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Abstract

It is widely recognized that certain graph-theoretic extremal questions play a
major role in the study of communication network vulnerability. These extremal
problems are special cases of questions concerning the realizability of graph in-
variants. We define a CS(p, q, A, 8) graph as a connected, separable graph hav-
ing p points, q lines, line connectivity A and minimum degree . In this notation,
if the “CS” is omitted the graph is not necessarily connected and separable. An
arbitrary quadruple of integers (a, b, ¢, d) is called CS(p, q, A, ) realizable if
there is a CS(p, q, A, 8) graph with p=a, q=b, A =c and § = d. Necessary and
sufficient conditions for a quadruple to be CS(p, q, A, 6) realizable are derived.
In recent papers, the author gave necessary and sufficient conditions for (p, q, X,
A), (p, 9, A, A), (p, 9, 8, A), (p, q, A, 8) and (p, q, K, J) realizability, where A de-
notes the maximum degree for all points in a graph and x denotes the point con-
nectivity of a graph. Boesch and Suffel gave the solutions for (p, q, k), (p, q, A),
(p, 9, ), (p, A, 8, A) and (p, A, §, ) realizability in earlier manuscripts.

1. Introduction

In this work, we consider an undirected graph G = (V, X) with a finite point
set V and a set X whose elements, called lines, are two point subsets of V. The
number of points | V| is denoted by p, and the number of lines | X| is called q
or q(G). This paper uses the notation and terminology of Harary [14]; however a
few basic concepts are now reproduced.

The line connectivity of a graph G (denoted by A or A(G)) is the minimum
number of lines whose removal results in a disconnected graph. A graph is cal-
led trivial if it has just one point. The point connectivity (denoted by k or k(G))
is the minimum number of points whose removal results in a disconnected or
trivial graph. The number of lines connected to a point v of G is the degree of
that point, denoted d,(G) or d,. The minimum degree is denoted by & or 3(G)
while the maximum degree is denoted by A. A regular graph has 8 = A. The not-
ation K, denotes a p point graph with 8 = p — 1 and such a graph is called com-
plete. A set of A lines whose removal disconnects G is called a minimum line
disconnecting set. A set of K points whose removal disconnects G, or makes G
trivial is called a minimum point disconnecting set. A point whose removal in-
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creases the number of components in G is called a cutpoint. A graph is called
separable if it contains one or more cutpoints. The graph obtained from C; (the
cycle on p points) by adding lines between all pairs of foints that are distance at
least two but not greater than A apart is denoted by C,".

It is widely recognized that certain graph-theoretic extremal questions play a
major role in the study of communication network vulnerability [1-13,16). Har-
ary [15] found the maximum point connectivity among all graphs with a given
number of points and a given number of lines. These extremal problems are
special cases of questions concerning the realizability of graph invarjants, We
define a CS(p, q, A, 8) graph as a connected, separable graph having p points, q
lines, line connectivity A and minimum degree 8. In this notation, if the “CS” is
omitted the graph is not necessarily connected and separable. An arbitrary quad-
ruple of integers (a, b, c, d) is called CS(p, q, A, d) realizable if there is a CS(p,
q, A, 8) graph with p=2a, q=b, A =c and § = d. Necessary and sufficient cond-
itions for a quadruple to be CS(p, q, A, J) realizable (or, more briefly, realizable)
are derived. The author derived necessary and sufficient conditions for (p, q, x,
4), (p, 9, A, A), (p; 9, 8, A), (p; 9, A, 8) and (p, g, X, 8) realizability in recent pap-
ers [9-12]. In [1-3] the conditions for (p, q, k), (p, , A), (p, g, 6), (p, A, 8, A) and
(p, A, §, x) realizability were given by Boesch and Suffel.

2. Preliminaries

We start by reviewing some known results that are pertinent to the realizabil-
ity question.

Lemma 1 [2]: If a graph is not complete, and p > 2, thenp 226 +2 - k.
Lemma 2 [8]: If8>[ p/2 ], then A =38.

Lemma 3 [14]: If2 < <p- 1, then there is a graph on p points with q(G) =
[_p &1 and A = § = k. If we denote this graph (which is usually called the

Harary graph) by H, then H = C,,m if A is even. However, if A is odd then H
is the graph formed by adding diameters to C,,(" 2

Lemma 4 [12): IfA <3, thenq<A+ 808 +1)+ (p-8-1)(p-5-2).
Lemma 5 [12]: Ifq=[_p 8 land A is odd, then & is odd.

