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G will be a finite, simple graph throughout, with edge set F and vertex

set V, with n = |V|. As usual, if v € V, N(v) = {u € V;uv € E} and

N[v]={v}UN(). If S C V, N(S) = UyesN(v) and N[S] = SUN(S).
A set S CV is dominating in G if V = N|[S]. The domination number
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Abstract

We examine the inverse domination number of a graph, as well as
two reasonable candidates for the fractional analogue of this param-
eter. We also examine the relations among these and other graph
parameters. In particular, we show that both proposed fractional
analogues of the inverse domination number are no greater than the
fractional independence number. These results establish the frac-
tional analogue of a well-known conjecture about the inverse domi-
nation and vertex independence numbers of a graph.

Domination and its variants

of G is defined as:

v(G) = min[|S|; S C V is dominating]

We call a dominating set S efficient if, for any u,v € S, the intersection
N[u]N N[v] = @; in other words, every vertex in G is dominated by exactly
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one vertex in S. Not every graph admits an efficient dominating set; for
those that do, however, any efficient dominating set is minimum.

We can also characterize domination algebraically. Let A be an adja-
cency matrix of G with respect to some fixed ordering of the vertices, I be
the n x n identity matrix, and for each S C V let fs be the characteristic
vector of S with respect to our chosen vertex ordering. Then S is domi-
nating if and only if (A + I)fs > 1, and efficient dominating if and only if
equality holds.

A fractional dominating function on G is a function f: V — [0, 1] such
that for everyv e V, 3" o Nl f(u) > 1. That is, representing f as a vector,
(A+Df>1.

The fractional domination number of G is

v4(G) = min[z f(v); f is a fractional dominating function on G.]
veV

This minimum is always achieved, by the compactness of the unit interval.
It is immediately perceived that finding the fractional domination number
of a graph is the linear relaxation of the problem of finding the domination
number.

Likewise, we can say that a function f: V — [0,1] is fractional efficient
dominating if Zue Niv] f(u) =1 for every v € V; algebraically, this means
that (A + I)f = 1. By a conventional argument from linear programming,
it is easy to see that if f is any non-negative function whose vector form
satisfies this matrix equation, and if G has no isolated vertices, then f is a
minimum fractional dominating function.

In [2], Kulli and Sigarkanti introduced the inverse domination number,
v(G) = min [|[U|;U C V \ S dominating, S minimum dominating], and
noted that 4'(G) is well-defined if G has no isolated vertices.

Proposition 1.1 If f is a minimal fractional dominating function of G,
and G has no isolated vertices, then 1— f is a fractional dominating function

of G.

Proof. Let v € V. If there exists a vertex u € N[v] such that f(u) =0,
then 1 — f(u) = 1 and hence v is dominated by 1 — f. We assume therefore
that f(u) > O for all w € N[v]; in particular, f(v) > 0.

Let w € N(v) be a vertex such that f(v) + f(w) < 1; if no such vertex
exists, then we can reduce the value of f(v) and maintain domination,
contradicting minimality. So [1 — f(v)]+[1— f(w)] = 2~ [f(v)+ f(w)] > 1,
and hence v is dominated by 1 — f. O

A dominating function g of G = (V, E) that satisfies the inequality
g(v) € 1 — f(v) for some minimum fractional dominating function f of
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G and for all vertices v € V is called an inverse fractional dominating
function of G; the previous result guarantees that such a function exists
for any graph with no isolated vertices. (As such, for the remainder of
this paper we will assume that graphs under discussion have no isolated
vertices.) Then the inverse fractional domination number of G is defined

as
(77)'(6) =min [} _ g(v)]
veV
where the minimum is taken over all inverse fractional dominating func-
tions. Again, the minimum is achieved, by a standard compactness argu-
ment and by Proposition 1.1.

Since every inverse fractional dominating function of G is a fractional
dominating function of G, v¢(G) < (7¢)'(G); one of our ambitions is to
determine when equality holds. We are far from settling this question, but
the following easy observations suggests that y; = ()’ “usually”.

Proposition 1.2 If G has a minimum fractional dominating function f
satisfying f(v) < % for all v € V then v4(G) = (v4)'(G).

Proof. f < 1— f, so f is also a minimum inverse fractional dominating
function. O

Corollary 1.2.1 If G is regular of positive degree, then v¢(G) = (v¢)'(G)-

Proof. If G has degree k, then the constant function i is a fractional
efficient dominating function, and hence a minimum fractional dominating
function; and clearly 'k—-}-—l < % O

Corollary 1.2.2 IfG has two or more vertices of degree n—1 then v¢(G) =
(1) (G).

