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Abstract

In this paper, an algorithm for constructing self-centered graphs
from trees and two more algorithms for constructing self-centered
graphs from a given connected graph G, by adding edges are
discussed. Motivated by this, a new graph theoretic parameter
sc(G), the minimum number of edges added to form a self-
centered graph from G is defined. Bounds for this parameter are
obtained and exact value of this parameter for several classes of
graphs are also obtained.

1. Introduction

We consider only finite undirected graphs without loops and multiple edges. Let
V(G) and E(G) denote the node set and edge set of G respectively. Let G be a
connected graph with p nodes and q edges. The definitions and details not
furnished here may be found in Buckley and Harary [2].

A subgraph of G is a graph having all of its nodes and edges in G. It is
a spanning subgraph if it contains all the nodes of G. If H is a subgraph of G,
then G is a super graph of H. A graph is acyclic if it has no cycles. A free is a
connected acyclic graph. A spanning subgraph of G, which is a tree, is called a
spanning tree of G.

Let G be a connected graph and v be a node of G. The eccentricity e(v)
of v is the distance to a node farthest from v. Thus, e(v) = max {d(u, v) :ul Vi.
The radius r(G) is the minimum eccentricity of the nodes, whereas the diameter
diam(G) is the maximum eccentricity. For any connected graph G, r(G) <
diam(G) < 2r(G). v is a central node if e(v) = 1(G). The center C(G) is the set of
all central nodes. The central subgraph < C(G) > of a graph G is the subgraph
induced by the center. v is a peripheral node if e(v) = diam(G). The periphery
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P(G) is the set of all such nodes. For a node v, each node at distance e(v) from v
is an eccentric node of v.

The set E; denote the set of nodes of G with eccentricity k. If |E,| = ¢,
the cardinality of Ey, thenc, _ 1 and¢;> 1 fori=r+l,r+2, ...,d.

Theorem 1.1 The center of a tree consists of either a single node or a pair of
adjacent nodes.

A tree with one central node is called a central (or uni-central) ree and -
one with two central nodes is called bi-central. A graph is self-centered if every
node is in the center. Thus, in a self-centered graph G all nodes have the same
eccentricity, so r(G) = diam(G).

Buckley determined the extremal sizes of a connected self-centered
graph having p nodes and radius r.
Theorem 1.2 (Buckley) [4] Let p _ 5 and p _ 2r >2. Then there exists a self-
centered connected (p, q) graph with radius r if and only if (pr—2r—1)/(r—-1) <
q < (p*—4pr+Sp+4r°—6r)/2. If p = 2r = 4, then q must be 4, where X denotes
the smallest integer not less than x.

Schoone et.al [7] have proved the following theorem.

Theorem 1.3 (Schoone) For any connected graph G with diameter d, the
removal of n edges will result in graph G with maximum diameter f(n, d) given
by f(n, d) < (n+1)d.

Using Buckley [4] and Schoone [7], T.N. Janakiraman [6] has proved
that the +ve roots D of the equation 0 < 4D*-D*(4p+6)+D(p +5p-2q+2)-2d and
(pD-2D-1)/(D-1) < q+n < ()(p°~4pD+5p+4D>~6D) gives the bounds for n for
known values of p, q and d for a given graph G, where n is the minimum
number of edges added to G to form G’, a self-centered graph with diameter D.

Li Hao and Lai Zaikand proved:

Theorem 1.4 [8] Let G be a self-centered graph with diameter d and [V(G)| _ 3.
For any pair of nodes u and v such that d(u, v) = d, every minimum path
between u and v is contained in a cycle with length not less than 2d.

A spanning tree T, which has the same radius as G, is called a radius
preserving spanning tree. For any connected graph G, it is easy to generate a
spanning tree T of G for which the distances from a fixed node v are preserved.
One simply uses the well-known ‘Breadth-first search’ (BFS) algorithm with
root v. This algorithm begins at a node v and branches out to its neighbors u,
including the edges uv in the tree. Next, edges joining those nodes at distance
one from v with nodes at distance two from v are included so as not to form any
cycle. This process continues until a spanning tree is formed. If one begins at a
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central node, the spanning tree T will have the same radius as G. So, it is a
radius preserving spanning tree.

Definitions of some graphs, which are used in section 3 are given here.

Triangular cactus is a connected graph all of whose blocks are
triangles. A triangular snake is a tiangular cactus whose block cut node graph is
a path.

The Helm H, is the graph obtained from a wheel by attaching a pendant
edge at each node of the n cycle. Closed helm is the graph obtained from a helm
by joining each pendant node to form a cycle. 4 flower is a graph obtained from
a helm by joining each pendant node to the central node of the helm.

Olive tree G is a rooted tree consisting of k branches, where the i
branch is a path of length i. P-star is a graph obtained by joining p-disjoint paths
of length k to a single node. Firecracker is a graph obtained from the
concatenation of stars by linking one leaf from each.

A banana tree is a graph obtained by connecting a node v to one leat of each of
any number of stars (v is not in any of the stars).

