ON MAXIMAL FRACTIONAL INDEPENDENT SETS IN
GRAPHS

K. REJI KUMAR?, S. ARUMUGAM?2, G. MACGILLIVRAY?

ABSTRACT. We study convexity with respecet Lo a definition of fractional in-
dependence in a graph G that is uantificd over ncighbourhoods rather than
edges. The graphs that admit a so-called universal maximal fractional inde-
pendent set are characterized, as are all such sets. A characterization is given
of the maximal fractional independent sets which can not be obtained as a
proper convex combination of two other such sets.

1. INTRODUCTION

Fractional dominating sets of graphs, also called dominating functions, were
first studicd by Hedetniemi, Hedetmicmi and Wimer [9). Since then, a considerable
amount of work has been done on the “size” of fractional dominating sets, and the
convexity of such sets (e.g. [3, 4, 5. 6, 10, 12]; also see [7, 8}).

A problem stated by Haynes, Hedetniemi and Slater [8] (Chapter 3, page 85)
asks if it is possible to define a fractional independent set in a graph as a function
f:V = [0,1] such that:

(1) the characteristic function of an independent set is a fractional independent
set, and
(2) there is a concept of maximality so that:
(a) the characteristic function of a maximal independent set is a maximal
fractional independent set (MFIS), and
(b) every MFIS is a minimal fractional dominating set.
Such a definition was presented and studied in the Ph.D. Thesis of K. Reji Kumar
(10].

We consider convexity questions for Kumar’s definition of maximal fractional
independent sets. In particular, we give a complete characterization of the graphs
that admit a universal maximal fractional independent set. That is, we characterize
the graphs with a MFIS f such that anyv convex combination of f and another MFIS
is a MFIS. For these graphs we are also able to describe all possible universal MFISs,
as well as all possible “sizes” of such sets.

2. DEFINITIONS AND PRELIMINARIES

We consider only finite simple graphs. Terminology not explicity defined here
follows West 13}, or Haynes, Hedeiniemi and Slater (7).
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Let G be a graph, and f: V — [0,1] a function. For a subset X C V, denote by

f(X) the quantity Z f(z). The boundary of f is the set By = {z : f(N[z]) =1},
reX

and the positive set of f is the set Py = {z : f(z) > 0}. Here, and elsewhere,

N[z] = N(z) U {z} denotes the closed neighbourhood of the vertex z.

For subsets X and Y of the vertex set of a graph G, we say that X dominates
Y if every vertex in Y — X is adjacent to a vertex in X. If Y = {v} we may omit
the brackets and say that X dominates v. In the terminology introduced in this
paragraph, a subset D C V is a dominating set if it dominates V.

A function f : V — [0,1) is a called a fractional dominating set, or dominating
function of the graph G, if f(N{z]) > 1 for every = € V. A fractional dominating
set is called minimal if there is no fractional dominating set g # f such that
g(w) < f(w) for all w € V. The 0-1 valued (minimal) fractional dominating sets
are precisely the characteristic functions of (minimal) dominating sets.

It is clear that if f and g are fractional dominating sets of the graph G then,
for any A € [0,1], so is the convex combination hy = Af + (1 — A)g. The same
statement is not true for minimal fractional dominating sets, as is evident from the
following results.

Theorem 2.1. (2] A fractional dominating set f is minimal if end only if By
dominates Py.

Corollary 2.2. [2] Let f and g be minimal fractional dominating sets of the graph
G. Then, for any A € (0,1), the convex combination hy = Af +(1 - X)g is a
minimal fractional dominating set if and only if By N B, dominates Py U P,.

A universel minimal fractional dominating set f is one for which any proper
convex combination of f and a minimal fractional dominating set g is again a
minimal fractional dominating set. The universal minimal fractional dominating
sets have been characterized [3]. This leads to a characterization of the graphs
for which the set of minimal fractional independent sets is convex, that is, every
minimal fractional dominating set is universal [11). No characterization is known
of the graphs that admit a universal minimal fractional dominating set.