Proof. If v,w € V,v # w each have degree n — 1, then f(v) = f(w) = 1
and f = 0 elsewhere is a fractional efficient dominating function. O

We doubt that the converse of Proposition 1.2 holds, although we have
no counterexample. However, the following weak converse of Proposi-
tion 1.2 has some uses.

Proposition 1.3 Suppose that, for somev €V, f(v) > % for every mini-
mum fractional dominating function f. Then v¢(G) < (v;)(G).

Proof. No minimum inverse fractional dominating function ¢ can be a
minimum fractional dominating function, since for any such g, g(v) <1 —

flv) < %
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Corollary 1.3.1 If G has ezactly one vertez of degree n—1, then v¢(G) <
(v5)(G).

Proposition 1.4 If G is a complete r-partite graph, r > 2, then v;(G) =
(77)(G) if and only if there is not a unique part of cardinality 1.

Proof. Note first that, if G does possess a single part of cardinality 1, then
by Corollary 1.3.1 we have that y¢(G) < (v5)'(G).

Otherwise, suppose that the parts of G are of cardinalities n) < ... <
ny. If n; = ng = 1, the conclusion follows from Corollary 1.2.2. If n; > 2,
observe that the function f defined by:

0= (1) (5 1))

i=1

for all vertices in the j®* part, j = 1,...,r is a fractional efficient dominat-
ing function, and is therefore a minimum fractional dominating function.
Further, the values of f are all at most % (Verification of these facts is left
to the reader.) The conclusion follows from Proposition 1.2. O

There are other situations in which Proposition 1.3 supplies guidance.
For example, in the case of G = Ps, a path on 3k vertices, vy =5 = k. If
the vertices of that path are labelled v, .. ., v3k, from one end of the path to
the other, the characteristic function of the unique minimum dominating set
(the set {v3;_1;¢ =1,...,k}) is the unique minimum fractional dominating
function. Thus we know that v;(G) < (v7)'(G). In fact, in this case
(77) = k + 1, a value which is achieved with a weight of 1 on each end
vertex and % on every other vertex not in the dominating set.

2 A different fractional form

At first glance, it may seem likely that (v;)’ < 4/, but in fact we have no
proof. The pursuit of this question may be facilitated by the following.

Suppose that D C V is a minimum dominating set of G. We say that g
is a fractional inverse dominating function of G (with respect to D) if g is
a fractional dominating function of G such that g(v) = 0 for every v € D.
(To borrow language from analysis, the support of g must be disjoint from
D.) The fractional inverse domination number of G is then:

() =min| > g(v)]
3%

where the minimum is taken over all fractional inverse dominating functions
g (with respect to minimum dominating sets D). This parameter is well-
defined when G has no isolated vertices, for the same reason that v'(G)
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is, and by a compactness argument it is easy to see that the minimum is
achieved. Clearly, (v')¢(G) < ¥'(G).

Proposition 2.1 If ¥(G) = v4(G), then (7)'(G) < (v)4(G)-

Proof. If v(G) = 7(G) then for any minimum dominating set S, the
characteristic function fg is a minimum fractional dominating function and
the conclusion is therefore straightforward from the definitions. a

Another easy result which relates these two fractional analogues of in-
verse domination is the following, which we state without proof.

Proposition 2.2 IfG has a unigue vertez v of degree n—1, then (v')§(G) =
(17)(G) = 75(G —v).

We wonder if anything can be concluded in those cases where v/ = (7')
or ¥/ = (vr)’? We have no good reason for raising the question except
that, in all specific examples where we have worked out the values of the
parameters under discussion and either of the above-mentioned equalities
holds, it has turned out that y = v, as well.

3 Convexity

Eventually the questions about the relations among these parameters will
bring about an inspection of the sets of dominating sets of functions involved
in their definitions. Recall that a set S of vectors is convez if for any
v1,...,V € S and nonnegative scalars Aj,..., Ag, if ZLI A; = 1 then
Zf___l Av; € S. To prove convexity it is sufficient to verify the case k =
2. As we can speak interchangeably of functions on the vertex set and
vectors, we shall assume it is clear what it means for a set of such functions
to be convex. It is obvious that the sets of all fractional and minimum
fractional dominating functions of a graph are convex; this is also the case
for minimum inverse fractional dominating functions.

Proposition 3.1 The set of all minimum inverse fractional dominating
functions on a graph G is conver.