Form _3 and k _ I, where m and k are integers, L(m, k) is the lollipop
graph of order (and size) n = m+k, obtained from a cycle C,, by attaching a path
of length Kk to a node of the cycle. Form, n _ 3 and k _ 1, dumb bell graph D(m,
n, k) is a graph of order p = m+n+(k-1) and size q = n+1 obtained from L(m, k)
by attaching a cycle of length n to the end node of L(m, k). A daisy withm _ 2
petals is a connected graph with one node of degree 2m and all other nodes of
degree two.

2. Forming self-centered graphs by adding edges
2.1 Forming self-centered graphs from a given tree

Algorithm I: Let T be a tree on p nodes with radius r and diameter d. Then d =
2r or 2r-1. Since T is a tree, eccentric nodes of nodes of T are its peripheral
nodes only. From T form a new graph T' = SG(T), super graph of T, with the
same node set as follows. Label the nodes of T as vy, va, ..., v,,.

Step 1: Check whether all the pendant nodes are peripheral. If all are peripheral,
go to step 1.1. Otherwise, go to step 2.

Stepl1.1: Consider all the pendant nodes of T. Join all those pendant nodes,
which are at distance d to each other.

Step 2: Some of the pendant nodes are not peripheral. Let X be one such node.
Lete(x)=k.
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Step 2.1: Consider, S = {v;|_ V(G): e(v;) = k+1 and d(x, v;) is minimum}. Let y
=v; such that v;|. S with i minimum. (This is always possible in T). Join X to y.
Step 2.2: Do this repeatedly for every non-peripheral pendant nodes of T.
Step 2.3: Join all peripheral nodes, which are at distance d to each other.
Name the new graph as T' = SG(T).
T) is self: red with diameter r. That is to prove the eccentricity

of every node in SG(T) is 1.

In SG(T), edges are added in such a way that x, y L V(T) at distance at
least r in T lies on cycles of length 2r 01 2r+1, which passes through the center
of T. Let v be a central node of T and V' be its eccentric node in T. Then dr(v,
v)=r. In SG(T) also, d(v, v') =r. Therefore, e(v)= rm SG(T).

Now, let x L V(T) such that er(x) > r. Let X' be an eccentric node of x in
T. Therefore, d(x, x') > rin T. Clearly, X' is a peripheral node of T, (since T is a
tree). Consider the shortest path P fromxtox' inT.P:x e vie va ¢ ... v ¢ v
= x!. This path must contain a central node v, of T. (If T is uni-central, P
contains one central node otherwise two adjacent central nodes). Hence d(x', vp)
=rin T. In SG(T), d(x', v;) =r and by our construction, X, v, and x' lie on an
induced cycle of length 2r or 2r+1. Hence, there exists y L V(SG(T)) such that
d(x, y) = rin SG(T). Also, in SG(T), distance between any two nodes is at most
I, since by our construction any two nodes of SG(T) lie on a cvcle of length at
most 2r or 2r+1. This proves that eccentricity of every node of SG(T) is r. That
is SG(T) is self-centered of diameterr.

Remark 2.1 Let P be the set of all peripheral nodes of T at distance d to each
other. In the resulting graph SG(T), <P > is a clique.

Remark 2.2 SG(T) is not uniquc Acc.oxding to the labelling of nodes of T,
SG(T) differs. In the examples, 2.1 and 2.2, SG(T) and SG(T)’ are two difterent
super self-centered graphs of T.

Example 2.1

T SG(T)‘- ....................... 4
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Remark 2.3 For a connected graph G, SG(Ty) [ G may be self-centered with
diameter r or bi-eccentric with diameter r, where T, denotes a radius preserving
spanning tree of G, rooted at u. C(G).

Example 2.2

T

SG(TY

Theorem 2.1 Let G be a graph with radius r and diameter d. Let T be a radius
preserving spanning tree of G with root node v, where v L C(G) (T is obtained
from Breadth first search). Then H = SG(T) [ G is self-centered with radius r if
and only if for x L Ni(v) in G, there exists a node x' in Ni'(v) in G such that
dg(x, xH _rin G, where k+k' = r or r+1. This is true for every x L V(G) with
e(x)>r.

Proof: Let T be a radius preserving spanning tree of G with root node v,
obtained by using BFS. Clearly SG(T) is self-centered with radius r.

Case 1: Suppose T is a bi-central tree. In this case, diam(T) = 2r-1 and in
SG(T), the eccentric node of x L Ni(v) lies in Ni'(v), where k+k' =r.

Case 2: T is a uni-central tree. In this case, diam (T) = 2r and in SG(T), the
eccentric node of x | Ny(v) lies in Ni'(v), where k+k' = r or r+1. Therefore,
eccentricity of x in H is r if and only if there exists x' L Ni!(v) such that dg(x, x")
_ 1 (suppose dg(x, x') <rin G for all x! in Ni'(v), then in H, eccentricity of X is
less than r, which is a contradiction). Hence, H is self-centered with diameter r if
and only if for x L Ni(v) there exists a node x' in Ny (v) with dg(x, x') _ I

Corollary 2.1a If for every node x L V(G), there exists x' L V(G) such that dg(x,
x') = r and there is a shortest path from x to x' passing through v, then H is self-
centered with diameter r.

