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ABSTRACT. This paper deals with the problem of construction hamiltonian
paths of optimal weights in Halin graphs. There are three versions of the
hamiltonian path: none or one or two of endvertices are specified. We present
O(|V]) algorithms to all the versions of the problem.
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1. INTRODUCTION AND TERMINOLOGY

Routing design problems are of major importance in combinatorial optimization,
and many algorithmic ideas have been applied to them during the past 20 years. We
will concern with the problem closely related to the minimum travelling salesman
problem (TSP), namely, the problem of finding a hamiltonian path of minimum
weight. The approximation algorithms of this problem have been studied by Jerome
Monnot [7]. It is well known that the problem of optimal hamiltonian path is NP-
hard. In [6], Lou proved there is a hamiltonian path between two distinct vertices
in Halin paths. In the light of this, we restrict the problem to Halin graphs and
give an O(|V|) algorithm.

All graphs considered in this paper are Halin graphs. For the terminology and
notation not defined in this paper, reader can refer to [1].

A Halin graph is constructed as follows: start with a tree T in which each nonleaf
has degree at least 3. Embed the tree in a plane and then connect all the leaves of
T with a cycle C such that the resulting graph H = T'U C is planar. Suppose T
has at least two nonleaves. Let w be a nonleaf of T which is adjacent to only one
other nonleaf of T. Then the set of leaves of T' adjacent to w, which we denote by
C(w), comprises a consecutive subsequence of the cycle C. We call the subgraph
of H induced by {w} U C(w) a fan and call w the centre of the fan. In Fig.1. the
black vertices are the centres of the fans which are indicated by dotted lines.

Let H = TUC be a Halin graph. Given a fan F of H, let H x F denote the
graph obtained from H by shrinking F to form a new “pseudo-vertex”, denoted by
vp; that is, V(H x F) = {vp}U{V(H)\V(F)} and the edges of H x F are defined
as follows:

(1) An edge with both ends in F is deleted;

(2) An edge with both ends in H — F remains unchanged;

(3) An edge with one end-vertex in H — F' and the other in F now joins the
incident vertex of H — F and the pseudo-vertex vg.
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FIGURE 1. A Halin graph

Denote the closure of H under the operation of “Shrinking Fan” by H*.

A graph G is called a wheel if G consists of a cycle every vertex of which is joined
to a single common vertex by an edge.

An edge cutset of a connected graph G = (V, E) is a set of edges whose removal
leaves a disconnected graph. If it consists of exactly k edges, then we call it a k-edge
cutset. Let H = TUC be a Halin graph. Given a fan F of H, the three edges
connecting V(F) to V(H ~ F) compose a 3-edge cutset of H. We denote this 3-edge
cutset by EC3(F). Let F be a fan in H' € H* and EC.,(F) be the corresponding
3-edge cutset in H with respect to EC3(F). Let F,, be the subgraph of H which
F is fully restored to. Equivalently, Fe, is the component of H — EC,.(F) which
F stands for.

2. PRELIMINARY RESULTS

Lemma 1. (Cornuejols[3]) A Halin graph H = T U C which is not a wheel has at
least two fans.

Proof. Suppose H is not a wheel and let T” be the subtree of T obtained by deleting
all leaves. Then T’ has more than one vertex and so has at least two leaves. Each
of these is the centre of a fan of H. 0

Lemma 2. (Cornuejols[3)) If F is a fan in a Halin graph H, then Hx F is a Halin
groph.
Proof. Obviously. ]

3. MAIN RESULTS

Theorem 3. Let H be a Halin graph and F be a fan in H. Every hamiltonian
path HP = u...... v contains ezactly two edges of EC3(F) if u,v ¢ V(F) or
u,v € V(F), while contains ezactly one or three edges of EC3(F) if just one of u
and v lies in F.

Proof. Immediate. O
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Corollary 4. Let H be a Halin graph and F be a fan in H' € H*. Every hamilto-
nian path HP = u...... v in H contains ezactly two edges of ECor(F) if u,v & Fez
or u,v € F,., while contains ezactly one or three edges of ECer(F) if just one of u
and v lies in Fe,.

4. DESCRIPTION OF THE ALGORITHM

Let H be a Halin graph and a(u,v) be the cost of the edge e = (u,v), u,v €
V(H). For e € E(H), we abbreviate it by a.. The hamiltonian paths have three
versions: first, the version where no endvertex is specified (denoted by HP); se-
cond, the version where just one endvertex is specified (denoted by HP,); third,
the version where two endvertices are specified (denoted by HP,,). We focus on
searching an optimal HP, , in this section.

Cornuejols, Naddef and Pulleyblank[3] gave a linear algorithm to search Min TSP
in Halin graphs. When (u,v) is an edge, Min HP, , can be reduced to Min TSP
as following: for each edge (x,y) where (z = u and y # v) or (z # v and y = v),
change the cost a(z,y) to be a(z, y) + 7 * Amaz Where ae; = maz{a.le € E(H)}
and n = |[V(H)|. After this amendment, Min TSP must contain the edge (u,v);
otherwise, the cost will be larger than 4n * amqez. But if TSP uses the edge (u,v),
the cost will be no greater than 3n * amez. So we can get the Min TSP containing
the edge (u,v). Hence Min HP, , can be obtained by Min TSP deleting the edge
(u,v) and the cost of Min HP, , equals the cost Min TSP minus a(u, v)+2n*amaz.

When (u, v) is not an edge in H, we describe the method of shrinking a fan which
does not contain any endvertex. It is a restricted usage to the idea of shrinking a
fan in [3, 4]. For precision, we give a detailed introduction as follows: let HP be a
hamiltonian path in H and F be any fan of H which does not contain the vertex
u or v. Let w, be the centre of F and let w, wo, ..., w, for r > 2 be the vertices
of F, which belong to C (in anti-clockwise order). Denote the EC3(F) = {3, k,!}.
See Fig. 2.

FIGURE 2. A fan (not containing any endvertex)
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By Theorem 3, HP uses exactly two of {j, k, {}.
o If it uses j and k, then it must traverse the vertices of F' in the order w;,

wa, ..., Wy, W, OF in reverse order;

e If it uses k and [, then it must traverse the vertices of F in the order w,,
wy, Wy, ..., Wy OF in reverse order;

o If it uses j and [, then it must traverse the vertices of F in the order w;,
wo, ..., Wi, We, Wi, --., Wy for some ¢ € {1,2,...,7 — 1}, or in reverse
order.

