G'(n,r),
there are r internally disjoint paths in G’(n,r) between 2 and v. Hence,
|S| > . a
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Figure 2: G'(n,7)

Proof of Theorem 2.3. Note that r is odd. Let S be a 7-set for G’'(n, 7).

Since G’(n,r) consists of two cliques and the vertex z, we must have
w(G'(n,7)\ S) £ 3. If w(G'(n,r)\ S) =2, then

|51 ISl § &(G'(n,7))

,
w(G'(m,r)\S) 2 = 2 2

So assume that w(G'(n, )\ S) = 3. Hence, the r + 2 ncighbors of z are in
S, and z is a component by itsell. For j = 1,2, let W; be the vertices in Vj
that are not adjacent to z. None of the edges joining Wy to Wy can remain
in G’(n,r)\ S. However, since at least one vertex from each of W, and W,
must remain, n > 17.

We claim that at least (n — r)/2 — 1 of the vertices in Wy UW; arein S.
Let w; € Wy \ S. Its neighbors u; and ;- in W) must be in S. Since the
remaining (n — 7)/2 — 3 vertices in W, have a matching with the remaining
(n —)/2 - 3 vertices in Wy, there are at least (n — r)/2 — 3 more vertices
in S from W; U Wa. In total, there are at least (n —r)/2 — 1, as claimed.

All together, since 2r = n + (n mod 4), we sce that

3r + 2 — (n mod 4)

ISIZ2(r+2)+ (235 -1)=

2 )
and hence 15| 2 d4)
r — (nmo
’ Y Ll R ol Ul di? A
If n = 1 (mod 4), then § cannot be a 7-set. If n = 3 (mod 4), then
7(G'(n, 7)) 2 r/2-1/6. O

The maximally tough (13,47)-graph presented in [3] is isomorphic to
G’(13,7). Morcover, removing the edge joining the two highest degree
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vertices yields the maximally tough (13, 46)-graph given there. Theorem 2.4
can be proven by generalizing this approach.

Proof of Theorem 2.4. The result follows easily either by considering
the graph obtained from G’(n,7) by removing the edge joining the two
highest degree vertices, or by using a construction similar to that of G’(n, r)
in which vertex z gets degree r, vertex w(-_1)/2 gets degree r + 1, and all
the rest get degree r. 0O

Proof of Proposition 2.5. The (15, 68)-graph obtained from the graph
C(15, {£2, +4, +5, +6}) by adding the edges {0, 7}, {1,8},...,{7,14}, {0, 8}
has been verified by computer to have toughness 9/2. O

5 Proof of Proposition 2.6: T1,(77) = 13/3

We shall employ some further notation. For A C V(G), let N(A) denote
the set of neighbors of A, let N[A] = N(A)U A, and let (A) denote the
subgraph induced by A. We use ~ [or the adjacency relation. For a vertex
v in a subgraph H of G, degy(v) denotes the degree in H of v. For any
disjoint subsets A and B of V(G), nap denotes the number of edges with
one endpoint in A and the other in B.

Proof. Suppose instead that we have a (17,77)-graph G with 7(G) > 13/3.
Hence, G has toughness 9/2, connectivity 9, 16 vertices of degree 9, and
one vertex of degree 10.

Claim 5.1. Let v; and vy be distinct nonadjacent vertices. Then,
[V(G)\ (N[u1]U N[vo])| £ 1. Moreover, if degg(v1) = degg(v2) = 9, then
[N(v1)N N(v2)| £4.

Pf. Let S = N(v) U N(vq). If |V(G)\ (N[w1]U N[v2})| > 1, then
|S] €13, w(G\ S) 2 3, and 7(G) < 13/3. The rest follows by inclusion-
exclusion. Q.E.D.

We consider two main cases.

Case 1: There are distinct nonadjacent degree 9 vertices £ and y such
that |V(G)\ (N[z]U N[y])] = 1, and hence [N (z) N N(y)| = 4.

We have a vertex z ¢ N[z]U N[y]. Since z = z, |[N(z) U N(2)| > 14, by
Claim 5.1. Thus z is adjacent to all 5 vertices of N(y)\ N(x). Similarly, z is
adjacent to all 5 vertices of N(z) \ N(y). Thus deg(z) = 10, and N(z) =
(N(z) U N(g))\ (N(z) N N(y)). Define X = N(z) \ N(3) = {z1,..., 3},
Y =N@\NZ) = {y,...,y5}, and W = N(z) "N N(y) = {wi,..., wa}.
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So V(G) = {z,y,2}UXUYUW, N(z)=XUW, Nly) =YUW, and
N(@)=XUY.
Claim 5.2. (a) (X)=(Y) = Ks.