Corollary 2.1b If the root node v is such that it lies in some eccentric path of X,
for all x| V(G), then H is self-centered with radius r.
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Corollary 2.1c If every node of G, lies in some diametral path joining some
peripheral nodes and v is also in that diametral path, then H is self-centered with
diameter r.

Theorem 2.2 Let G be a uni-central graph with v as center. H = sG(M I G,
where T is a radius preserving spanning tree obtained from BFS, having v as
root. Then H is self-centered with diameterr.

Proof: Clearly, in H, e(v) =r. Now, consider any element v; in Nj(v) in G.

(i) Suppose dg(vy, X) € r—1 for all x in N,_;(v). Then d(v;, y) <rforally L v(G).
Hence, eg(v)) =r, which is a contradiction to G is uni-central.

(ii) Suppose da(v, N) < r for all x in N(v). Then again d(v,, y) <1, for all y L
V(G). Hence, eg(v)) = r, which is again a contradiction. Therefore, for v, L
Ni(v), there exists some element X in N._;(v) or N(v) such that dg(v,, x) _ 1.
Now, consider val Na(v). Suppose dg(va, X) <1, for all X in N_a(v) or N_;(v).
Then eg(v2) = r, which is again a contradiction. Therefore, there exists at least
one X in Np_2(v) or N,_;(v) such that dg(v2, N) _r. This implies that d(v2, X) = rin
H. Hence, ey(vs) = r. Similarly, one can prove that eccentricity of every element
of H is . Therefore, H is selt-centered with diameter r.

Theorem 2.3 Let G be a bi-central graph with u, v L V(G) as central nodes such
that u and v are adjacent in G. Then H = SG(T,) [ G and SG(T\.)r G are self-
centered with diameterr. (T, and T, are obtained from BFS).

Proof: G is bi-central. Let u, v C(G) such that u and v are adjacent in G. As in
the previous theorem, one can prove this theorem.

Example 2.3

G
Here, SG(T,) [ G is not self-centered with diameter four. SG(T,) [ G is not self-
centered with diameter 4, it is bi-eccentric with diameter 4.

Example 2.4
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G Tu Tv

Here u and v are not adjacent. H = SG(Ty) [ G is self-centered with diameter 4.
SG(T,) [ G is bi-eccentric with diameter 4.

Problem: Whether Converse of the above theorem 2.3 is true ?. That is, if
SG(T,) [ Gand SG(T‘.)[- G are self-centered with radius r = r(G), where uand v
are the only central nodes of G, then u and v are adjacent in G.

Remark 2.4 When |C(G)| > 2 or |C(G)] =2 and u, v are not adjacent, there may
not exist H, which is self-centered of diameter d. Therefore, for a given graph G,
there may exist no self-centered graph, having a central node as root node using
this algorithm I. So, it is necessary to modify the algorithm for a graph G, which
is not a tree. (Since algorithm I always gives a self-centered graph with radius r,
when G is a tree).

2.2 Forming radius preserving spanning trees of G using BFS:

Let G be a connected (p, q) graph with radius r and diameter d.

If d = 2r, consider, a diametral path passing through a central node u. If
d < 2r, consider a path joining two peripheral nodes (at distance d) and passing
through some central nodes. If the length of the path is 2r, it must have at least
one central node of G. Consider that node as root node. If the length of the path
is 2r—1, consider those path containing two central nodes and take any one as
root node. Let u L V(G) be such a root node of G. Consider a spanning tree
rooted at u as follows:

Begin at u, find its neighbor and then their neighbors and so on, until
the whole graph G is spanned with the condition that if x| Niu), i=1,2, .., r~
1, then x may be pendant in T, or it must have some adjacent nodes with
eccentricity _ eg(x) in N;,;(u) or some adjacent central nodes in Ni, (u). ----- L

T, 1s a spanning tree under BFS with the above condition. If’ T, exists,
clearly T, is radius preserving.
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Remark 2.5 For a given u, there may not exist such a spanning tree. In this case,
take another central node v, adjacent to u (in the path) as root node.

Example 2.5

In G, take u as a root, a spanning
tree satisfying condition I does not
exist. But, if v (or w) is taken as
root, spanning tree satisfying
condition | exists and is radius
preserving.

2.3 Forming sclfcentered graphs from a given graph
Algorithm II

Let G be a graph with diameter d and radius r, where d < 2r. Let vy, v», ..., v,,l_
V(G).
Step 1: Form a spanning tree using BFS with the condition I as in 2.2, Formin
radius preserving spanning trees of G using BFS, with u as a root, where uf
C(G). Denote this by T,. T, is clearly radius preserving.
Step 2: Consider all the pendant nodes of T, such that they are not peripheral in
G. Let v be such a pendant node.
Step 2.1: If vl C(G), then leave it as such.
Step 2.2: v is not in C(G):

