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Abstract

We view a lobster in this paper as below. A lobster with diameter
at least five has a unique path H = zo,z1,...,Zm with the property
that, besides the adjacencies in H, both z¢ and z,, are adjacent to the
centers of at least one K, , where s > 0, andeach z;, 1 £i<m-1,
is at most adjacent to the centers of some K, where s > 0. This
unique path H is called the central path of the lobster. We call K 5
an even branch if s is nonzero even, an odd branch if s is odd, and
a pendant branch if s = 0. In this paper we give graceful labelings
to some new classes of lobsters with diameter at least five. In these
lobsters the degree of each vertex z;, 0 <1 < m — 1, is even and the
degree of z,» may be odd or even, and we have one of the following
features.

1. For some t),t2,t3, 0 <) < t2 <tz3 < m,eachz;, 0<1<t,,
is attached to two types (odd and pendant), or all three types, of
branches; each z;, t;1 +1 < i < t2, is attached to all three types
of branches; each z;, t2 + 1 < i < ts, is attached to two types of
branches; and if 3 < m then each z;, {3 + 1 < i < m, is attached to
one type (odd or even) of branch.

2. For some ¢;,t2, 0 < t; < t2 < m, each x:, 0 < i < {,, is attached
to two types (odd and pendant), or all three types, of branches; each
z;, t1+1 < i < ty, is attached to two, or all three types of branches;
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and if t2 < m then each z;, t2 + 1 < i < m, is attached to one type
(odd or even) of branch.

3. Forsomet, 0 <t < m,eachz;, 0< 1<t is attached to all
three types of branches; and if ¢t < m theneachz;, t+1<i<m,is
attached to one type (odd or even) of branch.

Keywords: graceful labeling, lobster, odd and even branches, inverse
transformation, component moving transformation.

AMS classification: 05C78

1 Introduction

Recall that a graceful labeling of a tree T with ¢ edges is a bijection f :
V(T) - {0,1,2,...,q} such that {|f(u) - f(v)| : {u,v} is an edge of T} =
{1,2,...,4}. A tree which has a graceful labeling is called a graceful tree.
A lobster is a tree having a path from which every vertex has distance at
most two. It is easy to check that the following lemma holds.

Lemma 1.1 If L is a lobster with diameter at least five then there exists a
unique path H = zg,z,,Z2,...,Zm in L such that, besides the adjacencies
in H,

() zo and z,, are adjacent to the centers of at least one star K s where
s>1,

(it) each z;, 1 < i < m — 1, is at most adjacent to the centers of some
stars K, , where s > 0. 0

We call the path H in Lemma 1.1 the central path of L. Throughout the
paper we use H to denote the central path of a lobster with diameter at
least five. Take z; € V(H). If z; is adjacent to the center of some K ,
then K , will be called an even branch if s is non-zero even, an odd branch
if s is odd, and a pendant branch if s = 0. Therefore, according to Lemma
1.1, the branches incident on a vertex in the central path of a lobster can
be divided into three types, i.e. even, odd, and pendant defined as above.
Furthermore, whenever we say z;, for some 0 < i < m, is attached to an
even number of branches we mean a “non-zero” even number of branches
unless otherwise stated.
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In 1979, Bermond [1] conjectured that all lobsters are graceful. This
conjecture is a special case of the famous and unsolved “graceful tree con-
jecture” of Ringel and Kotzig (1964) [8], which states that all trees are
graceful. Bermond’s conjecture is also open and very few classes of lobsters
are known to be graceful. Ng [7], Wang et al. [9], Chen et al. [2], Morgan
[6] (see [3]), and Mishra and Panigrahi [5] have given graceful labeling to
some classes of lobsters. Figures 1, 2, and 3 show the graceful lobsters due
to Ng [7], Chen et al. [2], and Wang et al. [9], respectively. Morgan [6]
has proved that a lobster is graceful if it has a perfect matching. The lob-
sters appear in [5] and [9] have one common feature that the degree of each
z;, 0 < i< m-—1,is even. However, in the lobsters of [5], the degree of
T, may be odd or even and the branches incident on each z;, 0 < i < m,
need not be of the same type. In the lobsters of [5], the branches incident
on zp may be of the same type, any two types, or all three types, whereas
those incident on z;, 1 £ i < m, may be of the same type (odd or even),
or any two types in which the number of branches of each type is odd. The
lobsters of this paper share one common feature with those in (5] that the
degree of each z;, 0 < ¢ < m — 1, is even and the degree of z,,, may be odd
or even. In the lobsters of [5], at most the vertex zo is attached to a combi-
nation of all three types of branches, whereas in the lobsters of this paper,
not only the vertex zy but also some (or all) z;,1 < i < m, may exhibit
this property. None of the earlier papers covers any graceful lobster where
more than one vertices on the central path are attached to all three types
of branches. Moreover, in the lobsters of this paper if some z;, 1 < < m,
is attached to two different types of branches, then the number of branches
of both types may be odd or even.
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Figure 1: The graceful lobsters given by Ng [7].
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Figure 2: The graceful lobsters given by Chen et al. (2].
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Figure 3: The graceful lobsters given by Wanget al. 9( m > 1, A >
0, i= 0,1,2,...,m, and the circles enclosing the vertices adjacent to the
central path are either all odd or all even branches.)
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In this paper, as in [5], for a given lobster L we first form a diameter
four tree T'(L) by identifying all the vertices on the central path of L and
give a graceful labeling to T'(L) by using the technique of [4]. Let A be the
set of all the branches incident on the center of T'(L). In [5], the authors
applied component moving transformation on A to get a graceful labeling
of L, whereas here we partition A in an appropriate manner before applying
component moving transformation on it.