Let K be the sum of the costs of the edges of C in F. Then

o if HP uses j and k, the edges in F contribute Cjx = K + a(w,, w,) to the
cost;

o if HP uses k and !, the edges in F contribute Cy; = K + a(w., w;) to the
cost;

o if HP uses j and !, the edges in F contribute at least Cj; = K + min{
awe, w;) + a(we, wiy1) — a{w;, wiy1), 1 << € r -1} to the cost, and the
minimum is realizable. :

We shrink a fan F to a pseudo-vertex, denoted by up. At first, set the cost
function in H x F to be o' defined by

ae if e € E(H\{j, k., 1},
o= aj + (Cll+Czk—Cu) ife=j o
e= o+ (Cu'FCzk—Cp) ife=k,
o+ (C¢¢+Ckl-cpc) ife=1.
Then, store the structure of F into up, including the vertices wy, wo, ..., wy, w,

and the edges among them. In addition, the value of 2 which makes Cj minimum
is also stored, but we do not store the structure contained in any pseudo-vertex in F.

Secondly, we introduce the strategy to shrink a fan which contains exactly one
endvertex. Let F’ be any fan of H which contains just one of u and v. Without
loss of generality, we suppose F' contains the vertex u. The situation is the same
when F’ contains the vertex v except the direction is reverse.

And we suppose the fans, which do not contain any endvertex, have been shrunk.
Let z. be the centre of F’ and let z,, 3, ..., z, (r 2 2) be the vertices of F’ which
belong to C (in anti-clockwise order). Denote the EC5(F') = {j, k,l}. See Fig. 3.
By Corollary 4, HP uses exactly one or three of {j, k, {}.

If the vertex u is not the centre of F’, this situation is denoted by Case 1; the
other situation is denoted by Case 2.

In Case 1, we assume that z; = u. Consider the situation that HP just uses one
of {j, k, !}, firstly.

(1) If it uses j, then the traversal of F’ depends on i:
o If 2 < i < r, then the order is z;(= u), Ziyq, -- -, Zr, Tc, Tiz1, - - -, Z1;
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e If i = r, then the order is zi(= u), Zi1, ..., Tj, Tcy Tj-1, .-+, T1 for
some j € {2,...,7}.
This situation happens when 2 < i < 7, that is u # z,. Define this type
of traversal by Clockwise Traversal (CT);
(2) If it uses k, then the traversal of F’ depends on i:
o If i = 1, the order is z;(= u), Ti+1, ..+, Tr, Tc;
o If i = r, the order is zi(= u), Ti—1, ..., T1, Tc-
This situation happens only when u = z; or u = z,. Define this type of
traversal by Up Traversal (UT);
(3) If it uses !, then the traversal of F' depends on i

e If i = 1, then the order is z;(= u), Tis1, ..y Tj, Tes T, -- - Tr fOT
some j € {1,...,7—1};
e If 2 € i < r, then the order is zi(= u), Ti-1, ..., T1, Tey Titly - ooy Tre

This situation happens when 1 € i < r, that is u # z,. Define this type of
traversal by Anti-Clockwise Traversal (ACT).

FIGURE 3. A fan (containing precisely one endvertex)

Now, we examine the situation that HP uses all of {j, k, }, in Case 1.
Since HP uses three edges of a 3-edge cutset, the traversal of F’ in HP is not

consecutive. That is, it contains exactly two sequences (denoted by S; and S2)
of the vertices of F’ such that V(5;) U V(S2) = V(F') and V(S;) N V(S2) = O.
Without loss of generality, we suppose that the endvertices u and v only belong
to Sy. It helps us to know whether one sequence contains any endvertex, which is
not only clear but also useful for the construction of HP. Thus, HP=5,P5; P2
such that the two sequences P, and P, satisfy V(P1) U V(P) = V(H\F') and
V(P)NV(P)=0.

In Case 1, there are only two possible situations of Sy and Sp:
(1) S = zi(=u), zi-1, ..., 21 and Sz = Z¢, Tiyy, ..., Tr (or in reverse order)
forigi<r.
This situation happens when u # z,.
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Define this type of traversal by discrete Clockwise Traversal (dCT);
(2) 81 =zi(=u), 2ig1, ..., zr and Sy = x,, iy, ..., 71 (or in reverse order)
for2<igr.
This situation happens when u # z;.
Define this type of traversal by discrete Anti-Clockwise Traversal (dACT).

In Case 2, the vertex u is the centre of F’. Investigate the situation that HP
just uses one of {3, k, I}, firstly.

(1) If it uses j, then it must traverse the vertices of F’ in the order z.(= u),
Zry Tr-1, ..., 1. We consider it as belonging to the type of Clockwise
Traversal (CT);

(2) HP cannot just use the edge k only;

(3) If it uses I, then it must traverse the vertices of F in the order z.(= u), x,
..vy Tr_1, Tr. We consider it as belonging to the type of Anti-Clockwise
Traversal (ACT).

In Case 2, if HP uses all of {3, k, {}, then there is only one possible situation:
§1 = x(=u) and Sy = z1, z, ..., Tr—1, 2, (or in reverse order). Define this type
of traversal by Up-Down Traversal (UDT).

The method of shrinking a fan F not containing any endvertex could be viewed
as a reassignment of the costs of EC3(F) and a storage of the structure. It can
preserve the cost of the optimal hamiltonian path. But the traversals of a fan
F' containing exactly one endvertex are much more complicated. Similarly, we
store the structure of F’, too. In addition, we choose to store the costs of these
traversals by means of some functions of the shrunk vertices. Since the number of
the situations in one certain traversal type can be larger than one, we store the
situation which makes the cost of one certain traversal type minimum. If there is
more than one getting the minimum, choose one arbitrarily.

Suppose we shrink a fan F’ to a pseudo-vertex, denoted by vp. Define the
functions of vr, as follows:

CT(vr) = the minimum cost of all traversals of the type CT;
UT(vrp) = the minimum cost of all traversals of the type UT;
ACT(vr) = the minimum cost of all traversals of the type ACT;
dCT(vr) = the minimum cost of all traversals of the type dCT;
dACT (vr) = the minimum cost of all traversals of the type dACT;
UDT(vr) = the minimum cost of all traversals of the type UDT.

If there is no traversal of some certain type, then the value of corresponding
function is set to be +oo.