Let eg(v) =k > r. Consider a central node in G, which is nearer to v in
G. Let it be v,,. Consider a peripheral node of T, nearer to v in G. Let it be . Let
z be an eccentric node of y in G. Consider all paths passing through v, from y to
z in G. Among them consider a shortest path P.
Consider S = {vil_ V(P) : es(v;) = eg(v) or eg(v)+1, v;is not a predecessor of v in
T.}. Joining v to v;, there exists another path P (passing through v, v,, vy and z)
joining ¥ and z in T,. P, may be same as P. Let W = {v; | S : the new path P, is
of length equal to that of P and d(v, v;) is minimum}. Let x = v;L W with i
minimum. Join v to x.
Step 3: Consider all the pendant nodes of T, such that they are in P(G). Let v be
one such node.
Step 3.1: v is not peripheral in T,

es(v) =d and er(v) < diam(T,).
Let S = {v;L V(G) : ex(vy) = ex(v)+] > eq(v) and eg(v) = eg(vy) = d with dg(v, v})
minimum}. Join v to that x, where x = v;L S with i minimum.
Step 3.2: v is peripheral in T, that is ex(v) = diam(T,,)
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Join this v to all those X, which are pendant in T, such that eg(x)=d and dg(v,
X)=d or dg(v, x) =diam(T,)

Name the resultant graph obtained as T,”. Define SG(G) = T.'[ G.
Claim: SG,(G) is self-centered with radius r.
By our construction, for any node there exists another node such that they lie on
a cycle of length 2r or 2r+]. (Since length of the path passing through the central
node v, ¥, z and v must be of length 2r or 2r-1). Also, any two nodes of $SG,(G)
lie on a cycle of length at most 2r+1. Hence, eccentricity of each node in SG,(G)
IsT.

This proves that SG,(G) is self-centered with radiusr.

Remark 2.6 Some edges may be repeated in the construction.

Remark 2.7 If the condition on BFS is not given, then for some nodes,
eccentricity in the constructed graph may be greater than .

Example 2.6

G T,

Here, eccentricity of w in H is 4. Hence H is not self-centered. H is bi-eccentric
with diameter 4. But if T, is taken as below, satisfying condition I on B.F.S.,
then SG,(G) is self-centered with diameter 3.

Ta SG(G) T
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Remark 2.8 For central nodes u and v, SG,(G) and SG.(G) need not be
isomorphic.

Example 2.7
u jll
Q T, SGW(Gy """ -
G
u u
'_T‘-QL—‘ SG(G) ~T=m==- TN (S it

Here, SG,(G) and SG.(G)’ are two different self-centered graphs of G (they
differ according to the labellings).

2.4 Forming sclf-centered graphs from a given graph
Algorithm III

Let G be a graph with radius r and diameter d = 2r. Label the nodes of G by vy,
Va, ..., Vp.
Step 1: Let u be a central node of G. Form T, as in 2.2.
Step2: Consider all the pendant nodes of T, such that they are not peripheral in
G. Let v be such a pendant node.
Step 2.1: If v is a central node of G, that is v C(G), then leave it as such.
Step 2.2: vis not in C(G).

Let eg(v) = k > r. Consider a central node in G, which is nearer to v in
G. Let it be v,. Consider a peripheral node nearer to vin G. Let it be y. Let z be
an eccentric node of y in G. Consider all paths passing through v, from y to z in
G. Among them, consider the shortest path P. Consider S = {v; | V(P) : eg(vy) =
eg(v)+1, v;is not a predecessor of v in T,}.
Joining v to v;, there exists another path P, (passing through v, v,, y and 2)
joining y and z.

Let W= {v;| S: the new path P, is of length 2r in G}.
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Let x = v; L W with i minimum. Join v to x.
Step 3: Consider all pendant nodes of T, such that they are in P(G). Let v be one
such node.
Step 3.1: eg(v) = 2r and er(v) = 2r. Join this v to all those x which are pendant
in T, such that eg(x) = d or d—1 and dg(v, x) =d or d-1.

Name the resultant graph obtained as T,”. Define SG(G) =T, TG
Claim: SG(G) is self-centered with radius r.
By our construction, for any node there exists another node such that they lie on
a cycle of length 2r or 2r+1. (Since length of the path passing through the central
node v,, y, z and v must be of length 2r). Also, any two nodes of SG,(G) lieon a
cycle of length at most 2r+1. Hence, eccentricity of each node in SG(G) is r.

This proves that SG(G) is self-centered with radius r.

Remark 2.9 (1) T, is a spanning tree obtained from G by using BFS, satisfving
condition I in 2.2. (2) If v is not joined to nodes x of eccentricity d—1 such that
dg(v, X) =d-1, x is pendant in T,, then the new graph constructed need not be
self-centered with diameter r.

Example 2.8

I ooy S
I teevesmpereent SO o iz ~.
P f‘.a o ", o o v,

G H SGW(G)
SG.(G) is self-centered with diameter two. H is not self-centered.

Remark 2.10 If' the length of P, is greater than P, then the newly constructed
graph need not be self-centered with diameter r.

Example 2.9

Vi3
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v; is pendant, dg(vs, v;) = 2 and dg(vs,
v7) = 3, ea(vs) = 8, eg(v7) = 8, eg(ve) = 9.
But if v, is joined to vs and vy3 is joined
to vja, then the new graph is not self-
centered with diameter 5. But SG,(G) is
self-centered with diameter 3.