Lemma 6 [11]: For all graphs,
q<_ 86+ D+ _(p-8-D(-8-2)+x(p-8-1).

Lemma 7 [11]: For all graphs,
q2[ _p8&+_max(0,(p-3-1)28+2-p)- k- 1)1
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Of course, if a graph is connected and separable then k = 1. Next we est-
ablish some new results.

Lemma 8: Ifk =1 foragraph G # K, thenq2 A +[_8(p-1)1].
The result follows from the fact that G has a point of degree at least 2A.
Lemma 9: There is no graph with k=1, A odd,  even and q=A + _&(p—1).

Proof: Let G be such a graph. Since G # K;, there exists a point (denote it by v)
whose removal disconnects G into at least two components. Thus the point set of
G — {v} may be partitioned into two subsets T and U such that no lines of G —
{v} join T and U, and T spans a component of G~ {v}. Asq= A +_3&(p-1),
we have d(G) = 2\ and the other points of G have degree 8. Therefore we note
Siet di(G - {v}) = | T|8 - A, which is odd. Since T spans a component of G ~
{v}, this is impossible and the result is proven.

Lemma 10: There is no graph with k=1, A and § both odd, p=28 +3,q=
A+ _8(p-1)and A <3.

To prove this lemma, proceed as in the proof of the previous lemma. (Note
that here A <& implies |T| =8+ 1.)

Lemma 11: Ifk=1and p=28+2,thenq2=[A2]+ _p3.

Proof: Let G be a graph with k=1 and p=238+2. Let T, U and v be defined
as they were in the proof of Lemma 9. We note that | T| 2§ and |U| = 8. Con-
sequently, either | T| =8 or |U| = §. Suppose without loss of generality that
[T| = 8. Therefore, v must be adjacent to every point in T and d(G) =2 8 + A.
Thus q=[A21+ _p8.
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3. The CS(p, q, A, ) realizability theorem

Theorem. A quadruple of non-negative integers (p, g, A, 6) is realizable as a
connected, separable graph if and only if exactly one of the following conditions
holds:
(I 1=8=A,p=2andp-1=q=<1+_(p-1)(p-2).
() 2<dand1<A<é.
(A) p=225+3.
(@ max(+[_8p-DL[_psl)+1<qs<
_8@+1)+ _(p-8)(p-08-1);andA =3 if
q>A+_86@+1)+ _(p-8-1)p-3-2).
() q=max(A+[_8@-11I_psl).
(1) Aiseven.
(2) Aisodd,disodd; andif8/2<A <9, thenp>25+3.
(B) 25+1<p<25+2,[ pd+A2]<qs
_ 3@+ 1)+ _(p-8)(p-95-1); and A = § if either
Dg>A+ 8@+1)+ (p-6-1)p-8-2),0rii)p=26+1.
Proof: As noted previously, all connected, separable graphs have k = 1. The
conditions in (I) follow from the fact that p— 1 < q in all connected graphs and
other well known facts concerning graphs (e.g. q< 8 +_ (p — 1)(p — 2)). The
conditions in (II) are a result of Lemmas 1, 2 and 4 through 11 and basic graph
theory (e.g. substitute x = 1 into Lemma 6 to get the upper bound for q and
substitute k = 1 and p =23 + 1 (and therefore A = §) into Lemma 7 to get the
lower bound for q when p =26 +1).
We now provide constructions to prove sufficiency.

Case 1. Suppose that eitheri) 1 SA<§,p=225+2,822,

[ p8l+A<q<_8@+1)+ (p-3)p-5-1);
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andifq>A+_8(@+ 1)+ (p-8-1)(p-8-2)thenA=9,0rii)622,p=
28+1,A=3and

q=[_p&+A2l=_8@+ 1)+ _(p-8)(p-8-1)=80+1).

First we consider condition i) whenq <A +_8@+ 1)+ (p-6-1)p-9-2).
Let H; denote the Harary graph on p - - 1 points with[ _ 8(p - & - 1)1lines and
A(H;) = 8(H,) = k(H,) = 8. Take the union of H, and K; .+ , to form a single graph
G. Denote a point in Kg . ; by b. Add A lines to G, each incident to a point in H,
and to b. Adding lines to H, until we have our desired number of lines completes
our construction. It is easily verified that the resulting graph has the desired
properties, including x = 1.