We provide the calculations of these functions in details. Let F be a fan and it
will be shrunk into vp. Let z. be the centre of F’ and z, z3, ..., zy (r > 2) be
the vertices of F’ which belong to C. See Fig. 3. Suppose z is the endvertex, or
the pseudo-vertex containing it.
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-1
The formulas are defined as following. We assume that ) a(z;,zi41) = 0 for

i=j

all values of j and zj = x. does not belong to the situation 1 <k < r.

CTi(vr) = |

CTy(vr) = ¢

4 r—-1
ACT(zk) + 3 olis 2is1)
1=
k=2
+a(@r, zc) + a(zc, Tk-1) + -21 a(zi, Tit1)
=
k=2
UT(Ik) + a(z;,,xc) + a(xcl :I:k_l) + 'Z:l Q(xi,$i+1),
=
k=1
min¢ {CT(xzx) + ¥ oz ziz1) + a(zj, xc) + alze, xj-1)
i=2 =
+ '21 a(zi,Ti+1)|2€ji< 7}
=

\ +c0

{ r—1
dACT(zy) 4 E oz(::,-,::.-+1) + a(zr, Ze)
i=k

k=1
+a(ze, k) + Y alzi, Tis1) f1gk<r,
i=1

{ +oo otherwise.

r—1
UDT(Ik) + O’(:Ck, IC) + “(zc:f‘r) + Z Q(zi,li+1) iflgk<r,
i=1

CTs(vr) =
+00 otherwise.
r—1 i
CT(UF) = a(z‘hz') + l'gl a(zi’:i'l-l) NIk =T
min{CTj(vr),CT2(vr),CTs(vF)} otherwise.
r—1
ACT(zk) + ¥ a(ziyziy1) + a(zr,zc) ifk=1,
i=k
= k=1
UTOR) =\ OT(m1) + S amirmisr) +o(er,ze)  ifk=r,
t=1
+oo otherwise.
( r=1
UT(z¢) + a(zk, zc) + al@e, Th41) + );, o(zi, Tit1),
i=k41
-1
min {ACT (=) + 'Ek a(zi, zit1) + a(zj, zc) + aze, ::j.“)
'._l 1=,
. i<r—1
ACTy(vp) = { +i=§n a(zi, Ti+1) |1 <FLr-1}

k=1
CT(xx)+ El a(zi, zis1) + az1,%c)

r—1
+a(Te, zhi1) + L oz, Tigr)
i=k+1

+00

\
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if2<k<r,

ifk=r,

otherwise.
(2a)

(2b)

(2¢)

(2d)

(2¢)

ifk=1,

if2<k<m

otherwise.

(20)



k=1
dCT(zx) + ‘21 oz, Ti1) + a(z1, Zc)
- Tr=1
ACTy(vF) = +o{xc, Tk ) + rZ o(Tiy Tit1) ifl<kgr, (28)
i=k
400 otherwise.
r—1
ACTs(vp) = UDT(x) + o(zk, xe) + a(ze, 21) + ‘Z=:l afzi,zi41) fl<k<r (2h)
400 otherwise.
AW(U ) a(zﬁ Il) + Z a(z'v =i+l) if T =Ty (21)
mm{ACTl(up) ACT;(vp), ACTs(vr)} otherwise.
CT! y Ti i) T iflg<k<r,
dCT(vr) (zk) + Z a(zi, +l)+a(rc,=k+1)+ Z °(= Zig1) <r @)
otherwise.
k-1 r=1 X
dCTy(vr) = dCT(z) + El a(zi, Tit1) + ofTe, zk) + Eh o(zi,zig1) 1<k, 2K)
+o00 otherwise.
dCT(vp) = min{dCTi(vr),dCT2(vF)} )]
r—=1 k-2
dACT: (vp) = § ACTER) + T alzi,zit) + alze,zk-1) + T alwizin) #2<k<n,
+o0 otherwise.
(2m)
r—1 k=1
dACTs(vr) = dACT(zx) + ‘_gk afzi, Ti+1) + aze, zx) + i§1 afzi,ziv1) 1<k, (2n)
+00 otherwise.
dACT(vp) = min{dACT\(vr),dACT2(vF)} (20)
r=1
UDT(zx) + Zla(rhriu) if zx = ze,
=
= -1
UDT(vF) = \ UDT(zi) + alzr.7c) + 'z:l alzizisr) if 7k # 2o, (2p)
+o0 otherwise.

In a bid to maintain the meaning that +oco stands for, if a sub-formula uses a
function whose value is 400, that is, it indicates no such a type of traversal in the
pseudo-vertex, then the value of the sub-formula is set to be 400, immediately.
Thus, the value indicates that the corresponding traversal of the sub-formula does
not exist. For example, we calculate the function UDT(vg) when zx = =z, if
UDT(zt) = +o00, then UDT (vF) is set to be +oo.
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5. PROCEDURE OF THE ALGORITHM

Given a Halin graph H = TUC and two distinct vertices u,v € V(H).

The algorithm to search Min HP, ,

1) CT(u):=ACT (u):=UT(u):=0; dCT(u):=dACT(u):=U DT (u):=+o0;

2) CT(v):=ACT(v):=UT(v):=0; dCT(v):=dACT(v):=U DT (v):=+o00;

3) if u and v lie in C then

4) begin

5) TreeType:=1;

6) if u and v lie in the same fan

7) then Root:=the centre of the fan;

8) else Root:=the centre of the fan containing u;

9) end

10) else begin

11) TreeType:=2;

12) if u lies in C then Root:=v;

13) else if v lies in C then begin swap u and v; Root:=v; end
14) else if neither u nor v lies in C

15) then begin Root:=v; UDT(u):=0;
16) CT(u):=ACT(u):=UT(u):=+o0;
17) end

18) end

19) perform a postorder scan of T, for each fan F has been found do
20) if the centre of F # Root Then

21) begin

22) if F does not contain any endvertex then
23) begin

24) shrink F to vp

25) store the structure of F into vp

26) reassign the costs of edges in EC3(F)
27) end

28) else begin
29) shrink F to vp

30) store the structure of F into vp
31) Mark vp containing u or v

32) calculate the functions of vp
33) end

34) end

let H,, be the wheel we finally get, wy be u or the pseudo-vertex containing u;
let k be the edge joining wy and Root, j and | be the other two edges joining wy
such that the direction of I, wy, j is clockwise;

35) Shrink the fan H,, — w, to the pseudo-vertex w,;

36) switch(TreeType)

