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- ~ - Abstract

An incidence graph of a given graph G, denoted by I(G), has
its own vertex set V(I(G)) = {(ve) | v € V(G), e € E(G) and v is
incident to e in G} such that the pair (ue)(vf) of vertices (ue), (vf) €
V(I(G)) is an edge of I(G) if and only if there exists at least one

case of u = v, e = f, uv = e or wv = f. In this p.

aper we carry out

a constructive definition on incidence graphs, and investigate some
properties of incidence graphs and some edge-colorings on several

classes of them.
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1 Introduction and concepts

Since there are many researching works on incidence
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rian, hamiltonian,

graphs generated from

some given graphs, so we shall study incidence graphs in this paper. All

graphs mentioned are simple, finite, undirected grap
ogy not defined here can be found in [2], [5] and [8].
incidence graph of G, denoted by I(G), has the v

V(I(G)) = {(ve) | v € V(G),e € E(G) and v is {

[

h. The other terminol-
Given a graph G, the
ertex set

ncident to e in G},

where the symbol (ve) stands for a vertex of I(G), and first letter v denotes

a vertex of G, second letter e indicates an edge of
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v as one of its two end-points. We use the notation (ue)(vf) to denotes
an edge with end-vertices (ue) and (vf) in I(G). So the pair (ue)(vf) of
vertices (ue), (vf) € V(I(G)) is an edge of I(G) if and only if there exists
at least one caseof u =v,e = f,uv =eor uv = f.

For the purpose of convenience, we use the notation [k] to denite an in-
teger set {1,2,...,k}. A proper coloring f : V(I(G)) — [k] is an incidence
coloring of a graph G, we then say that G is k-incidence colorable. The
minimum number, for which there exists an incidence coloring of G, is called
the incidence chromatic number of G, and is denoted by x;(G). This
concept was first developed by Brualdi and Massey in 1993 (cf. [7]), and
determined the incidence coloring numbers on trees T', complete graphs K,
and complete bipartite graphs K, , are determined by x:(K,) =n (n > 2),
Xi(Kmn) =m+2 (m 2>n2>2),and x;(T) = A(T) +1 (|V(T)| 2 2) re-
spectively. And they posed the Incidence Coloring Conjecture (ICC): For
every graph G, x;(G) < A(G) + 2. Chen et al.[4] determined the inci-
dence coloring number of paths, cycles, fans, wheels, adding-edge wheels
and complete 3-partite graphs. The arboricity a(G) is the minimum k
such that the graph G has an edge partition {E;, Es,..., Ex} in which
each induced subgraph G; by E; is a forest. In 1997, Guiduli [6] showed
that incidence coloring is a special case of directed star arboricity that is
introduced by Algor and Alon (cf. [1]). They pointed out that the ICC
was solved in the negative following an example in [1]. It is shown that
xi(G) € A(G) + O(log(A(G))) in the article [1].

All above motivate us to research incidence graphs. In the second sec-
tion we carry out a constructive definition on incidence graphs, and in-
vestigate some properties of incidence graphs and some edge-colorings on
several classes of them.

2 Main results on incidence graphs

2.1 The /-construction

We can construct the incidence graph I(G) of G by using the following
method. We make a subdivision of G, denote by H, by replacing each edge
e = uv of G by a path P = u(ue)(ve)v with 4 vertices, where u, (ue), (ve)
and v denote the vertices of P respectively. Next we color only vertices
(ue) and edges (ue)(ve) in H with red color, color the rest vertices and
edges of H with blue color. Now, we add a new red edge (ue)(vf) to H if
the distance between two red vertices (ue) and (vf) of H is either 2 or 3.
The resulting graph is called the near-incidence graph of G, written by
I*(G). 1t is easy to obtain the incidence graph I(G) of G by deleting all blue
vertices and edges from the near-incidence graph I*(G). Two examples of
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incidence graphs are shown in Figure 1 and Figure 2, respectively. We call
this method the I-construction. Clearly, the I-construction is equivalent
to the definition of incidence graphs.

/3] U
€1 €2 (we, (wez)
w
ey Y (wea) (wes)
U us ('J (useq) (uses) (
My "3
(@) (b) ©

Figure 1. (a) A star K),4; (b) the near-incidence graph I*(K,,4); (c) the
incidence graph I(Ki.4).
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Figure 2. (a) a complete graph K3; (b) the near-incidence graph I'*(K3); (c)
the incidence graph I(K3).