(b) Vz; € X, |N(z;)Nn (Y UW)| =3.

(c) Vyi €Y, IN(m:)N(XLUW)|=3.

(d) (W) is one of K4, Ka minus one edge, or Cy.

(e) Yw e W, if degy (w) =3, then N(w)N X # 0 and N(w)NY #0.

Pf. TFirst we show that each z; € X is adjacent to at least 3 other

vertices in X. Since z; = y, by Claim 5.1, |V(G) \ (N[z:)U N[y])| < 1.
Moreover, N[yJN X = 0, so z; must be adjacent to at least 3 vertices of
X. To see why (X) = K3, consider distinct z;,z; € X. We already have
[N(z:)N(z;)| = [{z, 2} U(X\{zi, z;})| = 5. Thus, by Claim 5.1, z; ~ z;,
and hence (X) = K;. A similar argument shows (Y') is K5. Part (b) follows
since degg(z;) = 9 and z; is adjacent to z, z, and 4 other elements of X.
Part (c) follows similarly. For (d), note that, for each w € W, w » 2. So,
by Claim 5.1, |V(G) \ (N[w] U N[2])| < 1. Furthermore, N[z] N W = 0.
So w must be adjacent to at least 2 of the other 3 vertices of W. Hence
degw)(w) > 2, and the result follows. For (e), if N(w) N X = @, then
INw)NnY| =9—-(3+2) =4. So Jy; € Y such that y; » w, and, by
Claim 5.1, |V(G) \ (N[w] U N[])| £ 1. Hence, |[N(y:;) N X| > 4, which
contradicts part (¢). Q.E.D.

Claim 5.3. (a) Vx; #z; € X, N(zi,z;)NY #0.

(6) Yy #y; €Y, N(yi,u;) N X #0.

Pf. Let z; # z; € X, and suppose that N(z;,z;) NY = 0. Define
S={z}UWUX\ {zi,z;}. Since |S| =8 and G'\ S is disconnected with
{{z,z1,z2}) forming one component, we contradict x(G) = 9. Part (b)
follows similarly. Q.E.D.

Claim 5.4. (a) If (W) = K4, then nwx =nwy =8 and nxy = 7.
(b) If (W) = K, minus one edge, then nwx = nwy =9 and nxy = 6.
(c) If (W) =Cy, thennwx =nwy =10 and nxy = 5.

Pf. By Claim 5.2 (b) and (c), each z; € X is adjacent to 3 vertices of
W UY, and each y; € Y is adjacent to 3 vertices of W U X. So

nxw +nxy =3:5=15and nyw + nyx = 15. (5.1)

199



If (W) = K, then each w; € W is adjacent to z, y, and 3 vertices
of W. So each such w; is adjacent to 4 vertices of X UY. This gives
nwx +nwy =4 -4 = 16. In general, similar counts show that

16 if (W) = K,,
nwx +nwy =< 18 if (W) = K4 minus one edge, (5.2)
20 if (W) =Cy,

The results follow by solving the system of equations (5.1) and (5.2). Q.E.D.
Claim 5.5. (W) = C,.

Pf. Suppose instead that (W) is K4 or K4 minus one edge. Then there
exists wy € W such that deg,, (w;) = 3, and hence |N(w;)N(XUVY)| = 4.
Let ([N(wy)NY| = k. So |[N(w;)N X| = 4 — k. By symmetry of {X)
and (Y), we may assume that 0 < k < 2. By Claim 5.2(e), k # 0. Since
INu )N X| =4—-k, [ X\ N@w)l=5-(4-k) = k+ 1. Suppose
Zi,...,Zks1 % wy. For 1 <4< k41, [V(G)\ (N} U N[zi])| €1, by
Claim 5.1. Now w; is adjacent to k elementsof Y. So, foreach1 <17 < k+1,
z; must be adjacent to at least 4 — k elements of Y. For both k = 1 and
k = 2, this accounts for a total of at least 6 X-Y edges. If (W) = K,
minus one edge, then, by Claim 5.4, there are no more X-Y edges. So
we have N(z4,z5) NY = ), contradicting Claim 5.3. If (W) = K,, then
there is exactly one more X-Y edge. So we have, without loss of generality,
x5 € X such that z5 ~ w; and N{zs)NY = 0. This fact and Claim 5.2(b)
give |[N(zs) N W| = 3. So 3w; € W such that w; » z5. By Claim 5.1,
N(wj;) U N(zs) must include all but at most one element of Y. Since zs is
adjacent to no elements of Y, w; is adjacent to at least 4 elements of Y.
Since (W) = K4, |N(w;) N W| = 3. Since w; is adjacent to z and y, we
have accounted for all vertices adjacent to w;. That w; has no neighbors
in X contradicts Claim 5.2(e). Q.E.D.