A basic minimal fractional dominating set is one which can not be expressed
as a proper convex combination of two other minimal fractional dominating sets.
Kumar and Arumugam [12] characterized the basic minimal fractional dominating
sets. :

Theorem 2.3. [12] A minimal fractional dominating set f is basic if end only if
there is no other minimal fractional dominating set g with By = By and Py = Py.

The following definition, from the Ph.D. Thesis of Kumar [10], answers the
question of Haynes et al. mentioned in the Introduction. Let G be a graph. A
function f : V — [0,1] is an independent function, or fractional independent set,
if f(N[x]) =1 for every vertex z with f(z) > 0. A fractional independent set is
mazimal if it is also a fractional dominating set.
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This notion of maximality resembles the folklore theorem that an independent
set in a graph is maximal if and only if it is 2 dominating set. On the other hand,
the notion of maximality does not allow one to increase some function values of a
fractional independent set and arrive at a MFIS. For example, let g be the fractional
independent set of the path on four vertices obtained by assigning zero to the two
end vertices and % to the two central vertices. There is no MFIS f such that
9(z) < f(z) for each vertex z.

Clearly, the charactistic function of an independent set is a fractional indepen-
dent set, and that the charactistic function of a maximal independent set is a max-
imal fractional independent set. It follows immediately from the definition that if
f is a MFIS of G, then Py dominates V.

In contrast to fractional dominating sets, the collection of fractional independent
sets of a graph is not necessarily convex. For example, consider a path on three
vertices z,y, z. If f is the characteristic function of {y}, and g is the characteristic
function of {z,z}, then {f + g is not a fractional independent set because it is
positive at y but (3 f + 1g)(N[y}) > 1.

A complete characterization of the graphs for which the collection of (maxi-
mal) fractional independent sets is convex is included among the result in the next
section.

3. A CHARACTERISATION OF THE GRAPHS WITH A UNIVERSAL MFIS

A motivation for studying convex combinations of (maximal) fractional inde-
pendent sets arises from considering the “size” of such sets. The aggregate of a
fractional independent set f of a graph G is agg(f) = Z f(z). It is natural to

z€V

wonder which values can occur as the aggregate of a (maximal) fractional indepen-
dent set of a graph G. In particular, f and g are MFISs of G with agg(f) < agg(y),
is there a (maximal) fractional independent set of G with aggregate o for every
a € [agg(f), ugg(g)]? When f and g are fractional dominating sets, this has been
investigated by Cockayne et. al. [2]. As in that paper, the question leads to the
study of convex combinations of (maximal) fractional independent sets, since for
A € [0,1], the aggregate of hy = Af + (1 — A)g is Aagg(f) + (1 — A)agg(g)-

The first proposition follows innnediately from the definition of a fractional in-
dependent set.

Proposition 3.1. Let G = (V,E) be a graph. A function f : V — [0,1] is a
Jfractional independent set if and only if Py C By.

Proposition 3.2. If f is MFIS in G, then Py dominates V.

Proof. By definition of maximality, f is a fractional dominating set. Hence f(N[v]) >
1 for each vertex v. Therefore Py dominates v. O

Corollary 3.3. If f is MFIS in G, then By dominates V.
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We now show that either all nontrivial convex combinations of two MFISs of a
graph G are MFISs, or none are.

Lemma 3.4. Let f and g be MFISs of G, and A € (0,1). Then, hy = Af+(1-A)g
is ¢ MFIS if and only if P U P, C By N B,,.

Proof. The boundary of hy is By, = ByN By, and the positive set is P,, = P;UP,.
Suppose first that hy is a MFIS. Then, by Proposition 3.1, Py U P, C By N B,
Conversely, suppose that Py U P, C By N B,. Then, by Proposition 3.1, the

function h, is a fractional independent set. Since f and g are MFISs, for any

vertex v, ha(N[v]) = Af(N[v]) + (1 = A)g(N[v]) 2 A+ (1 — A) = 1. Hence, hy is a

MFIS. 0

A fractional independent set f is called universal if any convex combination of
f and a MFIS g is a maximal fractional independent set.