Let dp(z) be the degree number of a vertex z and let N(z) be the
neighborhood of z in which each vertex is adjacent to z in a graph H.
Obviously, the degree number of the vertex z is equal to the cardinality
of N(z), i.e., du(z) = |N(z)|. To illustrate some properties of incidence
graphs we present that the join graph G + H of two graphs G and H
is defined by adjoining each vertex of G to every vertex of H such that
V(G+H)=V(G)UV(H) and E(G+ H) = E(G)UEH)U{zy |z €
V(G), y € V(H)}. A bipartite graph Ko, 5 is defined by Koy o = Km+Kn,
where K, indicates the complementary graph of a complete graph Kj.
Especially, a star is K , =K, + K. The join of P, + K is called a fan
with n + 1 vertices, denoted by Fy 1, and u is called the center of the fan.

Let P, be a path of G, thus, I(P,) = P,f(n_l) C G. Furthermore,
we are easy to obtain the independent numbers a(G) < a(I(G)), and the
diameters D(G) < D(I(G)) because P, C Pg(n_l) = I(P,). Let C, be a
cycle of G, clearly, I(C,) = C2,. Since there is a star K 1,a in G where
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A = A(G), we have I(K1 o) = Ka + Ka € I(G). Immediately, the
independent numbers a(I(G)) > a(K1,a) = A(G). For each vertex u of
G, u corresponds a subgraph K + K of I(G), where s = dg(u).

From the facts above, every result in the following Theorem 1 can be
deduced directly from the definition of incidence graphs.

Theorem 1. Let I(G) be the incidence graph of G.
(#) Kaey+1 € Kaey + Kae) € I(G).
(#3) The independent numbers of two graphs G and I(G) hold a(I(G)) >
a(G), end o(I(G)) = A(G).
(iii) The diameters of two graphs G and I(G) hold D(I(G)) = D(G).
(iv) Then I(G) is 2k-connected if G is k-edge connected.
(v) The girth g(I(G)) =3 if G contains at least two incident edges.
(v) There is at least a perfect matching in I(G).
(vi) For any subgraph H C G, then I(H) C I(G).

In Figure 1.(c), it is not difficult to see that K4 + K4 C I(K; 4) and
a(I(K,4)) = o(Ky,4). But, the figures (a) and (c) described in Figure 2
show us that a(I(K3)) > a(K3).

2.2 Some properties of incidence graphs

Theorem 2. Let I(G) be the incidence graph of G, then |V(I(G))| =
2|E(G)| and

3
ABI@GN =) [(-1)"'1’6 > dﬁ:'l(v)] : (1)

k=2 veV(G)

Proof. According to the definition of incidence graphs we know that every
edge e-= uv € E(G) corresponds two vertices (ue) and (ve) of I(G), it
means |V(I(G))| = 2|E(G)|. Let P = zuvy be a path of G. We write
three edges of this path P as e; = zu, e = uv and e; = vy. Clearly, the
vertex (ue;) is not adjacent to the vertex (veg) in the incidence graph I(G).
We compute the degree number of a vertex (ue) of I(G) for an fixed edge
e = uv and the end-vertex u.

For every z € N(u)\ {v}, we have an edge e; = zu, the vertex (ue;) in
I(G) is adjacent to the vertex (ue) since these two vertices are constructed
by a vertex u of G. And more, the vertex (ze;) in I(G) is adjacent to the
vertex (ue) since e; = zu in G. Furthermore, for each vertex t € N(v)\ {u},
so ez = vt, the vertex (vez) in I(G) is adjacent to the vertex (ue) since
e = uv in G. Therefore, the degree of a vertex (ue) of I(G) is equal to

dic)((ue)) = 2dg(u) — 2+ dg(v). (2)
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Analogously, there exists dy(g)((ve)) = 2dg(v) — 2 + dg(u). Hence, each
edge e = uv € E(G) contributes

drc)((ue)) + dI(G)((?e)) = 3[de(u) + dg(v)] — 4.

Let N(u) = {v; | 1 <i < dg(u)} and Ne(u) = {e; = uv; | v; € N(u)}.
We have

dyc)((ue:)) +dpe)((vies)) = 3[dg(u) + dg(vi)] —4 for i = 1,2,...,dg(u).

Adding all of the above equations together yields the following

> [dI(G)((uei))+d1(G)((viei))]=3[d26(u)+ > d%;(vi)]-4dc(u).