Example 2.10

" e °

G T

Here, G is uni-central and there is no
diametral path passing through the
center. SG(G) is self-centered of
diameter three.

3. Center number of a graph

From section two, it is obvious that by adding some more edges to a given graph
G with radius r and diameter d, one can get a self-centered super graph with the
same radius r. This motivates to study the minimum number of edges to be
added to G to get a self-centered graph of diameter r.

Detine sc,(G) (or sc(G)) be the minimum number of edges added to G
to form a self-centered graph. If G is not self-centered, sc,(G) _ 1. In [6], bounds
were obtained to form a self-centered graph with diameter D from a given (p, q)
graph with radius r and diameter d. If G is a (p, q) graph with diameter d and n is
the minimum number of edges added to get a self-centered graph with diameter
D, then n _ ((p—q-2)d-1)/(d+1).
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Bound for sc(G):

Let G'(p, q") be a graph obtained from G by adding minimum number
of edges such that G’ is self-centered with diameter r. By Buckley’s theorem
[Theoreml.2], (pr-2r-1Y/(—1) < q'< (p3—4pr+5p+4r2—6r)/2, q" = qt+sc(G).
Therefore, (pr—2r—1)/(—1) —q £ sc(G) < (p3—4pr+5p+4r:—6r)/2—q. Also,
sc(G) _ 1, when G is not self-centered. Thus, 1 £ s¢,(G) < (p:—-4pr+5p+4r:-
6r)/2—q.

Now, let us proceed to find the exact values of sc(G) for several graphs G.

Theorem 3.1 sc,(P,) = | for all n.

Proof: Let P, be the path on n nodes, that is length of P, = n—1. By joining the
end nodes of P, it can be seen that the new graph is a cycle, which is self-
centered of the same radius. Therefore, sc(P,) = 1. This proves the proposition.

Theorem 3.2 If G is a graph with radius one, then sc(G) = (p(p—1)/2)—q.
Proof: Since G is a graph with radius one, G’ is nothing but K,. Therefore,

se(G) = (p(p-1)/2)-q.
Corollary 3.2 (1) sc{K, ,) = n(n=1)/2. (2) sc(W,) = n(n-3)/2.

Theorem 3.3 (1) If G = K,+K,+K,+ K, with m+n pendant nodes, then sc(G) =
m+n—1. _

@G = KoK #K#K 1+ K, then sc(G) = m+n-—1.
Proof of (1): Let u, v[ V(G) such that deg u = m+1 and deg v = n+1. By joining
each pendant node adjacent to u with each pendant node adjacent to v, a two
self-centered graph can be obtained. Thus, sc(G) < mn.

Join any two peripheral nodes. Therefore, remaining pendant nodes are
m+n—-2. Now, join a pendant node adjacent to u to v and vice versa. So, m+n-2
edges are needed. The resultant graph is self-centered. Thus, s¢,(G) £ min {mn,
m+n-1} = m+n-1. Actually, sc(G) =m+n—1.

Proof of (2): Similar to proof of (1).

Theorem 34 1f G = l_(m+E,+...+K|+, K., where k > 3, then sc,(G)=max im, n}.
{ liYnes
Proof: Let G = K, +K,+..+K,+ K,. Then diam(G) = (k—1)+2 = k+1, and radius
of G = {(k+1)/2 if k is odd, (k/2)+1 it k is even}. G has m+n pendant nodes such
that each of these pendant nodes is peripheral. Let m _ n. Let u, v [ V(G) such
that deg u = m+1 and deg v = n+1. Join each pendant node adjacent to u to a
pendant node (only-one) adjacent to v in such a way that there are no other
pendant nodes. Thus m = max {m, n} edges are added. In the resultant graph,
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every node lies on a cycle of length k+2 or 6. Also, for any node u, there exists v
such that u and v lie on a cycle of length k+2 only. Therefore, the resultant graph
is self-centered with radius (k+2)/2 or (k+1)/2 and if at least one edge is
removed from the added edges, then there is a pendant node and hence it is not
self-centered. Thus, sc,(G) = max {m, n}.

Theorem 3.5 sc,(P,")=(n-1forn=3,4,5.

4forn=6.

(n+1)/2ifnisoddandn _7.

n/2if n _ 8 and is even.
Proof: It can be directly verified that sc(P,") = n—1 forn =3, 4, 5 and sc(P,") =
4forn=6.
Considern _7.
Case 1: nis even.
Let vy, Va, ..., Vi, V41, ..., Vo be the nodes of P, where n = 2k. In P, let v, be
adjacent to vy, ..., va” be adjacent to v Now, join v;” to vy, Vi1’ 10 Va2, ...,
va' 10 vy’ and vy’ to va’. Radius of P,' = n/2+1 = (2k+2)/2 = k+1. In the
resultant graph radius is k+1 and diameter is k+1. That is, it is self-centered with .
diameter k+1. Also, the number of edges added = n/2, and is minimum, since
removal of any one edge gives a pendant node. Hence, sc(P,") =n/2il n _ 7
and is even.
Case 2: nisodd.
Let vy, v, ..., Va be the nodes of Py, n = 2k+1. In P,", let v’ be adjacent to v,
. Var41” be adjacent to Vo). Now join v to viep; vi' 1o vas iy’ 1o vag 7, vi o’
10 Va2, ..., V2 10 Vius' and vy’ to vayy”. Radius of P,' is (n+1)/2 = k+1, and the
resultant graph is self-centered with radius k+1. The number of edges added is
minimum since there are n = 2k+1 pendant nodes. Therefore, sc(P,") = (n+1)/2
if n _7 and is odd. This proves the theorem.