If condition i) holds withq>A + _8(8+ 1)+ (p-8-1)(p-3-2),orif
condition ii) holds, a similar construction is used with K, . 5., in place of H;.
Here however, additional lines incident to b and to a point in K; . ., are added
to achieve the desired number of lines. (If condition ii holds,p-8-1=8and b
must be made adjacent to every point in K . 5.1.) Since A = 8, our graph has the
appropriate properties.

Case 2. Suppose that | SA<§,p226+3,822,
max (A +[_8(p-1)1[_p8l)<sq<l_p8l+a,
and either A is even or q 2 max (A +[_8(p-1)1,[_p &1).

Subcase 2-i. If 2A > § we realize that max A +[_8(p—1)1,I_p8)=A+
[_8(p- 1)1 Consider a set containing p points. Denote 8 + 1 of these points by
A, denote p - § - 2 of the remaining points by B and denote the re- maining point
by b. On B we construct the Harary graph on p - § - 2 points with [_8(p - 8-2)]1
lines and line and point connectivities of 5. Next construct a complete graph on
A. Note that B contains a path containing A points. Now add A lines joining b to
A points of B which lie on a path, and add A lines joining b to points of A. If A
is even delete a matching of size A/2 from the subgraph of Ks . ; spanned by the
endpoints of the A lines and a matching of size A/2 from the path of B pre-
viously designated. Then all points of A U B have degree & (except possibly one
point, which may have degree & + 1). At this point of the construction our graph
contains A +[ _ 8(p — 1) lines. To finish our construction, we replace q - A -

[ 8(p - 1)]of the deleted lines. If A is odd, q # A +[ _8(p— 1) | and we pro-
ceed in a like manner, except there will be two or three points in A U B with
degree 8 + 1. Our graph has line connectivity A because each deleted line can be
replaced by a path containing b. The graph also has the other desired properties.
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Subcase 2-ii. We now assume that 2\ < § and either 3 is even or p is odd. Thus
max (A +[_p(&-1)1,[_p81)=[_p8] Let A denote a set of § points, B de-
note a set of p - & - 2 points and c and b each denote a single point. On B, con-
struct the same graph we did in subcase 2-i and on A construct the Harary graph
on & points with[ _ 8(5 - 2)1 lines and line and point connectivities of & - 2.
Assume A is even. Next, add A lines joining b to B and delete lines in B as was
done in subcase 2-i. Both b and c are each made adjacent to every point in A. In
this subcase A <, thus A of the points in A can be partitioned into non-adjacent
pairs. We now add A/2 lines (denoted by E) making each of these non-adjacent
pairs adjacent. To finish the construction delete A lines, each of which is in-
cideni to b, in such a way that our graph is regular with degree 8, or possibly has
one point with degree 8 + 1. Since each pair of lines deleted in the last step can
be replaced by a line in E, it is apparent that the graph has line connectivity A, as
well as the other appropriate properties. The case when A is odd is handled as it
was in subcase 2-i.

Subcase 2-iii. When 2A < §, p is even and  is odd, a construction similar to the
one in subcase 2-ii is used. We merely note the differences here. Now B con-
tains p - 8 - 3 points (note p = 28 + 4) and A will have a Harary graph that is
regular of degree & - 3 constructed on it. In subcase 2-ii, there were two points (b
and c) that were made adjacent to every point in A, in subcase 2-iii three points
(b and two others) will be made adjacent to every point in A. Aside from these
differences, the construction used here is the same as the one in subcase 2-ii.

Case 3. Suppose that 1 <A <3, p=28+3,822; A and § are both odd and
q=max A +[_&(p-11I_p8sl).