Proof. Suppose that g;,gs are minimum inverse fractional dominating
functions on G, with respect to minimum fractional dominating functions
f1, fa respectively. (In other words, g; <1 — f; for i =1,2.) Let A € [0,1].
Then Af) + (1 — A)f2 is a minimum fractional dominating function, and
M1+ (1= Mgz S A1— fi) + (1= N1 = fa) = 1= (M1 + (1 - A fa).
Furthermore, the function Ag; + (1 — A)g is fractional dominating, and
the sum of its values is equal to the sum of the values of g; and go, namely
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(77)' (G); it is therefore a minimum inverse fractional dominating function
on G. O

To see that the same is not true of the set of minimum fractional in-
verse dominating functions, consider the graph Py. The minimum fractional
inverse dominating functions in this case are in fact the characteristic func-
tions of the minimum dominating sets.

The next proposition is an analogue of a well-known result of Grinstead
and Slater ([1],[4]) for fractional domination; the proof of it is much the
same as the proof of the original, and is related to Proposition 3.1. Let
Aut(G) denote the group of graph automorphisms of G, and for each v € V,
let the automorphism class of v be {o(v);o € Aut(G)}, the orbit of v
under the action of the automorphism group. It is elementary that the
automorphism classes partition V.

Proposition 3.2 If G has no isolated vertices, then there is a minimum
inverse fractional dominating function on G which is constant on each au-
tomorphism class.

Proof. Let g be a minimum inverse fractional dominating function on G,
g < 1— f for some minimum fractional dominating function f. Define
f:V—>[0,1 by f(v) = m Y oeau(c) f(@(v)), and § similarly. Both
of these new functions are constant on each orbit of the automorphism
group Aut(G) of the graph G.

Clearly the composition of a (minimum) fractional dominating function
with an automorphism is (minimum) fractional dominating. The convexity
of the sets of minimum fractional dominating functions and of fractional
dominating functions therefore implies that f is minimum fractional dom-
inating and that § is dominating. Further, it is straightforward to verify
that § < 1— f, and that § has the same total weight as g, namely (v;)'(G).
Thus § is a minimum inverse fractional dominating function on G, which
is constant on each automorphism class of G. O

P> and Cp,,n > 3 are graphs with no minimum fractional inverse domi-
nating function constant on each automorphism class (i.e. the whole vertex
set, for these graphs). Cs with a chord is an example of a non-vertex-
transitive graph with no minimum fractional inverse dominating function
constant on each automorphism class.

4 The independence question

A modestly notorious problem is to determine whether it is always the
case that 4'(G) < «(G), where the latter denotes the vertex independence
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number of G. This result was stated in [2], but the proof given there was
fallacious. While we have as yet no insight to offer the world regarding this
conundrum, we can state that both fractional analogues of this conjecture
turn out to be true.

Fractional independence is defined in [3] as follows. A function f:V —
[0,1] is fractional independent if, for any pair v, w of adjacent vertices,
f(v) + f(w) < 1. The fractional independence number is given by

ay(G) = max > f)

veV

where the minimum is taken over all fractional independent functions on
G.

Theorem 4.1 For any graph G with no isolated vertices, (v')f(G) < as(G).

Proof. For any dominating set D of a graph G, we shall define a companion
function cp : V — [0, 1] as follows:

0, veD
@) =41, vgDand N(w)CD
1, otherwise

It is easily shown that the companion function of any dominating set
(or, in fact, any set of vertices) is fractional independent; we endeavour
to demonstrate that, for some minimum dominating set D, cp is also a
fractional dominating function. This will suffice to show that the fractional
inverse domination number is less than or equal to the fractional indepen-
dence number.

Let D be a minimum dominating set. We see immediately that cp
dominates any vertex which is not in D, since such a vertex either gets a
weight of 1, or else gets a weight of % and has a neighbour which also receives
a weight of -;- Thus, only vertices within our dominating set D could
potentially pose problems for us. In the sequel, we shall abuse notation by
writing ep(N[v]) for the sum of the values of the companion function on
the closed neighbourhood of v.

Suppose that v € D is a vertex which is not dominated by the companion
function: ¢p(N[v]) < 1. Due to the structure of ¢p, the sum of the weights
on the neighbourhood of v must therefore be either 0 or % The former is
impossible, because D is a minimum dominating set; if every neighbour of
v was in D, then there is no need for v to also be in D.