37) begin
38) case 1: Cost := min{a(j) + ACT(wy), (k) + UT(wy), a(l) + CT(ws)};
39) let HP' be the path which makes Cost minimum,;

//e.g. HP' = u, ACT of wy when Cost = a(j)+ACT (wy).
//if there is more than one path gets the minimum,
//then choose one arbitrarily;

40) break;
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( CT(wy) + a(j) + ACT(wy), )
ACT(wy) + a(l) + CT(wy),
dCT(wu) + a(j) + a(k) + a(l) + dCT (wy),
dACT(wu) + a(j) + a(k) + a{l) + dACT(wy),
41) case 2: Cost :=min{ UT(wy) + alk) + UT(wy), >
UDT(wy) + a(j) + a(k) + a(l) + dCT(w,),
UDT(wy) + a(5) + a(k) + a(l) + dACT(wy),
UDT(wy) + a(j) + a(k) + a(l) + dCT(wx),
\ UDT(wy) + a(j) + a(k) + a(l) + dACT (wy) )
42) let HP’ be the path which makes Cost minimum;

//e.g. HP' = S1(dCT of wu), S3(dCT of wy), S2(dCT of wy), S1(dCT of wy)

//when Cost = dCT(wu) + a(j) + a(k) + a(l)+ dCT(wy);

//if there is more than one path gets the minimum,

//then choose one arbitrarily;
43) break;
44) end

45) while (there is pseudo-vertex in HP') do

46) begin

47) let w be the first pseudo-vertex in HP';

48) according to the traversal type determined by HP’ and the structure information stored,
extend w to be the corresponding traversal path in the fan which is shrunk to w;
the direction of the path can be judged by the former vertex in HP’ or the starting vertex;

49) end

50) HP' is Min HP, ,,

6. AN EXAMPLE

FIGURE 4. An example of the algorithm
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The main procedures to search Min HP, , are shown in Fig. 4. And the values
of the functions are illustrated in Table. 1.

TABLE 1. The values of the functions

CT | UT | ACT | dCT | dACT | UDT
w) 6 | 400 6 +oc0 +00 1
wz | 10 14 +00 10 400 6
w3 | 21 | 40| 19 14 +o0 18
wy | 55| 4.5 8 400 [ +o0 4.5

In step 41), we get the cost = UDT (wy) +a(f) + a(k) + a(l)+dCT (wy) = 25 which
is minimum. HP’ is extended as following (the pseudo-vertices are underlined):
HP' = 8,(dCT of wy), S2(UDT of wy), S2(dCT of wu), S1{UDT of wy)

=51(dCT of wz), S2(UDT of wy), S2(dCT of w3), S1(UDT of wy)

=CT(ws), |, S2(UDT of wy), 52(dCT of wa), S1(UDT of wy)

=81(UDT of wy), p, z1, Sa(UDT of wy), I, Sa(UDT of wy), S2(dCT of ws), $1(UDT of wy)
=u, p, 71, S2(UDT of wy), I, S2(UDT of wy), S2(dCT of wa), S1(UDT of wy)

=u, p,m, e, d, ¢, So(UDT of wy), |, S(UDT of wy), S2(dCT of wg), S1(UDT of wy)

=>u, p, m, e,d, ¢, b, e, !, So(UDT of wy), S2(dCT of w3), S1(UDT of wy)

=u, p, m, e, d, ¢, b, e, I, k, 3, S2(dCT of wz), S1(UDT of wy)

=u,p, m, e, d, ¢, ba,l,kj,o,i h, S2(dCT of wz), S1(UDT of wy)

Su,p,m, e, d, ¢ b, el ko0, k 2,9, S1(UDT of wy)

=>u,p,m,e,d, c,ba,l, k j o1 h,g fnq S1(UDT of w,)

=u,p, m,e,d, ¢, bal k joihg finqv

7. THE CORRECTNESS AND THE TIME COMPLEXITY

Theorem 5. Let H be a Halin graph and F' be a fan in H. Every hemiltonian path
HP in H induces a hamiltonian path of HP' in H x F, whose cost is no greater
than the cost of the HP. Moreover, if HP is the optimal hamiltonian path, then
HP' has the same cost as HP.

Proof. Suppose H =TUC and H x F = T'UC’. If F does not contain the starting
or the ending vertex of HP, then, by the formula (1), HP induces a hamiltonian
path of HP' in H x F whose cost, relative to C’, is no greater than the original
cost of HP with respect to C. Especially, when HP is optimal, the equality holds.

Otherwise, F contains exactly one endvertex. Since our traversal types enume-
rate all the situations that HP traverses the vertices of F, such HP’ exists. For
instance, in the example in Section 6, the hamiltonian path u, p, m, ¢, d, ¢, b, a,
l, k, 3, 0,4, hy g, f, n, q, v induces S, (UDT of w), p, m, e, d, ¢, So(UDT of
w), L, k, 7, 0, %, h, g, f, n, q, v after shrinking the fan, whose centre is u, into the
pseudo-vertex w;.

The hamiltonian paths, which are the same except the part of traversal in F,
induce the same hamiltonian path, if their traversal types in F are the same. By
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the formulas (2a) ~ (2p), we choose the minimum traversal path of each type.
Moreover, the cost of each traversal type is stored in the pseudo-vertex which
delivers the information to H x F. Hence, the cost of HP’ in H x F, induced
by HP in H, is equal to or less than the cost of HP. When HP is optimal, the
equality also holds.

The sections 1) ~ 18) and 35) guarantee that the vertices u and v do not lie in
the same fan such that the centre of the fan is not the Root. So our traversal types
and their functions work. Therefore, the hamiltonian path HP’ found in 38) or 41)
has the same cost as the optimal hamiltonian path in the original graph H. 0O

Claim 6. The hamiltonian path HP' found in 38) or 41) can be extended to a
hamiltonian (u,v)-path in the original graph H. And the cost of HP' does not
change through the extension.

Proof. Let vr be a pseudo-vertex of HP’ where F is the fan which is shrunk to vg.
And let Hr be the Halin graph which F belongs to.

If vp does not contain any endvertex, then the two edges adjacent to vg, which
HP’ uses, are determined by HP’. Denote these two edges by e’, f’. And their
corresponding edges in Hr are denoted by e, f. The traversal path of F could be
obtained by the choice of e, f and the structure of F. We substitute the pseudo-
vertex vp by the traversal to achieve the extension. Since the costs of ¢’ and f’
were reassigned according to the costs of e and f in Hr and the traversal of F.
Therefore, the cost remains the same after the extension.