% EN(u) v; €N (u)
@)

Notice that u € N(v;) for 1 < ¢ < dg(u), then the form (3) can be thought
of as the sum on the dg(u) edges e; for 1 < i < dg(u). Therefore,

AE(I(G))| = Y. diey(=)=—4E@G)+3 ) dg(w), (4)
zeV(I(G)) ueV(G)

Since 2|E(G)| = ¥ ev () de(u), it is easy to see the form (4) is just the
equality (1). : ' O

The following is a collection of several observations on incidence graphs.

Corollary 3. Let I(G) be the incidence graph of G. There are the following
assertions.

(2) Then 36(G) —2 < 8(1(G)) < A(I(G)) < 3A(G) —-2.

(#3) If G is k-regular, then I(G) is (3k — 2)-regular, and vice versa.

(¢ii) Let H be a subgraph of G, then A(I(H)) < A(I(G)).

(iv) If G is connected, then I(G) # K, for alln > 3.

(v) If A(G) = 3, then I(G) is not planar.

(vi) G is eulerian if and only if I(G) is eulerian.

Proof. (i), (i) and (iit) are deduced directly by the equality (2).

(iv) By the contradiction. We may suppose I(G) = K, for n > 3, that
is, I(G) has n vertices and is (n — 1)-regular. Since I(K,,) is (3(n—1) — 2)-
regular by the assertion (i¢) above, we haven—1=3(n-1)-2=3n -5,
or 2n = 4, a contradiction.

(v) Notice that K33 C Ka+Ha C I(G) by the assertion (1) of Theorem
1, we are done.

(vé) Assume that G is eulerian, so each degree number d;g)((ue)) is
even from the equality (2), it means that I(G) is eulerian.
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Conversely, every d(c)((ue)) is even by the assumption of I(G) being
eulerian. Since the equality (2) shows us that every dg(v) is even, thus, G
is eulerian. a

As it is well known that evéry 2k-regular graph is 2-factorable first
proved by J. Petersen (cf. [2]). Since I(C,) = is 4-regular so that
every I(C,) contains two edge-disjoint Hamilton cycles forn > 3.

Lemma 4. Let T be a tree of order at least 3, then I(T) has a Hamiltonian
cycle.

Proof. If T' is a star on n vertices and n > 3, let w be its center vertex and v;
be its leaves. We can write all edges of the star T by such forms e; = wv; €
E(T),1 < i <n-1. Immediately, C = (wey)(vie1)(wez){v2e2) - -+ (wen_1)
(vn—1 €n—1)(we;) is just a Hamilton cycle of I(T'), see for an example shown
in Figure 1.(a) and (c). ,

Suppose that T is not a star. ‘We shall apply the induction on orders
of trees. For n = 4, thus T = P,, a path of order 4, it is not hard to find a
Hamilton cycle in I(P;). Assume that this lemma is true for all orders of
trees that are smaller. Let S be the set of end-node vertices of T, i.e.,
for each u € S the neighborhood N(u) contains at least dr(u) — 1 leaves
of T.

Case 1. If dr(u) = 2 for an end-node vertex © € S. Since T is not
a star, so there is a path P = veue’we;w; on four vertices, where three
edges e = vu, ¢ = vw and e; = ww;. Clearly, v is a leaf of T. By the
induction hypothesis, the incidence graph I(T — v) contains a Hamilton
cycle C. Notice that the degree number of the vertex (ue') in I(T — v)
is just two, that is, (ue’) is adjacent to (we’) and (we;) in C. Hence,
C — (ue')(we')+ {(we') (ue), (ue)(ve), (ve)(ue')} is a Hamilton cycle of I(T).

Case 2. dr(u) = k > 3 for an end-node vertex u € S.

Let the neighborhood N(u) = {v,v1,...,vx—2,w}. Here, each vertex
of N(u)\ {w} is aleaf of T in T. The edges incident to u are denoted by
e=vu, € =uwand e; = uy; for 2 < i < k — 2. We have a Hamilton
cycle_C* of the incidence graph .I(T — v) by the induction hypothesis.
Notice that each vertex (v;e;) in I(T — v) is adjacent to (ue’) and (ue;) for
1 <7 <k-2. And, in I(T), the vertex (ve) is adjacent to each one of
{(ue), (ue’), (ue;) | 1 < i < k — 2}, as well as the vertex (ue) is adjacent
to every one of {(ve), (ue’), (ue;), (vie;) | 1 < ¢ < k — 2}, There must
exist an edge (vie;)(ue;) € E(C*). Immediately, thus, C* — (v;e;)(ue;) +
{(ue;)(ve), (ve)(ue), (ue)(vie;)} is a Hamilton cycle of I(T). O