2 Preliminaries

In order to prove the results of this paper we need some definitions, termi-
nologies and existing results which are described in this section.

Lemma 2.1 [9], [4] If f is a graceful labeling of a tree T with n edges
then the inverse transformation of f, defined as f,(v) = n — f(v), for all
v € V(T), is also a graceful labeling of T'.

Definition 2.2 For an edge e = {u, v} of a tree T', we define »(T") as that
connected component of T — e which contains the vertex u. Here we say
u(T) is a component incident on the vertex v. If a and b are vertices of a
tree T, u(T) is a component incident on a, and b € u(T’), then deleting the
edge {a,u} from T and making b and u adjacent is called the component
moving transformation. Here we say the component u(T") has been moved
from a to b. Throughout the paper we write “the component »” instead of
writing “the component u(7T")”; whenever, we wish to refer to u as a vertex,
we write “the vertex u”. By the label of the component “u(T)” we mean
the label of the vertex u. Moreover, we shall not distinguish between a
vertex and its label.

Lemma 2.3 [4] Let f be a graceful labeling of a tree T'; let a and b be
two vertices of T'; and let u(T') and v(T") be two components incident on a,
where b € u(T") Uv(T). Then the following hold:

(@) if f(u)+ f(v) = f(a)+ f(b) then the tree T* obtained from T by moving
the components »(T") and v(T') from a to b is also graceful.

() if 2f(u) = f(a) + f(b) then the tree T** obtained from T by moving
the component u(T") from a to b is also graceful.
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Lemma 2.4 [4] Let T be a diameter four tree with g edges. If ap is the
center vertex and the degree of ag is 2k + 1 then there exists a graceful
labeling f of T such that

(a) f(ap) = 0 and the labelings of the neighbours of ag are 1,2, ... ,k,q,q—
1,...,9—k.

(b) if ny,n9, and ng are the number of odd, even, and pendant branches
incident on ag, then from the sequence S = (¢,1,¢—-1,2,9—-2,3,...,¢9—
k+1,k,q — k) of vertex labels, n; terms from the beginning are the labels
of the centers of the odd branches, the next ny terms are the labels of the
centers of the even branches, and the rest na terms are the labels of the
centers of the pendant branches.

(c) for any i = 1,2, 3, the n; labels of S which are the labels of the centers
of the same type of branches may be assigned in any order. However,
different arrangements of branches of the same type may give different
graceful labelings of the same diameter four tree without disturbing (a)
and (b).

Remark 2.5 In the graceful labeling f of the diameter four tree T in
Lemma 2.4, the labelings of the pendant vertices adjacent to the centers of
the odd and even branches can be given by using the technique of [4].