Theorem 3.6 sc(C,") = n—1 for all n.
Proof: G =C,". Radius of G = [ (n/2)+1 if n is even.
(n+1)2if nis odd.
Diameter of G =] (n/2)+2 if n is even.
(n+1)/2+1 if n is odd.

Therefore, G is bi-eccentric. Consider a spanning tree T (radius preserving) of
C»". (Removing exactly one edge from C,). It contains exactly n pendant nodes.
Actually it is P,". (Here, the procedure in the previous theorem cannot apply. If
the resultant graph obtained from P," is G’, then G’[ E(G) is not self-centered.
Actually the radius of the new graph decreases).

Using algorithm [ a self-centered graph can be formed from T. T
contains exactly n pendant nodes. Among them exactly two of them are
peripheral nodes. Thus, (n-2)+1 edges could be added to get a self-centered
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graph from T. Let it be T”. T'[ G = G’ is a super self-centered graph of G.
Therefore, s¢,(C,,") < n—1 for all n.

If one leaves any edge or joins any two pendant nodes of G in some
other manner, then either eccentricity of some node decreases below the radius
of G or increases from the radius of G. Hence, sc(C,") = n—1 for all n.

Theorem 3.7 If T is a tree with p nodes and radius r, then s¢,(T) _ (p—r=2)/(—1).
Proof: T is a tree. Hence, it has p—1 edges. By Buckley’s theorem,
(pr=2r-1)/(r-1) £ q' £ (p2—4pr+5p+4r3—6r)/2, where q’ is the minimum
number of edges in a self-centered graph obtained from T having radius r. q' =
p—1+sc(T). Thus,
(pr=2r—=1)/(—1) < sc(G)Hp-1)< ((p2—4pr+5p+4r:—6r)/2).
That is, (pr-2r—1)/(—1) —(p—1) < sc(G) € ((p2—4pr+5p+4r3—6r)/2)—(p—l).
That is, (p—1—2)/(t—1) < sc(T) < ((p™—4pr+5p+4r—6r-2p+2)/2).
Therefore, sc(T) _ (p—r=2)/(r-1).

Theorem 3.8 If T is a tree with 1(T) _ 3, [Eq.1] = 2 and [P(T)| = m+n, then sc(G)
=max {m, n} + number of pendant nodes, which are not peripheral.

Proof: Let t = number of pendant nodes, which are not peripheral. Let X be a
pendant node such that e(x) = k <r. Join X to y such that e(v) = k+1 with d(x, y)
minimum. Repeat this for these t nodes. Hence, t edges are needed for this.
Now, consider the peripheral nodes. Let Eq; = {u, v}. Let m peripheral nodes
NI, N2 ...r Nm are adjacent to u and others, namely v, va, ..., y, are adjacent to v in
T. Let m _ n. Join Xj 10 ¥}, X2 10 ¥a, ..., Xp 0 Y,. Join the remaining xi’s to y;.
Thus, max {m, n} edges are needed for this. Since r(T) _ 3, the resultant graph is
self-centered with diameter r. Hence, sc(T) € max {m, n}+. Bul, by the
construction, max 4{m, n}+t is the minimum number of edges added to form a
super self-centered graph of T. This proves the theorem.

Example 3.1
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Theorem 3.9 For a tree T, if s is the number of pendant nodes and |P(T)|=2, then
se(T)=s-1.

Proof: Only one edge is needed to join the peripheral nodes and s—2 edges are
needed to join the other pendant nodes and these are the minimum number of
edges needed to form the required self-centered graph. Hence, sc,(T) = s~1.

Remark 3.1 For some trees, sc(T) < s—1 and for others sc(T) > s—1.

Theorem 3.10 For a tree T, if s is the number of pendant nodes and t is the
number of peripheral nodes, then s¢,(T) £ (s—0)+C(t, 2).

Proof: At most C(t, 2) edges are needed to join the peripheral nodes at distarice
d to each to other. Hence, sc(T) < (s—t)+C(t, 2).

Theorem 3.11 If G is a triangular snake t,,, then s¢,(G) =n if n is even, n+1 if n
is odd.

Proof: Triangular cactus is a connected graph all of whose blocks are triangles.
A triangular snake is a triangular cactus whose block cut node graph is a path. A
triangular snake is obtained from a path vy, va, ..., v, by joining v; and v;.; to a
new node w; fori =1, 2, ..., n—1. Clearly, every triangular snake has exactly four
peripheral nodes. For a peripheral node u, there are exactly two eccentric nodes,
and is easy to see that when n is even, s¢(G) = 4+(n—4) = n and when n is odd,
5¢,(G) = 4+(n-3) = n+1.