So we can assume that cp(N[v]) = 3. This means that there exists a
unique u € N(v) such that u € D. Let D' = (D—v)U{u}; it is easily shown
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that D' is also a dominating set of G, of the same cardinality as D and
hence minimum. We see also now that ¢p/(N[v]) = 1 and ep/(Nu]) > 1.
We can repeat the technique of the previous paragraph to find a se-
quence of dominating sets Dy, ..., D; the corresponding sequence of com-
panion functions ¢p,,...,cp, will feature a strictly decreasing number of
vertices receiving a weight of -;—, which shows that the sequence must at some
point terminate. This can only happen when we have found a companion
function which is fractional dominating. a

Lemma 4.2 Let G be a connected graph with |V| > 3. There is a minimum
fractional dominating function f with the property that f(z) = 0 for any
vertez  where d(z) = 1.

Proof. Suppose f is a minimum fractional dominating function and z is
a vertex of degree 1 with f(z) > 0. Let y be the unique neighbour of
z; since G has more than two vertices, d(y) > 1. We can assume that
f(N[z]) = f(z) + f(y) = 1, since if the sum totals to more than 1 nothing
stops us from reducing the weight on z, which contradicts minimality. Then
define a new function f’ which agrees with f everywhere except = and y,
setting f'(z) = 0 and f’(y) = 1. This new function f’ has the same total
weight as f, and is also dominating. If there are other vertices of degree 1
at which f’ = f is positive, treat them as z was treated to obtain finally a
minimum fractional dominating function satisfying the requirement. a

Theorem 4.3 For any graph G with no isolated vertices, (v¢) (G) < as(G).

Proof. Let f be a minimum fractional dominating function in G, using
Lemma 4.2 to ensure that f(z) = 0 for any vertex z of degree 1, and
define g : V — [0,1] by g(v) = min{%, 1— f(v)}. From the definition, g is
fractional independent,; if it is also fractional dominating, we are done. So
suppose the contrary, and let U = {u € V : g(N[u]) < 1}. Call a vertex v
deficient if f(v) < 1 (and hence g(v) = 1). For any u € U, there must be
exactly one deficient vertex in N[u]. If there were none at all, then locally

= 1 — f which we know to be dominating by Proposition 1.1; if there
were at least two (say vi,v2) then g(N[u]) > g(v1) + g(v2) = 1, so again u
would be dominated.

Let w be the deficient vertex in N[u] for some u € U, and suppose u # w.
We can assume that u has degree at least 2, since otherwise w would be
the sole neighbour of u, and our choice of f guarantees that f(w) = 1,
contradicting the deficiency of w. For every v € N{u] — {w}, f(v) > & (if
f(v) = 3. thenu ¢ U as f(w) = 3); since this includes u, we conclude that
f(N[v]) > 1 for all such v. This in turn implies that f(N[w]) = 1, since
otherwise f would not be minimal.
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Let e = min{f(u)— 1, 5 — f(w)}; we shall define a new function f’ which
agrees with f everywhere but for v and w, letting f/'(u) = f(u) — € and
f'(w) = f(w) + e. We shall also define ¢’ using f’ analogously to the way
we defined g using f above. The function f’ has the same total weight as f.
It is clear that f’ dominates all vertices except possibly those in N(u)— w.
But for any such vertex v, f/(N[v]) > f'(v)+ f'(u) = f(v)+ f'(u) > 3 + 3.
Therefore f’ is a minimum fractional dominating function. As for g’, we see
that g’ > g and hence ¢’ dominates everywhere that g does. If € = f(u)— %
then f/(u) = ¢'(u) = , and if e = 3 — f(w) then ¢’ = 1 — f’ on Nf[u; in
either case, g’ dominates u.

Therefore, we may as well assume that every vertex in U is deficient.
Since only one vertex in N[u] can be deficient for any v € U, we may
conclude that no two vertices in U are adjacent: U is an independent set.
Define a new function h : V' — {0, 1] which is identical to g on V — U, with
h(u),u € U chosen so that h(N[u]) = 1; so h is a fractional dominating
function. To check for fractional independence, take any edge e = vw; if
neither of v, w are in U, then h(v) + h(w) = g(v) + g(w) £ 1, and ifv € U
and w € U then h(v) + h(w) < h(N[v]) = 1. Since U is independent there
are no other kinds of edges; thus & is fractional independent.

To finish the proof, we need check that h(v) < 1— f(v) forallv e V.
If v € U then h(v) = g(v) > 1 — f(v), so assume that v € U. Since 1 — f
dominates, we have that [1 — f](N[v]) = [1 - fI(N(v))+[1 - f(v)] > 1. We
defined h so that A(N[v]) = h(N(v)) + h(v) = 1; combining the equation
with the inequality and the facts that h =g <1 — f on V — U and that
v € U implies that N{v) C V — U gives us 1 — f(v) > h(v), as required. O
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