Lemma 2.6 [5] Let S = (t1,2,...,t2) be a finite sequence of natural
numbers in which the sums of consecutive terms are alternately [+ 1 and !,
beginning (and ending) with the sum ! + 1. Then the sums of consecutive
terms in the sequence Sy = (¢i+1(t2k+2), ¢l+1(t2k+3), . ¢¢+1(t2p_2k,_1)),
where ¢p(z) = n—2z, 0 < kb1 <p—2,and 0 < k+k; < p—2 are
alternately ! + 2 and ! + 1, beginning (and ending) with I + 2,

3 Results

The main results of this paper are contained in Theorems 3.3, 3.4, and 3.7.
However, the result of Theorem 3.2 is more general and involves a technique
to generate graceful trees from a given graceful tree of certain kind. We
apply this technique to diameter four trees with center having odd degree
to obtain graceful lobsters.
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Construction 3.1 Let T be a graceful tree with g edges. Let ag be a non
pendant vertex of T with degree 2k + 1 such that there exists a graceful
labeling f of T in which ag gets the label 0 and the labels of the neighbours
of ag are 1,2,...,k,q,9—1,9—2,...,q9 — k (see Figure 4).

Figure 4: The tree T with vertex ag and its neighbours. The circles around
the neighbouring vertices of ag represent the respective components incident
on them.

Consider the sequence S = (g,1,9—1,2,...,k,q— k) of vertices adjacent
to ag (recall that we do not distinguish between a vertex and its label). For
any integer n, n > 2, if possible, we partition this sequence into n parts
Ay, Ag, ..., A, (see Figure 4), where

Al = (Qal:q_l,2:""r1:q_rl)

and AJ = (Tj_.] +l,q—7‘j_1 —l,Tj_1+2,q—Tj_1 —2,. .. ,Tj,q—Tj),

2<j<n,and0<ry<ry<...<rp,= k. We construct a tree T} (see
Figure 5) from T by identifying the vertex yo of a path H = yo,%1,---,¥Ym,
with ap and distributing the components (incident on the vertex ap) in
Aj, 3= 1,2,...,n,t0y;, 1= 1,2,...,5;5, where 0 < s; < m, in the
following manner.
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(1) The components in A, are distributed to the vertices yo,31,...,¥s,, in
the following way:

(%) At yo we retain 2)\((,1) + 1 components from A;, where )\((,1) > 0. In
particular, we retain 2pg, 0 < po < /\((,1), components whose labels appear
consecutively from the beginning of A,, namely ¢q,1,¢—1,2,¢4-2,3,...,q—-
po+1,po, and 2/\((,1) +1-2po components whose labels appear consecutively
from the end of A;, namely q — k,k,q — k+ 1,k —1,...,k — A{"” + po +
l,g—k+ /\(()1) —po. If s1 2 1 then we delete these components from A;
which are kept at yp and name the remaining sequence as Agl).

(%) If s; > 1 then we move 2,\51), ,\Sl) > 1, components from A, to y;, where
1 € i < ;. In particular, we move 2p;+1, 0 < p; < /\Sl), components whose
labels appear consecutively from the beginning of A(li), and 2/\,(.1) —2p; -1
components whose labels appear consecutively from the end of A(li), where,

for i > 2, Agi) is obtained from Agi_l) by deleting the components which
(1

are moved to y;—;. The numbers A;"’, 1 = 0,1,2,...,s;, are chosen in
such a way that 3% A0 = ;.
(2) The components in Aj, 3= 2,3,...,n, are distributed to the vertices

Y0, Y1, - - -, ¥s;, in the following way:

(%) At yo we retain 2)\((,j) components from A4;, where /\((,j )>0.In particular,
we retain 2/\((,j) —1 components whose labels appear consecutively from the
beginning of A;, namely r;_; + 1, —rj_y - L,rj_1 +2,...,g —1j_1 —
)\gj) +1,75-1+ /\f,j), and one component whose label is the last term of A4;,
namely ¢ — ;. If s; > 1 then we delete these components from A; which
are kept at yp and name the remaining sequence as Ag.l) .