It is easy to see that the collection of maximal fractional independent sets of a
complete graph is convex. The following proposition implies that this is essentially
the only graph for which the set of maximal fractional independent sets is convex.

Proposition 3.5. Suppose that the graph G is connected but not complete. Then,
there exist mazimal fractional independent sets f and g such that no proper convex
combination of f and gy is a fractional independent set.

Proof. Since G is connected and not complete, there exist vertices u,v and w such
that uv,vw € E, but uw € E. Let f be the characteristic function of any maximal
independent set that contains v, and let g be the characteristic function of any
maximal independent set that contains v and w. Then, for any A € (0,1) we have
(A +(1=2g)v)>0and (Af+ (1= Ag)(N[)) 21+A1>1.

Lemma 3.6. If f is a universal MFIS of G, then By = V.

Proof. Let v € V, and let S be a maximal independent set of G such that v € S.
The characteristic function xs of § is a MFIS, and v € P,,. Since f is universal,
it follows from Proposition 3.1 that Py U Py, C By N By;. Hence v € By. 0

Corollary 3.7. If f is a universal MFIS of G, then
Pr (B,
g

where the intersection is over all MFISs g of G.

Lemma 3.8. If the subgraph of G induced by N[v] is not complete, then there exists
a MFIS g such that v € By.

Proof. The function g can be taken to be the characteristic function of a maximal
independent set containing a pair of neighbours of v which are not adjacent. 0O
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Let G be a graph with a universal MFIS f. By the above corollary and lemma,
the positive values of f can occur only at vertices whose closed neighbourhood
induces a complete graph. Define C = C(G) = {z : G[N|[z]] is complete}.

Corollary 3.9. If f is a universal MFIS of G, then Py C C(G).

Proposition 3.10. Let G be a graph that has a universal MFIS. If ¢ and y are
vertices of G such that both G{N[z]] and G[N[y]] are complete graphs, then either
N{z] = Nly] or N[z]n N[y] = 0.

Proof. Let f be a universal MFIS of G. Suppose N{z] # N(y] but N[z])NN[y] # 0.
Since both G[N|z]] and G[N|y]] are complete graphs, some vertex in Nz] is not
adjacent to some vertex in Nly]. Any vertex z € N[z] N Nly] is adjacent to every
vertex in N([z] U N[y], so G[N|z]] is not complete. Consequently, z ¢ Py. Hence,
f(N[2])) 2 f(N[z]) + f(N[y)) 21+ 1=2. Thus z € By =V, a contradiction. O

Note that the above proposition dees not preclude there being vertices u € N|z]
and v € N[y} such that uv € E.

Let G be a graph with a universal MFIS f. By Proposition 3.10 the relation ~
on C(G) is an equivalence relation.

Corollary 3.11. Let f be a MFIS of the graph G. Then f([z]) = 1 for each
equivalence class [z] of ~.

Proof. Since By =V, f(N[v]) = 1 for any vertex v. Let € C(G). By Corollary
3.9, 1= f(Nlz]) = f(N[z] nC(G)) = f([z])- a

Proposition 3.12. Suppose that G has e universal MFIS. If y € C, then there is
a unigue equivalence class [x] of ~ that contains a vertez adjacent to y. Further, y
is adjacent to all clements of [z].

Proof. By Proposition 3.2 and Corollary 3.9, every vertex y ¢ C is adjacent to a
vertex in C. By definition of ~, if y is adjacent a vertex of an equivalence class
|z] then it is adjacent to every vertex of [z]. Since f is a universal MFIS, y € By.
Therefore, by Proposition 3.10, there is a unique equivalence class [z] that contains
a vertex adjacent to y. O

Corollary 3.13. If G las a universal MFIS, then any set obtained by selecting one
vertez from cach cquivalence class of ~ is a minimum independent dominating set
of G.

An independent dominating set X of G is called perfect if every vertex of G not
in X is adjacent to exactly one vertex in X.

Corollary 3.14. If G has a universal MFIS, then G has a perfect minimum in-
dependent dominating set (formed by choosing one element from each equivalence
class of ~).