If v contains precisely one endvertex, the traversal type of it is determined
by HP'. For example, if HP' = u, ACT of vp, then the traversal type of vr is
Anti-Clockwise Traversal. It means the cost of this part in HP' is calculated by
the values of the functions stored in vp. Therefore, there exists such a traversal
of F whose cost equals the value of corresponding function. We use the traversal
of F to replace the pseudo-vertex vp. Hence, the cost does not change. Moreover,
the extension is based on the traversal types we define, so it guarantees that the
starting and ending vertices of H P’ are the vertices u and v, or the pseudo-vertices
containing them. O

In the algorithm, sections 1) ~ 18) need O(1) time. The sections 19) ~ 34) are
the operations of shrinking fans in H. If a fan F' contains r-1 vertices, then it
is verified that the time of the shrinking operation is O(r). Moreover, shrinking
F reduces the number of vertices of the graph by r. Thus, the total time of the
shrinking operations is O(|V]). The time of the postorder scan without shrinking is
bounded by O(|V|). The sections 35) ~ 44) need O(1) time. The time of sections
45) ~ 49) is the same as the sections 19) ~ 34). Therefore, the total time for this
algorithm is O(|V]).
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8. EXTENSIONS

8.1. Min HP, in Halin graphs. Section 4 discusses all types of traversal in a fan
containing no endvertex or just one endvertex. We also adopt the “Shrinking Fan”
strategy to solve Min HP, problem. Since just one endvertex is known in HP,
problem, a fan might have none or precisely one endvertex (we can use the trick
to avoid two endvertices in a fan as described in Section 5). Hence, the cost of the
edges cannot be changed when the fan is shrunk. Similarly with Section 4, we use
functions to store all types of traversal in a fan containing no endvertex. Let F be
a fan in Halin graph H and {k, j,!} be EC3(F). See Fig. 2. Assume that there is
no endvertex of HP, in F. By Theorem 3, HP, covers exactly two of {k, j,1}. The
traversal type of HP, containing {k,j} is denoted by Ci;. Suppose F is shrunk to
vp. Use function Ci;(vr) to store the minimum cost of all traversals of the type
Ck;. To an original vertex z in H, Cy;(z) is set to be 0. The definitions of Ci; and
Cj are similar.

Let w, be the centre of F and let wy, wy, ..., w, for r > 2 be the vertices of F,
which belong to C. See Fig. 2. For abbreviation, we define

b b=1

Dap = > Cj((wi) + Z a{wi,wipy)forlLa<br,
t=a t=a

And assume that D, ; = 0 for b < a and a(wo, w1) = a(wr, Wry1)= c(Wri1, Wri2)=

Cit(wr41) = 0. The formulas are defined in the following:

ij('-’F) = a(we, wr) + ij(wr) + u'(wr—l:wr) + Dy

Cri(vr) = a(we, w1) + Cri(wr) + (w1, wz) + D2,r

: Dy, j-1 + a(wj—1,w;) + Ckj(w;) + a(wj, we) }
Chis = g =1, Wj 3 (W) i
k3 (vF) 1558 { +ofwe, wis1) + Cri(wjs1) + a(wjs1,wip2) + Djtar

®

The formulas of CT, ACT, dCT, dACT, UT and U DT in Section 4 are supposed
to be changed, simultaneously. The definitions of z, z., 1, 3, ..., %, are the
same as Section 4. The calculations of CT, dCT, UT and UDT are given in the
following. The ones of ACT and dACT are similar. Readers can refer to the
formulas (2a) ~ (2p).

( ACT(zk) + (ks Tk 1) + Dicy1,r-1 + a(Zr-1,2r)
+Crj(zr) + a(Tr, zc) + a(ze, Th-1) + Crj(Tk-1)
+a(zk—2,Tk-1) + D1 k-2 if2<k<r,
UT(xx) + a2k, 2c) + a(Ze, Th—1) + Ckj(zk-1)
CTi(vrF) = | +a(Ty-g,Tk-1) + D1,k—2,
min{  {CT(z) + a(zr-1,%r) + Dj+1,r-1 + a(zj,Zj+1) ifk=r,
+Cri(z;) + alzj c) + alTe, Tj-1) + Ckj(z;-1)
+a(zj-2,z5-1) + D1,j—2|2 € j < 7}

\ +oco otherwise.
dACT(zy) + a(Tky Tk 41) + Dict1,r-1 + al@r-1,25) + Cjlzr)
CTu(vr) = { +a(zr,zc) + alze, 2 ) + alzk—1,2k) + D1,x-1 f1gk<r,
+oco otherwise.
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UDT(zi) + a(zk, zc) + a(zey Tr) + Crjlzr)
+a(zr-1,2r) + Di,r-1 flgk<r
otherwise.

CTi(vp) =

or(:rc, J-'r) + Ck;(xr) + a(’-’r—hxr) + Dl r—1 Tk = T¢

1=
CT(vp) = {
2

min{CT}(vr), CTo(vr), CTa(vr)} otherwise.
CT(zk) + a(zk—1,2k) + D1 k-1 + (e, Tieq1)
dCTy(vr) = { +Cri(Th+1) + &(Th+1, Th+2) + Dita,r flgk<r
otherwise.
dCT(xy) + (-1, Tk) + D1 k14
dCTa(vr) = § afze, zk) + a(Zk, Zh41) + Digr,r i1k, )
+co otherwise.

dCT(vr) = min{dCT;(vr),dCT2(vrF)}
ACT(zk) + a(zky :k+l) + Dk+l.r—l + Q(Ir—lyzr)

+Cj(zr) + a(zr,zc) ifk=1,
UT(vr) = § CT(zk) + a(zr=1,Zr) + D2,r-1 + a(z1,22)
+Cri(x1) + a(z1, zc) ifk=r,
+o0 otherwise.
UDT(zi) + D1,r if zx = =,
UDT(vp) = {UDT(zk) + afzk,zc) + D1y if 2k # ze,
+oc0 otherwise.

Moreover, the other endvertex of HP, is not specified. That is, each vertex in a
fan F can be z;. Hence, let z; enumerate all vertices in F' and store the minimum
cost and the corresponding structure while calculating each formula. The values
of D,; and D;, for 1 < i < r can be calculated in 2r steps. We calculate these
two functions at first. Then D;,_; for 1 £ 7 < r can be obtained by D;,, =
D, — Cj(zr) — a(zr—1,2,) in 2 steps. If zx is z; (=), only the computation
of CTy (ACT}) needs r steps. The computations of other formulas just require
constant steps for one fixed zx. So shrinking a fan F is also O(|]V (F)|) time.