(%) If s; > 0, we move 2)\,(-j) , )\,(-j) > 1, components from A; to y;, where
1 < i < s;. Inparticular, we move 2)\? )1 components whose labels appear
consecutively from the beginning of Ag.i) and one component whose label
is the last term of Ag.i), where, for 7 > 2, Ag-i) is obtained from Ag.i"l) by
deleting the components which are moved to y;—;. The numbers )\? ), 1=
0,1,2,...,s;, are chosen in such a way that Zfio )\gj) = T —Tj-1. 0

In the following theorem, for a graceful tree R with n edges and a grace-
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Figure 5: The tree T} obtained from T. Here we take s; = so = ... =
Sp = m.

ful labeling g we use the notation “ g(R)” to denote the tree R with the
graceful labeling g. Also, for any sequence F = (ay,ay,...,a,), gn(F) is
the sequence (n — a1, n —ag,...,n — ar).

Theorem 3.2 The tree T} in Construction 3.1 is graceful.

Proof: We first consider the tree T U {yo,¥1}, where the vertices ap and
yo are identified and {yp,¥;} is an edge. We give the label ¢ + 1 to ;.
Clearly T U {yo, %1} is graceful with a graceful labeling f(1, where f(1) is
the same as f on T and it gives the label g+ 1 to ;. Then we move all
the components in Agl), i=12,...,n, to y; and let the resultant tree be
T<1). One can notice that each Ag.l), for j = 1,2,...,n, can be partitioned
into pairs of labels whose sum is ¢ + 1 (consecutive terms). Therefore, the
tree T() is graceful by Lemma 2.3(i).

Next we take the inverse transformation fé:_)l of the graceful labeling f(1)
of T, So fg_)l is a graceful labeling of T() by Lemma 2.1 and the label
of ; in fgfl(T(l)) is 0. Next we make y» adjacent to y; in fg_l,,), 7)) and
give the label ¢ + 2 to y,. Obviously, the tree T(1 U {%1,¥2} is graceful
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with the graceful labeling f(?), where f(?) is the same as fél)l on TV and
it gives the label ¢+ 2 to y,.

For those j with s; > 2, j = 1,2,...,n, we move all the components in

(1) (A(z) ), from y; to yo and let the resultant. tree be T(?). Observe that
the sums of consecutive terms in Agl) are alternately ¢+ 1 and g (beginning
and ending with g + 1) so by Lemma 2.6 the sums of consecutive terms in
f(l) A(z) ), are alternately ¢+ 2 and g+ 1 beginning and ending with ¢+ 2.
One sees that each fg./ 1) (A(2)) can be partitioned into pairs of labels whose
sum is ¢ + 2. By Lemma 2.3(i), T(® is graceful.

Let s* = max{s;, s2,...5,}. On repeating the above procedure for s*
times we get the graceful tree T(") with vertex set V(T)U {v1,...,%s}
in which the vertex y,« gets the label ¢ + s*. If s* = m, then we stop;
otherwise we proceed as follows.

We apply inverse transformation to the graceful tree T(*) so that the
vertex y,+ gets the label 0. Then make the vertex y,..; adjacent to y;.
and give the label g+s*+1 to ys«41. If s*+1 = m then we stop; otherwise
we repeat this procedure until the vertex y,, gets a label. The graceful tree
that is obtained on the vertex set V(T)UV(H') is easily seen to be the tree
Ti. a

The lobsters we consider here will be of diameter at least five, so we use
the representation in Lemma 1.1. Given a lobster L of the type to which
we give a graceful labeling, we construct a diameter four tree, say T(L),
from L by successively identifying the vertices z;, 1 = 1,2,..., m, with xo.
The vertex zg is the center of T(L) and its degree is odd, say 2k + 1. By
Lemma 2.4, T(L) has a graceful labeling in which zo gets the label 0 and
the neighbours of z¢ get labels in S. However, we note that the manner
in which we partition the sequence S and the order in which the centers of
the branches incident on z¢ in T(L) get labels from the sequence S plays
an important role. To get back L and a graceful labeling of it we have to
follow an appropriate partition and ordering, which will be clear from the
proof of Theorems 3.3 and 3.4. Next we apply Theorem 3.2 to (L) and to
the central path H = zg,z1,...,Zm, S0 as to get a graceful labeling of L.
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By using the techniques of this paper, if we take n = 1, i.e. when we do
not partition the sequence S, in Construction 3.1 then we get the results
that appear in [5] so we do not consider the case n = 1 in Theorems
3.3 and 3.4. We get graceful labelings of lobsters that appear in Theorem
3.3 (respectively, Theorem 3.4) by taking n = 2 (respectively, n = 3) in
Construction 3.1.