Subcase 3-i. In this subcase, we consider when 8/2 <A <8 and if p is odd, then
p 226 + 5. If p is even, a construction similar to the one in subcase 2-i when A
was odd is used. The only difference here is that the Harary graph constructed
on B has a point with degree § + 1, so it is now possible to build our final graph
in such a way that it will have precisely one point with degree § + 1 in A, and
every point in B will have degree 8. (To do this, pick a path containing A + 1 <8
points in B with one of its endpoints having degree § + 1 and proceed as in sub-
case 2-i.) Note that one of the deleted lines in B cannot be replaced with a path
containing b. However, since the Harary graph constructed on B had line con-
nectivity & and A < §, the resulting graph will have the desired properties. If p is
odd, we proceed in a similar manner except for the following differences. A will
now contain'§ + 2 points and B will contain p - 8 - 3 points (note p = 28 + 5). A
Harary graph with minimum degree 3 is constructed on A. Note the Harary
graphs built on A and B each have a point with degree 8 + 1. Here a path will
also be chosen in A, much like the path chosen in B. Continuing as in the pre-
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vious construction, every point in A U B will have degree 3 in the final graph
and we are finished with subcase 3-i.

Subcase 3-ii. We now consider the possibility that 8/2 <A = §. Let H, denote
the Harary graph on p - 8 points with minimum degree 3. Take the union of H,
and K; to form a single graph. Denote a point in H, by b. Making b adjacent to
every point in K completes the construction.

Subcase 3-iii. If /2 > A we use a construction similar to the one used in subcase
2-ii. Note that here & is odd and the Harary graph constructed on A has a point
with degree § + 1. But since A is odd, the points in A will all have degree § in
the final graph. If p is odd, the Harary graph constructed on B is regular of de-
gree 3 and one point in B, in the final graph, will have degree & + 1. However,
if p is odd, we pick our path in B as was done in subcase 3-i and all points in B
will eventually have degree 8. Since A < 8, the graph has the appropriate prop-
erties.

According to our main theorem, under the assumptions made in case 3,
8/2 £ A < § implies p > 28 + 3. Thus all possibilities within case 3 have been
considered.

Case 4. Suppose that 1 SA<8,p=25+2,8>2and_ps+[A2]<q<_pd+

A. We start by taking the union of K, K; + ; and a single point (denoted by b) to
form a single graph. Next make b adjacent to every point in K. We also make b
adjacent to A points in K + ; and delete lines in K+, in such a way that every
point in Kg ., has degree & (if A is even) or one point in K; ., has degree § + 1 (if
A is odd). Finally, replace the desired number of deleted lines. Since the de-

leted lines can be replaced by paths containing b, our graph has the necessary
properties.

Case 5. Suppose that 1 =§=A,p=22andp-1<q<1+_(p~1)(p—2). Take
a path on p points and denoted one of the endpoints by b. The construction is
completed by adding q — (p — 1) lines, none of which are incident to b.

This completes our constructions and we now show sufficiency. If we
assume p 228 + 3 and & 2 2 then cases 1, 2 and 3 show the sufficiency of the
conditions of the theorem. Similarly, if we assume p =23 +2 and § > 2 then
cases 1 and 4 are adequate. Case 1 shows the conditions of the theorem are
sufficient if we also have p =28 + 1 and § 2 2. Case 5 proves sufficiency for
8 <2 and our proof is completed.

231



Conclusion

The CS(p, q, A, 8) realizability theorem in this paper solves several extremal
problems for connected, separable graphs. If any three of the parameters p, q, A
and § are given we can find the range of values for the unknown parameter. Let
max (A | p,q,8) denote the maximum value of A among all connected, separable
(p» 9, ) graphs and min (A | p,q,5) denote the minimum value of A among all
connected, separable (p, q, 8) graphs. We now consider the problem of finding
max (A | p,q,8). Note that Lemma 1 says that p > 28 + 1 (since x = 1) only if the
graph is not complete, thus p = 2 must be considered here. Solving for A in the
inequalities in Lemmas 8 and 11 givesusA < q-[ _&(p-1)] and A <2q- p3,
respectively. To complete the list of relevant upper bounds of A, note that A, <.
As was stated in case 1 of the constructions, ifp=28+1thenA=58andq=
8(8 + 1). Therefore, p =25 + 1 implies q -[ _8(p—1)]=2q - pd =8§. The re-
sulting solution for max (A | p,q,8) is given below. The solution for min (A |
P,q,9) is also given below without proof, which is straightforward.

I[ 1, if p=2
max (\ | p,q,8) = {I min (3, q -] _8(p-1)],2q-pd), if 26 +1<p<2§+2
| min,q-I _8@-1)1), ifp>25+3.

(5, ifp<26+1lorq>8+_8@+1)+_(p-8-1)(p-8-2)
min (A | p,q.8) =1
1, otherwise.
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