The algorithm to search Min HP, is similar with the one to search Min HP, ,
in Section 5. Besides the differences mentioned above, the remaining ones are given
as follows:

The selection of “Root”: if the vertex u lies in C, let Root:=the centre of the
fan containing u and TreeType:=1; otherwise, let Root:=u and TreeType:=2.

The enumeration of HP, in different selections: let w, be the vertex u when
TreeType==1; otherwise, let w, be the pseudo-vertex containing «. Let k be the
edge joining w, and Root, 7 and [ be the other two edges joining w, such that the
direction of j, wy, k is clockwise. See Fig. 5.

We discuss the calculation when TreeType==1, first. Shrink the fan H,, — w,
to the pseudo-vertex w,. So Cost := min {a, + UT(wy),aj + CT(wy), o + ACT(wy)}.

When TreeType==2, no “Shrinking Fan” operation is required. Let the vertices
on the cycle of H,, be z;, «3, ..., z,. See Fig. 5.
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FiGURE 5. Different selections of Root

i-1
We assume that a(zg, ;)= a(zr,zr41)= a(z,,71) and Y Cj(zi) = 0 for all
i=j

values of j. We have

¢

a=1 r
a(u,za) + Crj(za) + X Cit(zi) + ¥ Cii(z:)
i=1 i=ad2
r
+ACT(Za41) + Y a(ziyTig1) = &(Ta, Tat1),
i=1

r a=-2
o(u,za) + Criza) + X Ciilzi) + X Culxi)
Cost := min { , menl i=1

1<agr +CT(za-1) + 2:1 afzi,Tiy1) — a(za-1,Za),

a-1 T T
o(u,za) +dACT (za) + 1L Cji(zi} + z_chl(zi) + 'Zl a(zi, Tit1),
= 1=a =

a(u, za) + dCT(za) + __2':“ Coulz:) + E:: Ciz:) + i:: alzi, 2es1)

The amended part above can be computed in O(|H,|) time which is bounded
by O(|V|). Using the same analysis method in Section 7, the total time of the
extended algorithm to search Min H P, is also O(|V]).

8.2. Min HP in Halin graphs. Since no endvertex is specified in Min HP prob-
lem, a fan might contain two endvertices. Let F be a fan in Halin graph H and
{k, 3,1} be EC5(F). See Fig. 2. Assume that there are two endvertices of HP in F.
It can be concluded that the traversal of F' is not consecutive; otherwise, the vertex
in H — F cannot lie in HP. By Theorem 3, HP covers exactly two of {k, 7,{}. The
traversal type of HP containing {k, j} is denoted by discrete Cy; (dCx; for short).
Suppose F is shrunk to vp. Use function dCy;(vr) to store the minimum cost of
all traversals of the type dCy;. The definitions of dCys and dCj; are similar.
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The functions (such as Cy;, CT) which indicate F contains less than two end-
vertices have no relation to the ones indicating two endvertices. So the formulas (3)
~ (4) in Subsection 8.1 remain the same in Min HP problem. Before presenting
the formulas of dCy;, dCii and dCj;, we introduce the definition of “pseudo-fan”.
Suppose z. be the centre of F and let z;, zs, ..., z, for 7 > 2 be the vertices of
F, which belong to C. Given a k (2 < & £ r), we denote the induced subgraph
Flzc,%a,Za41, .-+, T) (1 € @ € b < 1) by pseudo-fan PF, ; of F. Figure 6 shows
two pseudo-fans, PF ; and PFj x4, which are indicated by dotted lines.

FIGURE 6. Pseudo-fans

Similarly with a fan, we calculate the functions Cy;, Cxi, Ckj, CT, ACT, dCT,
dACT, UT and UDT to pseudo-fans PFyx and PF, forall 1 < £ < r. We
introduce the method to calculate the functions of PFj x, when the functions of

PF, i have been worked out. The method from PFj , to PF;_; , is symmetric.
We assume that

Ckj(PF1,1) = afze, 71) + Cij(z1), Cxt(PF1,1) = a(zc, 21) + Cri(z1);
Cj(PFy,1) = 400, CT(PF11) = a(ze, 71) 4 Cij(z1);
ACT(PF,,1) = a(zc,z1) + Cri(z1), dCT(PF,1) = dCT(z}) + a(xc, 71 );

dACT(PF\,1) = dACT(x}) + a(zc, 1), UT(PF,1) = UT(z1) + a(ze,z1);

UDT(PF,1) = min{UDT(z1) + a(zc, z1), Cji(21)}-

Once the functions of PF; are known, the functions of PFj s+ can be calcu-
lated in the following:
Cij(PF1 k41) = a(Te, Th41) + Ckj(zr41) + a(zk, k1) + Dk
Cri(PFyk41) = Ci(PFy k) + a(zk, k1) + Cji(Tk41)
[ Cri(PFy k) + a(Ze, 2k41) + Crilzis1), }
L (PF, = 3 .
Cit(PFik1) mm{ Cit(PFy &) + a(zky 2k41) + Cit(Th41)
afzc, Tk41) + Ckj(Thi1) + Tk, Tki1) + Dy iy
UT(xk+1) + a(zc, Thks1) + Cr;i (PFy i),
CT(PFy k41) =min{ CT(xx41) + ek, Tiy1) + Cit(PF k),
dACT(PF k) + a(Tk, Tx+1) + Ckj(Zks1) + a(Tc, Tha),
UDT(PPF k) + a(zc, Zk+1) + Ckj(zr41) + Tk, Th41)
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UT(PFy k) + a(zc, Th+1) + Cri(zi+1),

ACT(PF i) + a(zk, Te41) + Cjt{zk+1),

dCT(zk+1) + a(zk, Tks1) + Crt(PFy k) + (e, Th41),
UDT(zk41) + alTe, k1) + Crt(PFL k) + a(zk, Th41)