Theorem 5. For any connected graph G onn (> 3) vertices, the incidence
graph I(G) is hamiltonian.
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Proof. Let T be a spanning tree of G. Since I(T) C I(G) by the assertion
(vi) of Theorem 1, so we conclude that I(G) is hamiltonian since I(T)
contains a Hamilton cycle from Lemma 4. O

2.3 Edge-colorings of some incidence graphs

Analogously to the incidence chromatic number of a graph, we define the
incidence chromatic index on graphs as following. A proper edge coloring
f : E(I(G)) — [k] is called an incidence edge k-coloring of a graph G,
so G is said to be k-incidence edge colorable. The minimum number of
k over all incidence edge k-colorings of G, x i(G), is called the incidence
chromatic index of G. By means of the assertion (vt) in Corollary 3, we
have the following Lemma 6.

Lemma 6. C, is a cycle of order n, then x;(Cn) =4.
Lemma 7. For a star Ky, (n 2 1), xi(K1,n) = A(I(K1,n)) =2n— 1.

Proof. Write V(K1) = {ui | i € [n]} U {w} and E(K;,) = {& =
wu; | ¢ € [n]}, where w is the center of the star K; ,. Suppose that n
is even. Clearly, there are n perfect matchings in I(K; ) as the forms
M; = {(wejti—1)(uie;) | i € [n]} for each integer j € [n] and the indices
j +1i—1 are under model n. Since the graph I(K),) — V* obtained by
deleting the vertex set V* = {(use;) | ¢ € [n]} is congruent to K, (see
Figure 1.(c)) and x’(K,) = n — 1 for even n, we assign a color to each
perfect matching M; (1 < j < n), we are done.
New, let n be odd. Coloring n — 1 perfect matchings M; of I(K1,,)
with n — 1 colors such that each perfect matching receives only a color,
where 2 < j < n. We use the first matching M; = {(we;)(uie;) | i € [n]}
to form n edge-disjoint independent sets of I(K} ) in the following:
S1 = {(wen)(unen), (wer)(wen—-1), (wez)(wen—2), ...,
(we(n—1y/2)(wen+1y/2)}

S = {(we1)(u1e1), (wez)(wen), (wes)(wen-1), ...,
(we(n+1)/2)(wemtay/2)}s

Sn = {(wen-—l)(un—len—l); (wen—2)(wen)v (‘wel)(we,,_g), ey
(we(n—3)/2)(wem—1)/2)}-

Obviously, we can assign a new color to each set S; for every ¢ € [n},
and then we have x (K1) = 2n — 1. Therefore, we obtain the ordinary
chromatic number x/(K, + K») = 2n — 1 since I(K1,,) = K, +K, O

A double star, denoted by Sy, n, is a tree with two center vertices u, v
and m + n — 2 leaves. We have V(Sn.n) \ {4,v} = L(Smn), V(Smn) =
N(u)U N(v) and the diameter D(Sp, n) = 3.
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Lemma 8. Let Sy, be a d\ouble star with m < n, then x[(Smn) =20+
m-—2. '

Proof. Let m = ds,, ,(u) and n = ds,, ,(v). We have two neighborhoods
N(u) = {u1,u2,...,um-1,v} and N(v) = {v1,vs,...,Un_1,u}. Let e be
the edge between u and v in Sy, .

We consider the structure of the incidence graph I(Snm.) by our I-
construction in the following. Since the vertex u of Sp, , corresponds a
subgraph K, + K, of I (Sm,n), so the vertex (ve) is in K., and (ue) is in
K. Similarly, it follows the fact that the vertex v corresponds a subgraph
Kn+Knof I (Sm,n), We are easy to see that the vertex (ue) is in K,, and
(ve) is in K. Furthermore, in I(Sm ), the vertex (ve) is adjacent to each
vertex of V(K,;,) and the vertex (ue) is adjacent to each vertex of V(K,,).
Clearly, V(I(Sm,n)) = V(Km + Km) UV (Kn 4+ K,). Therefore, no vertex
of V(Km + Km) \ {(ue)} is adjacent to any one of V(K, + K,) \ {(ve)}.