Theorem 3.12 It G is a p-star, sc(G) = C(p, 2).

Proof: P-star is a graph obtained by joining p-disjoint paths of length k to a
single node. Thus, p-star is a tree of radius k with exactly one central node and p
pendant nodes, which are also peripheral nodes at distance 2k. Thus, clearly
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C(p, 2) edges are needed to find a self-centered super graph. Thus, sc(G) = C(p,

2).

Theorem 3.13 For a grid P, & P, sc(G) = 2.

Proof: Let G = P,, «&» P,. Exactly two edges are needed to torm a super self-
centered graph (joining the peripheral nodes at distance d = m+n to each other).
Hence, sc(G) = 2.

Theorem 3.14 (1.) If G is the helm H,, then sc{G) = n(n-3)/2 forn> 4.
(2.) If G is the closed helm, then sc,(G) = n(n-3)/2.
(3.) If G is a flower, then sc,(G) = n(2n-3).
Proof: (1) The Helm H, is the graph obtained from a wheel by attaching a
pendant edge at each node of the n cycle. Hy is of radius two and diameter four
and has only one center and n peripheral nodes. Only the peripheral nodes are
the pendant nodes. When n = 3, it can be easily seen that sc(G) = 2 and when n
= 4, sc¢(G) = 3. Now, assume that n > 4. Let vy, v, ..., v, form the circle in H,,
and vy’, vo/, ..., v, be the corresponding pendant nodes. Join v/’ to v;’, where k _
i-lori+lforalli=2,3, .., n-1. Joinv," to v\, where k _ 2, n. Join v, to v;/",
where k _ 1 and n—1. The new graph obtained is self-centered with diameter
two. Hence, sc(G) < n(n—3)/2. If one remove, any edge from the new edges
added or if add edges in some other manner, a self-centered graph of diameter
two with minimum edges cannot be obtained. Hence,
sc{G) £n(n-3)2ifn_4.
(2) Closed helm is the graph obtained from a helm by joining each pendant node
to form a cycle. Thus, s¢(G) =n(n-3)/2 as in (1).
(3) A flower is a graph oblained from a helm by joining each pendant node to
the central node of the helm. Radius of a flower is one. Hence the theorem
follows from Theorem 3.2.

Theorem 3.15 If G is an olive tree with k branches, then sc(G) = k-1.

Proof: G is a rooted tree consisting of k branches, where the i branch is a path
of length i. Hence, G is a bi-central tree with radius k and diameter 2k—1. Thus,
by algorithm 1, super self-centered graph can be formed and since G has exactly
two peripheral nodes, the number of edges added is minimum. Hence, sc(G) =
k-1. ‘

Theorem 3.16 (1) If G is a fire cracker having k branches and k)+ko+...+ki
pendant edges, then sc(G) < (k—1) (kj+kat+..+k,). (2) If G is a banana tree
having k;+ka+k;+...+k; pendant edges then sc(G) < Ymax {k;, k;}, where i, j =
L2,.,k

Proof of (1): Firecracker is a graph obtained from the concatenation of stars by
linking one leaf from each. It is a uni-central tree with radius two and diameter
four. Suppose there are k branches. Assume that the branches have, ky, k, ..., ki
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pendant edges respectively. Let uy, ua, ..., ux be the nodes with degrees k;+1,
ko+1, ..., ki+1 respectively. Then join the k; pendant nodes (adjacent to u;) to u,,
us, ..., Ui k2 pendant nodes (adjacent to us) to uy, us, ..., ux and so on. Thus a new
graph, which is self-centered of diameter two, is obtained. Thus, sc(G) < (k-
D(kytkatks+.. . +kp).
Proof of (2): A banana tree is a graph obtained by connecting a node v to one
leaf of each of any number of stars (v is not in any of the stars).

G is a uni-central tree with radius three and diameler six. Let uj, vs, ...,
u;, be the nodes with degrees k;+1, ka+l, ..., ke+1. Assume k; _ k.. Join each
pendant node adjacent to u, to any one (only one)-pendant node adjacent to us,
in such a way that there is no other pendant node adjacent to u; or u.. Thus, max
(ki, k») edges are added. Repeat this procedure to pendant nodes adjacent to u,
and uy; u; and uy; ... u; and ug. Similarly, repeat the procedure for the pendant
nodes adjacent to u> and uj;: u> and uy; ... u; and ug. The resultant graph obtained
is super self-centered graph ol G with diameter three.

Hence, sc(G) € max{k,, Ka}+max{k,, k3}+..+max{k;, ki}+max{k,,
Kip+max  {Kka, Ky} +..+maxike,, kb = Smax{k,, k;}+Emax{k,,
ki +...+Emanike, kif = Smax{k;, Kj).

Theorem 3.17 If G = L(m, k), the lollipop graph, then sc(G) = | or 2.

Proof: Form _ 3 and k _ 1, where m and k are integers, L(m, k) is the lollipop
graph of order (and size) n = m+k, obtained from a cycle C,, by attaching a path
of length k to a node of the cycle.

Case I: m is even.