Claim 5.6. (W) % Cy4.

Pf. Suppose (W) 22 Cy. Thus, Vu; € W, [N(wz)N(X UY)| =5.

First, consider the possibility that Jw; € W such that N(w;)NX # X
and N(w,)NY #Y. Let |[IN(wy)NY|=k%. So [N(w1)NX|=5-k. By
the symmetry between X and Y, we need only consider k£ = 1 or 2. Since
IN(uh)N X| =5—k, | X\ N(w)| = &. So, take w; = z1,...,z,. Since
[N(uw)NY| =k, Claim 5.1 implies that, for 1 <i < k, [N(z;)NY| =4 k.
If Xk = 1, then w; » z; and z; is incident to at least 3 X-Y edges. By
Claim 5.4(c), this leaves at most 2 edges from X \ {z,} to Y. Thus, at
least two of the elements of X \ {z;} are incident with no edges to Y,
contradicting Claim 5.3(a). If k = 2, then w; » x,,z2 and each of z;,z;
is incident to at least 2 X-Y edges, accounting for at least 4 of the 5 X-Y
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edges. Thus at least two of the elements of X \ {z;,z2} are incident with
no edges to Y, again contradicting Claim 5.3(a).

Second, consider the possibility that Vuw; € W, either N(w;)N X = X
or N(w;)NY =Y. Assume that wy » w3 in (W) = Cy, so N(w)NX =X
and N(ws)NY =Y. By Claim 3.4(c), nwx = 10. Thus, one of ws, wy
is adjacent to elements of X. By our assumptions, this element, say ws, is
adjacent to all 5 elements of X. Similarly w, is adjacent to all 5 elements
of Y. This accounts for all W-X edges and all W-Y edges. Now define
S = {w,wz,z} UY. In G\ S, (X U{z}) is a component. Thus G\ S is
disconnected with |S] = 8, contradicting x(G) = 9. Q.E.D.

Obviously, Claims 5.5 and 5.6 contradict each other.

Case 2: For each pair of distinct nonadjacent degree 9 vertices v; and vg,
N[v1)U N[vg) = V(G), and hence [N () U N(zp)| = 15.

Let z be the vertex of G with degree 10. Not all vertices in N(z) can
be adjacent, since all vertices in N(z) have degree 9. Therefore, let z and
y be non-adjacent degree 9 vertices in N(z). Hence, {N(z) U N(y)| = 15.
Define Z = N(z) " N(y) = {z, 21,22}, X = N(z)\ N(y) = {z1,...,z6},
and Y = N(y)\ N(=) = {y1,...,¥6}. So V(G) = {z,y}uXUYUZ,
N{Ez)=XUZ, and Ny)=YUZ.

Claim 5.7. (o) (X} = (Y) = K.

(b) Vz; € X, IN(z;)N (YU Z)| =3.

(c) Vy; €Y, IN(y:)n{(X U Z)| =3.

(d) Vz; € X, N(z;)nY #0.

(e) Vi €Y, Nyg;))n X #0.

Pf. If z; » z; € (X), then y ¢ N[z:;]U N|[z;], contradicting the case

hypothesis. Thus (X) = Kg. Similarly, (Y} = Kg. Parts (b) and (c) now
follow since each vertex in X UY has degree 9. For (d), suppose 31 € X

with N(z,)NY = 0. Define S = ZU X \ {z,}. Thus, |S| =8 and {{z,z:})
is a component of G\ S, contradicting k(G) = 9. Part (e) is similar. Q.E.D.

If (Z) has no edges, then z; » 22 and 2 ¢ N{21] U N[29], which contra-
dicts the case hypothesis.