By Lemma 7, we can use 2n — 1 colors to form a proper edge-coloring of
the subgraph K, + K, of I(Sm »). Let S be the set of the 2n—1 colors used
above, and let S’ the set of those colors that occur at the vertex (ue) of
V(Kn+ K»). Next, we can apply another m — 1 new colors and the colors
of $\ S’ to product a propér edge-coloring of the subgraph K,, + K, of
I(Sm ). Hence, two edge-colorings above imply a proper (2n+m —2)-edge
coloring of I(Sm,»). Note the maximum degree A(I(Spm,n)) =2n+m — 2,
we are done. O

Theorem 9. For any tree T, x{(T) = A(I(T)).

Proof. Applying the induction on orders of trees in the following. From
Lemma 7 and Lemma. 8, this theorem is true if T is a star or a double star,
so that we may assume the diameter D(T") > 4 and this theorem holds for
smaller orders of trees.

Let S be the set of end-node vertices of T, i.e., for each w € S the
neighborhood N(w) contains at least dp(w) — 1 leaves of T. We take
a vertex u € S such that dp(u) < dr(w) for all w € S. Let N(u) =
{u1,u2,...,um—1,v}, where the vertex v does not belong to S since D(T") >
4. Let H =T — {uj,u,...,um-1}. Clearly, A(I(H)) = A(I(T)) since T
neither is a star nor a double star. By the induction hypothesis, the incident
graph I(H) has a proper A(I(H))-edge coloring f.

By-Lemma 8 and the fact that dr(u) < A(T) (note that u corresponds
a subgraph K, + K., of I(T) where m = dr(u)), we can make a proper
A(I(H))-edge coloring of I(T") by using the edge coloring f and A(J/(H))
colors. 0O

Theorem 10. Forn > m > 1, then x {(Km,n) = A(I(Km,n)) = 2n+m—2.
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Proof. Let U = {uy,ug,...,un} and W = {w;,ws,..., wn} be the two
partite sets of Kmn, i.e., V(Kmn) = UUUW. Note that each vertex u;

corresponds a complete subgraph K7, C K3, +Kfn for 1 < j < n, and each
vertex v; corresponds a subgraph Ki C Ki + K, for 1 < i < m. Clearly,

(F): Ki,, K&, K} and K! are pairwise disjoint for 1 < j,s < n and
1<i,t<m.

We have two cases in the following.

Case 1. If n is even. Therefore, the ordinary chromatic index
x'(Ki) = n—1 (cf. [2]). By the fact (F) above, we can use n — 1
colors to form a proper edge coloring for each of K3, K&,, Ki and K for
1<is<nand1<it<m LetS=(UZ, E(K.))UWUj EKE)),
thus, the graph H = T(Ky, ) — S is just a bipartite graph, and A(H) =
2n+m—-2)—-(n—1) =n+m—1. It is easy to see that the ordinary
chromatic index x'(H) = A(H) (cf. [2]). Combining two colorings above
products a proper A(I(Kpm,, »))-edge coloring of I(K, »).

Case 2. If n is odd. Therefore, the ordinary chromatic index
x'(KL) = n (cf. [2]). By the fact (F) above, there is a proper n-edge
coloring for each of K7, K2, Ki and K}, for1 < j,s<nand1<i,t<m.

Let e;; denote an edge between u; and v; in Ky for 1 <i<m, 1<
j < m. All edges as the form (uje;;)(viei;) form a perfect matching M of
I(Km ). Note that there are n — 1 colors that occur at each vertex (v;e;;)
of V(K?), so we can use the rest one to color the edge (ujei;j)(viei;). Let
F =T(Kmn)—S— M, where S is described in Case 1. We use n+m — 2
new colors to color F such that x/'(F) = A(F) = n+ m — 2 since F is
bipartite.

Two colorings above can be used to yield a proper A(I(Km »))-edge
coloring of I(Kpm »). (]

We give a box L(e) to each edge e € E(G) where L(e) is a positive
integer set, so we can define a list-edge-coloring h of G if h is a proper
edge coloring of G and h(e) € L(e) for all e € E(G). Let f(z) be a
positive integer-valued function defined on E(G), we say that G is f-edge-
choosable if G has a list-edge-coloring for any list box L(e) with |L(e)| >
f(e) for each edge e € E(G). If f(e) is a constant k, we also say G to be k-
list-edge-choosable. The least integer & such that G is k-edge-choosable
is called the edge-choosability index (list chromatic index) of G, write
it by x;(G). We are ready to show the following:

Theorem 11. Let F, .y be a fan with n + 1 vertices for n > 13, then
Xi(Fat1) = A(I(Frt1)) =2n+1.