{ dCT(zk+1) + a(zk, Tk41) + D1k + aze, Tr41), }

ACT(PF, 441) = min

CT(zx) + afzk—1,%k) + D1,k—1 + &(Ze, Zk+1) + Crj(Zhs1)s
dCT(PFy ) + a(zk, Zk+1) + Cit(Te+1)

dACT(PFy ) + a{zk) Tkt1) + Cit{Th41)s }

dCT(PFl_k+|) = min

dACT(PF) k1) = min ACT(zp41) + ij(PFllk),

dACT (Zi41) + a(ze) Tha1) + a{Zr, Tx41) + Dr e

CT(zk41) + a(zk, Zk4+1) + Crt(PF1 k), ACT(z1) + D1k }
—Cji(z1) + a(z, Ti+1) + Cij(zr41) + e, Thi1)
UDT(PF, k) + a(zk, Tk+1) + Cjt(Tk41)s }
UDT(zr+1) + a(zec, Zk41) + D1k + Tk, Th+1)

UT(PF} k+1) = min
UDT(PFy x41) = min {

Now, investigate the traversal types dCj;, dCi and dCj;. To an original vertex
w, let dCxj(w) = dChi(w) = dCji(w) = +oo. If the centre of fan F is one endvertex,
this situation is denoted by Case 1; the other situation is denoted by Case 2.
Suppose the endvertices of HP are u,v. See Fig. 7.

Xp=V Xp+1

FIGURE 7. Fans containing two endvertices

In Case 1, we assume that z; = v where 1 < b < r.
(1) If HP uses k and j, then v must be z, and HP is z, k, ..., j, 21, (21, %2),
cery (Tr—1,2r), CT(x;).
(2) If HP uses k and [, then v must be z; and HP is z, k, ..., !, Zr, (Tr-1, 2r),
ey (31,32), ACT(:L‘l).
(3) If HP uses j and I, then there are many situations given in the following:
If u meets j earlier than [, then HP is x¢, (zc, Zo—1), To—1, (Tb-2,Ts-1),
coey Ty j: ey ly Try (zr—l:xf)) cevy (xb"rb'l-l)y ACT(:B(,)
or zc, (e, Zs), S2(dACT(zb)), (To—1:Tb)y -y Ty Jy -y &y Zry (Tr—1,Zr),
seey (zbv zb+l): Sl (dACT(zb))
If u meets ! earlier than 7, then HP is z¢, (T, To+1), Tot1, (o1, To42),
cey Ty by oy 3y 1, (1,22), oy (To-1,T8), CT ()
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or r, (IC,Ib), Sz(dCT(.’L‘b)), (xbyzb-rl)) ceey Try l) cer Jy T1, (-‘51,122), veey
(zb—lr xb)r Sl (dCT(xb))'

In Case 2, we suppose that z, = v and z, = v where 1 a<b<r.

(1) HP uses k and j:

If «w meets k earlier than j, then v must be z.. HP is $y(UDT(PF} r-1)),
k, ..., 3, S2(UDT(PFy,r-1)), (Zr-1,2r), CT(z,).

If u meets j earlier than k, then HP is S;(dCT(PFi,)), J, ..., k,
S2(dCT(PFi,0)), (TayTat1)s Tatly « ooy (Tr—1,Zr), CT(z,) when zp = z,
or CT(-Ta)y (xa—lyza), e T Jy e Ky UT(PFa+l,r)~

(2) HP uses k and I

If v meets & earlier than [, then u must be z,. HP is $,(UDT(PF;,)),
k, ..., 1, S2(UDT(PF;,)), (z1,29), ACT(z;).

If v meets { earlier than k, then HP is S$i(dACT(PF,.)), {, ..., k,
S2(dACT(PFyr)), (To—1,Tb), To=1, - - -, (*1,22), ACT(z;) when z, = 1,
or ACT(zb)i (xb: zb'i—l)r vees Ty by oy Ky UT(PFl,b—l)'

(3) HP uses j and {: Suppose the edges e, f are adjacent to z. in HP.

(i) {e, [N E(PF,0) = 0:
HP is CT(za), (Taz1,%a)s --+) T, Jy -+, by ACT(PFay1,).

(ii) |{e, N E(PF1,0)| = 1:

If w meets j earlier than [, then HP is S\(dCT(PF.,)), j, -.-, I,
52(dCT(PFa41,r)), S2(dCT(PF0)), (%a,Tat1), S1(dCT(PFuy1,r))
or 51(dACT(PF1,4)), (Ta)Tat1), S2(dACT(PFqia,r)), S2(dACT(PF 4)),
Jreoy Uy SI(dACT(PFoq1,5));

If u meets  earlier than j, HP is $,(UDT(PF,,)), S2(dCT(PF,41,)),
l) KRR j$ S2(UDT(PF1.0))$ (xa;xa-i-l)) Sl(dCT(PFn+l.r))
or 51(dACT(PF,)), (%o, Za+1), S2(UDT(PFo1,)), L, .., J,
S2(dACT(PF.,4)), S1{(UDT(PF,41,5))-

(iii) e, fY N E(PF,0)| = 2:
The vertex v must be 2,47 and HP is CT(PF1,), 3, .-, , ¢, (Tr—1,Zy),
v (Tat1, Tard), ACT(Tar1):

The calculations of dCkj, dCx and dCj; from CT, ACT, dCT, dACT, UT
and UDT, which indicate the pseudo-vertices containing an endvertex of HP, are
examined in above. The calcui)a,tions of dCy;, dCy and dCj; from themselves are
simple. We present them within the following formulas.

Dy k-2 + a(Tk—2,Zk~1) + Crj(Tr-1) + a(zc, zk—1)
+a(ze, zk) + dCri(zk) + Tk, Th41) + Drga,ry
Jhi(wr)= min ¢ Ci(PFyk-1) + a(zk—1,2x) + dCji(zk) + &(k Tk +1) + Dict1,r
SEST L oz, zki1) + Crj(®ro1) + alzk_2,2x-1) + D1k-2
+Dg41,r + &2k, Tk41) + ACT(z)

a(zc, zk) + dACT (zx) + a(zk—1,Tk) + D1,k—1 + Diy1,r + a(zk, T y1), }

JL: = i
2(vr) = min { o(ze, k) + dCT(zk) + a2k, Trs1) + Digr,r + Digm1 + a(zh1,Tk)