If at least one of z;, 2¢ has degree 2 in (Z), then take z; to be such a
vertex. Now z; is adjacent to z, y, and 2 elements of Z. So z; is adjacent
to exactly 5 elements of X UY. Thus there exists § € Y such that z; » 7.
By the case hypothesis, N{z;]U N[j] = V(G). Hence, 3 is adjacent to all
elements of X \ N(z). If z; is adjacent to 0, 1, or 2 elements of X, then

201



IN(§) N X| > 4, contradicting Claim 5.7(c). If z; is adjacent to 3, 4, or §
elements of X, then z; is adjacent to 2, 1, or 0 elements of Y, respectively,
and we repeat the previous argument exchanging the roles of X and Y.
We conclude that the degree in (Z) of both z; and z; must be at most 1
(but not both 0). Take 2; to have degree 1 in (Z). Hence, (Z) has exactly
three possible structures, which we denote by Hi, Ha, and H3, where

e H, has exactly two edges, {2, 21} and {z, z2},
e Hj has exactly one edge {z1,z}, and
e M3 has exactly one edge {21, 22}.
Claim 5.8. (a) [N(z;))Nn(XUY)|=6.
(b) If(Z) is Hy, thennzx =nyzy =9 and nxy = 9.
(c) If (Z) is Hy or Hs, thennyzx =nzy =10 and nxy = 8.

Pf. Part (a) follows, since 2 is adjacent to z, y, and onec element of Z.
For parts (b) and (c), the number of edges connecting Z to X UY is

18 if{Z) is Hi,

5.3
20 if {Z) is Hy or H3. (5:3)

nzx +nzy = {

By parts (b) and (c¢) of Claim 5.7, the number of edges connecting X to
YUZisnxz+nxy = 6-3 =18. Similarly, nyz +ny x = 18. Solving this
system of equations gives the desired result. Q.E.D.

Let [N(z;) N X| = k. By Claim 5.8(a), |[N(z)NY|=6 — k.

Subcase (a): k = 1, 2, 4, or 5. By the symmetry between X and
Y, we may assume that k = 1 or 2. So Jy; € Y such that y; = 2.
By the case hypothesis, N[y1] U N{z;1] = V(G). Hence y, is adjacent to
the 6 — k > 4 elements of X that are not adjacent to z,. However, this
contradicts Claim 5.7(c).

Subcase (b): k = 3. Take z; = z4,z5,%6, and 21 = y4,ys5,y¥6. By
the case hypothesis, for i = 4,5,6, N{z;] U N[z;] = V(G). So each of
Z4,T3,T6 is adjacent to each of y4,¥s, y6. This accounts for 9 X-Y edges.
By Claim 5.8, there are no more X-Y edges. Hence N(z,)NY = 0, con-
tradicting Claim 5.7(d).

Subcase (c): k=6 or 0. First, consider (Z) = H, or H3. Note that, in
H, and Has, z; and z3 are interchangeable. So, if 1 < |[N(22)N X| £ 5, we
can apply subcase (a) or (b) arguments to 2 to get a contradiction. Hence,
we may assume that [N(z;)N X| =6 or 0, and |[N(22) N X| =6 or 0. By
Claim 5.8, nzx < 10. So, one of N(z1) N X or N(z2) N X must be empty.
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Take [N(21) N X| = 6 and [N(22) N X| = 0. This gives |[N(z))NY| =0
and |[N(22) Y| = 6. If {(Z) = Hs, then, by Claim 5.8(c), nzy = 10, and
hence |[N(z) N Y| = 4. Thus, there are 2 elements of Y that are not in
N[z] U N[z], contradicting Claim 5.1. If {(Z) = H,, then, by Claim 5.8(b),
nzy = nzx = 9, and hence [N(z)NX| =3 and |[N(z)NnY| = 3. So
take z » x;, for 1 = 4,5,6, and z = y;, for j = 4,5,6. Tor j = 4,5, 6,
since z ¢ N[z4] U N[y;], we have z4 ~ y;, by the case hypothesis. Since
[N(z1)NX| = 6, =4 is adjacent to 2, and 3 elements of Y. This contradicts
Claim 5.7(b).

To complete subcase (c), consider (Z) = H,. By the symmetry between
X and Y, we may assume that k= |[N(2;) N X| =6 and |[N(z)NY]|=0.
Since z; » z3 and z; is not adjacent to elements of Y, the case hypothesis
gives |[N(22)NY| = 6. Thus, 25 is adjacent to exactly one element of X. By
Claim 5.8(c), nzx = 10 =nzy, and so [N(2)NX| =3 and |[N(z)NY| = 4.
Take z » x4, x5, Z6, ¥5, 6. NOW y5 ~ z2, and, by Claim 5.7(c), ys is adjacent
to exactly 3 elements of X U Z. So ys is adjacent to no more than 2 of
Z4,Ts,Te. Say ys » z4. However, 2 ¢ N[ys]U N|[z4], contradicting the case
hypothesis. ]}
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