Proof. Let P, = viva...v, be a path of order n for n > 2 and K; be a
complete graph with one vertex u. A fan F,,, = P, + K, has the edge
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set E(Fn_H) = {e,-,i.,.l = ViVi41 | 1<is<n— 1} U {f, = yv; | 1<:< n}
Let H = I(Fn41). We are easy to see that the degree dy((ze)) of a
vertex (ze) in H is one of 2n + 1,n +4,n 4 2,7,6,5. Note that the vertex
u of F,41 corresponds a subgraph K, + K, and furthermore the graph
H'= H-E(K,+Kp,) satisfies 4 < dg((ze)) < 7 for any (ze) € V(H'). By
the proof of Lemma 8, we can give a proper edge coloring of the subgraph
K.+ K, by using 2n + 1 colors, let C denote the set of these 2n+ 1 colors.
An edge s of H' is at most incident to n edges of the subgraph K, + K,
and let all colors these n edges are used is denoted the set C(s). Therefore,
we can set a list box 7(s) = C\ C(s) for every edge s € E(H'), clearly,
n < |n(s)| £ n+1. For n > 13 = 2A(H’) - 1, we can obtain a proper edge
coloring of H' since in [3] the author pointed out that x;(G) < 2A(G) — 1
by coloring greedily in an arbitrary order. Immediately, I(Fy+1) admits a
proper (2n + 1)-edge coloring. 0O

In fact, x {(Fn+1) = A (Fa41)) =27+ 1 holds for 2 < n < 12.

Lemma 12. Let w be e vertex out of a graph G and u a vertez in G.
Let H be a graph obtained by adjoin w with u. Let n = dg(u) and M =
max{d¢(z) | z € N(u)}. If2n+ 1+ 3n(n+2M —1)/2 < A(I(G)), then
xi{(H) < x3(G).

Proof._Let e = wu in H. Note that the vertex u corresponds a subgraph
K, + K, in I(G). Each vertex in K, C K, + K, is at most adjacent to
2n + M — 1 vertices, and each each vertex in K, C K, + K is at most
adjacent to n + 2M — 1 vertices. All edges that are incident to vertices of
K.+Kh are at most n?+n(n+1)/2+nM+2n(M-1) = 3n(n+2M-1)/2.
Suppose that I(G) is colored well by x:(G) colors. Since G C H, add
2n + 1 new colors to the edges which are incident to two vertices (we) and
(ue) of I(H), we obtain a proper edge coloring of J(H) that implies that
xi(H) £ xi(G). O

Note that there only two vertices of degree 2 in a fan, and they are not
adjacent. Therefore, we are not difficult to have the following by Lemma
12:

Corollary 13. For a wheel W,y = Cp + K1 for n > 13, where C,, is a
cycle on n vertices, then x [{(Wn41) = A(I(Wh41)) =20+ 1.

Corollary 14. Let H be a graph with at least two leaves wy and wa. Let
uy and up be two non-adjacent vertices of a graph G. We have a graph
I obteined by identifying u; with-w; for i = 1,2. Let n; = dg(u;) and
M; = max{d¢(z) | ¢ € N(u;)} fori=1,2. If 2n;+14+3n;(n;+2M;-1)/2 <
A(I(G)) fori=1,2, then x (G + uviu2) < xi(G).
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3 Some problems

For a simple graph G, we wish to know whether there are some relations

among G, its near-incidence graph I*(G) and I(G). Our work on the

incidence chromatic index of graphs implies the following conjecture:

Conjecture 1. Let G be a simple graph, then x (G) = A(I(G)).
Furthermore, we have the following conjectures:

Conjecture 2. Let G = (V, E) be a k-regular connected graph with order
not less than 3.

1. If k=0 (mod 2), the incidence graph I(G) contains at least -3—';'—2
edge-disjoint Hamilton cycles.

2. Ifk=1 (mod 2), I(G) contains at least ﬂ%} edge-disjoint Hamil-
ton cycles and one 1-factor.
Conjecture 3. Suppose that G has at least two vertices of mazimum degree
and the distance between two vertices of mazimum degree is at least 3, then
xi(G) = A(G) + 1.
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