1€kgr
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( Dyk—1 + a(zik_1,2x) + dCkj(zk) + (e, Tk)
+a(xe, 2k41) + Cri(zrt1) + &(Th+1, Tht2) + Dicto,ry
Dy,k—1 + azk-1,zk) + dCjt(zk) + azk, T 41) + Ct(PFrs1,r),
alze,zk+1) + Ckt(Zr+1) + 2(Zha1, Thr2) + Do
+Dy k-1 + a(Tg-1,2x) + CT(zk),
JL3(vp) = lmkin ¢ dCT(PF k) +dCT(PFry1,r) + &z, Tht1), >
Sk<r | dACT(PF &) + ez, Tk 41) + dACT(PFiyr 0),
UDT(PFy k) + dCT(PFiq1,r) + &k, Trg1)s
dACT(PF\ k) + UDT(PFi41,r) + &(zk, T41)s
CT(PFyk) + Disa,r + a(Zks1,Tke2) + ACT(zk41),
\ CT(zk) + a(zk—1,%x) + D1,k-1 + ACT(PFiy1,r) )
dCji(vp) = min{JL1(vF), JL2(vr), JL3(vF)}
Dy k-1 + zp—1,zx) + dCj1(z) + a{zk, Tk 41) + Chj (PFqr,r)y
KJ(vr) = L in dCT(PF, ) + o(zk, Tk41) + Digr,r — Cji(zr) + CT(zr),
<"\ CT(zx) + alzk-1,2k) + Dy,k—1 + UT(PFiy1,0)
KJI (‘UF), ( ) (
. o Dy -1 + a(zr-1,zr) + dCrj(zr) + alzc, T7),
dChj(vp) =min ) b""\ + a(zr1,zr) + CT(zr),
UDT(PFy.r-1) + a(r-1,2r) + CT(x+)
Cii(PFy k-1) + alzk—1,Zk) + dCj1(xk) + Tk, Thet1) + Diya,rs
KL1(vr) = min dACT(PFx ;) + alzk-1,7k) + D1x—1 — Cji(z1) + ACT(z1),
Sh<r | ACT(zr) + alzk, 2k41) + Ditr,e + UT(PFy k1)

nor) dc, )+ D

. a(Te,T x1) + al{x], T K
dCia(vF) = min D(z,,- +1(3(:1,z:;(+141 CT((:::), 2 2
UDT(PF,,,) + a(z1,z2) + ACT(z1)

For a fan F which contains r — 1 vertices, the total time of the calculations of
PFy i and PFy, (1 < k < 7) is bounded by O(r). So is the time of computing
dCy;, dCii and dCj;. Thus, the complexity to shrink a fan in our algorithm to
search Min HP is also O(r).

The “Root” selection of the algorithm to search Min HP is: choose a vertex wy
which lies in C, let Root:=the centre of the fan containing w,. Suppose the final
wheel we get is H,,. Shrink the fan H,, — w, to the pseudo-vertex w,. See Fig. 5.

And the formula of “Cost” is
UT(wy) + ax, CT(w,) +aj, ACT(wv) + a1, }

dCrj(wy) + ok + aj, dCr(wy) +ak +at, dCj(wy)+ej + o

Cost := min

Similarly with the algorithm in Subsection 8.1, the total time of the extended
algorithm to search Min HP is O(|V}).

8.3. An example of extended algorithms. We present an example in the fol-
lowing. The vertex ! is chosen to be w,,.

The main procedures are shown in Fig. 8. And the values of the functions are
illustrated in Table. 2. Since dCji(q) + 1+ 1 = 24 gets minimum, the cost of Min
HP equals 24 and one solution is Min HP= u, p, m, e, d, ¢, b, a, {, k, v, g, n, f,
9, h, i, j, 0. Moreover, ACT(q) + 1 = 28 obtains minimum, one solution is Min
HH‘_‘ l; ka v, 0, §, %, h: g, fi n,q,pm,é€, d’ G b) a, b: u.
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FIGURE 8. Example of extended algorithms

TABLE 2. The values of the functions

Cikj | Cki [ Cji | CT | ACT | dCT | dACT | UT | UDT | dCi;j | dCxt | dCi
o 4 6 5 4 5 3 3 4 2 2 3
n 4 4 4 4 4 2 2 4 2 2 2 2
m| 6 6 6 6 6 4 4 6 4 4 4 4
u 6 6 10 6 6 5 5 6 1 1 1 5
v 7 8 6 6 6 [ 5 7 4 4 4 4
pl|l 18 |14 ] 14 ] 10 13 13 11 14 9 9 9 8
q | 32 | 31 j 33 | 28 27 22 29 31 26 22 26 22

9. CONCLUSIONS

NP-hard (NP-complete) problems probably are not NP-hard (NP-complete) in
Halin graphs. For example, the minimum TSP is solved in O(V), in [3]. Our al-
gorithm indicates that construction of optimal hamiltonian path (any of the three
versions) belongs to these problems. The bottleneck travelling salesman problem
was investigated in [8]. Our approach can be amended to search the bottleneck
of hamiltonian paths. We believe that the approach is applicable to more hard
problems in Halin graphs. And it might work in special cases of TSP [2]. However,
not all NP-hard (NP-complete) problems can be solved in polynomial time in Halin
graphs. The problem of isomorphism with respect to subgraphs and supergraphs,
which is NP-complete in general graphs, is also NP-complete in Halin graphs. It is
proved in [5).

254



Acknowledgement. The authors thank the anonymous referee for the careful
reading and valuable comments.

REFERENCES

(1] J. A. Bondy, U. S. R. Murty, Graph theory with application. Macmillan, London, 1976.

[2] R. Burkard, V. G. Deineko, R. Van Dal, J. A. A. Ven Der Veen and G. J. Woeginger, Well-
solvable special cases of the TSP:A survey. SIAM Review 40(1998) 496-546.

[3] G. Cornuejols, D. Naddef and W.R. Pulleyblank, Halin graphs and the traveling salesman
problem. Mathematical Programming 26(1983) 287-294.

[4] G. Cornuejols, D. Naddef and W.R. Pulleyblank, The traveling salesman in graphs with 3-edge
cutsets. Jounal of the ACM 32(1985) 383-410.

[5) S. B. Horton, R. G. Parker, On Halin subgraphs and supergraphs. Discrete Applied Mathe-
matics 56(1995) 19-35.

[6] D. J. Lou, Q. L. Yu, Hamiltonian paths in Halin graphs. Chinese Mathematica Applicata
8(1995) 158-160.

[7] J. Monnot, Approximation algorithms for the maximum hamiltonian path problem with spec-
ified endpoint(s). European Journal of Opearational Research 161(2005) 721-735.

[8) J. M. Phillips, A. P. Punnen, S. N. Kabadi, A linear time algorithm for the bottleneck travelling
salesman problem on a Halin graph. Information Processing Letters 67(1998) 105-110.

255