When m is even, G has exactly two peripheral nodes and all other nodes lie on
some diametral path passing through the center. Hence, by joining the peripheral
nodes, a super self-centered graph can be obtained. Thus, sc,(G) = 1.

Case 2: m is odd.

Sub case 2.1: k is odd. When k is odd and m is odd, G has exactly two adjacent
central nodes and three peripheral nodes (two of them are adjacent). Also,
diam(G) = 2r(G)-1 and every node lie on some diametral path passing through
the center. Hence, by joining two peripheral nodes at distance diam(G) to cach
‘other, a super self-centered graph of G can be obtained. Hence, sc(G) = 1.

Sub Case 2.2: k is even. When Kk is even and m is odd, G has only one central
node and three peripheral nodes (two of them are adjacent). Also, diam(G) =
2r(G) and each node lie on some diametral path passing through the center.
Hence, joining the peripheral nodes at distance d to each other, a super self-
centered graph of G with diameter = r(G) can be obtained. Hence, sc,(G) = 2.

Theorem 3.18 If G = D(m, n, K), dumb bell graph, then sc(G)=1, 2 or 4.

Proof: Form,n _ 3 and k _ |, dumb bell graph D(m, n, k) is a graph of order p
= m+n+(k-1) and size q = n+1 obtained from L(m, k) by attaching a cycle of
length nto the end node of L(m, k): that is D(m, n, k) is obtained from C,, [c,
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by joining a node of C,, to a node of C, and subdividing this edge (k—1) times.
In G, p=m+n+(k—1) and q = m+n+k.

If m and n are even, diameter of G = m/2+n/2+k.

If m and n i1s odd, diameter of G = (m—1)/2+(n—1)/2+k.

If m is even and n is odd, diameter of G =m/2+(n—1)/2+k.

If m is odd and n is even, diameter of G = (m—1)/2+n/2+k.
and radius of G = diam(G). if diam(G) is even; diam(G)+1. if diam(G) i1s odd.
If both m. n are even, G has exactly two peripheral nodes and sc{G) = I as in the
previous theorem. (If k is odd, G has one central node. If k is even, G has two
central nodes). If both m and n are odd, G has two central nodes and four
peripheral nodes or one central node and four peripheral nodes. In the first case,
diam(G) = 2r(G)-1 and in the second case, diam(G) = 2r(G).
Theretore, when G has two central nodes, join one peripheral node u with a
peripheral node w at distance diam(G), and other peripheral node v adjacent to u
with a peripheral node N adjacent to w. The resultant graph is a super self-
centered graph of G with diameter = r(G). Hence, sc(G) = 2 if m and n are odd
and G has two central nodes. If G has onlv_one central node, diam(G) = 2r(G).
Hence, joining peripheral nodes at distance diam(G) to each other, a super self-
centered graph is obtained and hence s¢,(G) = 4. If m is even and n is odd, G has
three peripheral nodes and has one or two centers. In both cases, s¢(G) = 2. This
proves the theorem.

Theorem 3.19 It G is a daisy with m _ 2 petals, then sc(G) < 2m-2.

Proof: A daisy with m _ 2 petals is a connected graph with one node of degree
2m and all other nodes of degree two. That is, a daisy with m _ 2 petals is
constructed from m disjoint cycles by identitying a set of m nodes, one from
each cycle, into one node. In G, radius = max {r(Cy)} and diameter = max
{r(CHi(Cp}. Also, sc(G) < 2m=2. This proves the theorem.

Forming self-centered graphs with diameter less than r

Let G be a (p, q) graph with radius r and diameter d. Consider a central
node v, L V(G). By adding minimum number of edges, make the eccentricity of
vobe r—1. Let the resultant graph be G'. Radius of G' is r—1. Now, construct
SGvo(G'). SGv(G') is self-centered with radius r—1. Define 3¢;5(G) be the
minimum number of edges added to G to form a self-centered graph with
diameter s, where s <r. Bounds can be obtained for sc, ,(G).

Consider, k = min {|N;(v)]}. At most k edges are needed to construct
G'. Hence, the maximum number of edges needed to find a self-centered super
graph of diameter (r-1) can be found out. Similarly, bounds for sc,.(G) can be
found out fors <r.
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Conclusion: The important application of facility location in
networks is based on various types of graphical centrality. Self-centered graphs
are very much useful in communication networks. Also, addition of new links
(which doesn't exist in the system) reduces the cardinality of the dominating
sets. So, forming self-centered graphs by adding minimum number of edges will
be very much useful in facility location problems, domination problems and in
the field of central location theory in communication networks.

Maximum connectivity graphs play an important role in the design of
reliable networks. A reason for this is its relation to the reliability and
vulnerability of large-scale computer and telecommunication networks. When
designing a communication network, one not only wants to maximize the
connectivity and edge-connectivity, but also to minimize the diameter as well as
the number of edges. By minimizing the diameter, transmission times are kept
small and the possibility of distortion due to a weak signal is avoided.
Minimizing the number of edges will keep down the cost of building the
network. In general one cannot simultancously maximize _ and _ while
minimizing |E(G)| and diam(G). Hence, SG(G) will be very much usetul.
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