The following theorem summarizes our work. It characterizes the graphs that
admit a universal MFIS, and all such functions.

209



Theorem 3.15. A greph G has a universal MFIS if and only if there exists a
unique partition of V into sets that induce mazimal cliques. Further, if V has
such a partition, then e function f is e universal MFIS if and only if Py C C(G)
and f([zx]) = 1 for each equivalence class [z] of ~. The aggregate of any universal
MFIS equals the number of equivalence classes, which is the number of cliques in
the partition.

Proof. Suppose G has a universal MFIS. By Proposition 3.12, each equivalence
class of ~ gives rise to a unique maximal clique, and the vertex sets of these cliques
partition V(G).

Now suppose there exists a unique partition of V into sets that induce maximal
cliques. Let f be any function such that Py € C(G) and f([z]) = 1 for each
equivalence class [x] of ~. Then f is a MFIS of G and By = V.

We claim that f is a universal MFIS. Let ¢ be a MFIS of G. It must be shown
that Py U P, € B,. The containment P, C B, follows from the fact that g is a
fractional independent set. The containment Py C B, follows from Corollary 3.7.
This proves the claim.

Suppose now that f is a universal MFIS of G. By Corollories 3.9 and 3.11,
P; C C(G) and f([x]) =1 for each equivalence class [z] of ~. The aggregate of f
equals the number of equivalence classes. O

The graphs that admit a universal MFIS can all be constructed from a disjoint
union of ¢ disjoint cliques (possibly of different sizes), say G1,Ga,...,Gy, where
t € Z, by selecting for each i,1 < i < ¢ a non-empty subset X; C V(G;), and
adding any subset of edges joining vertices in

t
U
i=1

Furthermore, any graph constructed in this way admits a universal MFIS.
The following is a consequence of our characterization above.

Proposition 3.16. If there exists a unique partition of V into sets that induce maz-
imal cligues, then every mazimal independent set of G is a mazimum independent
set. That is, if G admits a universal MFIS, then G is well-covered.

Proof. Any maximal independent set includes exactly one vertex from each clique
in the partition. 0

4. BASIC MAXIMAL FRACTIONAL INDEPENDENT SETS

In this brief final section we note that Theorem 2.3 also holds for maximal
fractional independent sets. A MFIS A of a graph G is called a basic mazimal
fractional independent set (BMFIS) of G if there do not cxist different MFISs f
and g, and X € (0.1), such that h = Af + (1 — A)g. It is easy to see that forn > 1
the characteristic function of a single vertex subset of V(K,,) is a BMFIS of K,,.
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Lemma 4.1. Any BMFIS of a graph G is a basic minimal fractional dominating
set of G.

Proof. Suppose the graph G has a BMFIS f which is not a basic minimal fractional
dominating set. Then, there exist different fractional dominating sets f, and f> of
G and A € (0,1) such that f = fi + (1 — A)fa. As before, Py = Py U Py,
and By = By, N By,. Since f is a fractional independent set, Py C By. Hence,
Py, C Pr C By C By,. Thus Py, C By, and, by a similar argument, Py, C By,.
It follows that f; and f, are fractional independent sets. Further, since f; and
f2 are also fractional dominating sets, each of them is a MFIS. Therefore, f is a
proper convex combination of two different maximal fractional independent sets, a
contradiction. O

Theorem 4.2. A mazimal fractional independent set f of a graph G is basic if and
only if there is no other mazimal fractional independent set g such that By = B,
and P, = Pg.

Proof. Let f be a BMFIS of G. Then, by Lemna 4.1, f is a basic minimal fractional
dominating set of G. The implication now follows from Theorem 2.3 and Lemma
4.1.

Conversely, suppose there is no other MFIS g of G with By = B, and Py = P,
but f is not basic. Then, f is a proper convex combination of some two different
MFISs f, and fo. But, for any A € (0.1). if h = Afy + (1 = A)fz, then By = By,
and Py = P,. Lemma 3.4 now gives a contradiction. O
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