Theorem 3.3 The lobsters in Tables 3.1, 3.2, 3.3, and 3.4 below are grace-
ful.

Descriptions of Tables: In the column headings, the triple (z,y, 2) rep-
resents the number of odd, even, and pendant branches, respectively, where
e means any even number of branches (non-zero, unless otherwise stated), o
means any odd number of branches, and 0 means no branch. For example,
(e, 0, 0) means an even number of odd branches, no even branch and an odd
number of pendant branches. If in a triple e or o appears more than once
then it does not mean that the corresponding branches are equal in num-
ber, for example, (e, e,0) does not mean that the number of odd branches
is equal to the number of even branches. The symbol o* represents any odd
number of branches greater than or equal to 3.

1st column: The notation 0(r), » = 1,2, means that zo is attached to
the combination of branches mentioned in the column heading in which r
is the superscript. Simply, 0 means that zp is attached to any one of the
mentioned combinations of branches.

Other columns: i — j (respectively, i — j (r), 7 = 1, 2) means that each
i, < | < 3, is attached to the mentioned combination or any one of the
two combinations of branches (respectively, the branches mentioned in the
triple with superscript 7).

Further, when some vertex z; on the central path is attached to two
combinations (z,y, 0) and (0, 0, ¢), we mean that z; is attached to the com-
bination (z,y,e). For example, in Table 3.1{a) z;,+, is attached to the
combinations (o,0,0) and (0,0,e), which means that z,,;; is attached to
the combination (0,0,¢). In Table 3.3(b), ** means that the number of
even branches incident on z;, 1 < <, is at least 3.
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1. We determine r;, and hence A; and A;. Let the number of pendant
branches incident on z;, ¢ = 0,1,...,¢;, be 2); + 1 and those incident on
zi, t= ti1+1,...,s be 2)\;, where, for 0 < 7 < s, A\; > 1. Note that
x;, for i > s+ 1, is not attached to any pendant branch. We will label
T(L) in such a way that the centers of the pendant branches incident on
each z;, &1 +1 < i < s, get labels from A;, and among the pendant
branches incident on each z;, 0 < ¢ < ¢, the centers of 28; 4+ 1 branches
get labels from A; and the centers of the rest of these branches get labels
from A,, where B;, 0 < B8; < );, are arbitrary integers. Let E:‘:O(Z/\,- -
28;)+ Zi.’:h +12Xi = 2r. Therefore, A2 contains the centers of 2r pendant
branches. We choose A in such a way that it will not contain the center
of any other branch, so |Az] = 2r. Since |A;| +|A2] = 2k + 1 and
|Aj]| = 2ri+1, wegetry= k—r.

2. We label the centers of the branches incident on z¢ in T(L) in the
following manner:

(i) The centers of the odd branches incident on zg in L get labels from the
beginning of A;.

(i) For i =1,2,...,, the centers of the odd branches incident on z; in L
get labels from the beginning of A(l’).

(iii) For i = t;+1,¢ +2,...,t2, the centers of the even branches incident
on z; in L get labels from the end of A{".

(iv) For i = t2 +1,...,m, among the odd (or even) branches incident on
z; in L, the centers of any odd number of branches get labels from the
beginning of A(f) and the centers of the rest of these branches get labels
from the end of A(li).

(v) Fori = 0,1,...,¢;, the centers of 2)A; + 1 pendant branches incident
on z; in L get 23; + 1 labels from the end of A(li), 2(\; — B;) — 1 labels from
the beginning and the last label of Ag) , where A§0) = A, and Ago) = A,.

(vi) For i = t; +1,...,s, the centers of 2); pendant branches incident on
z; in L get 2); — 1 labels from the beginning and the last label of Ag) .
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One can notice that the labeling of the centers of the branches incident
on the center zo of T(L) given in step 2 follows part (b) of Lemma 2.4.
Therefore, by Lemma 2.4 there exists a graceful labeling of T'(L) with the
above labels of the center zo and the centers of the branches incident on
zo. Finally, we apply Theorem 3.2, for n = 2, on T(L) and the path
H = z0,71,...,Zm, S0 as to get a graceful labeling of L (see example
below). This approach will be the same for all the remaining cases of this
theorem and hence we will just indicate the modification we make in steps
1 and 2.

Example: Consider the lobster presented in Figure 6 which is of the type
(@) in Table 3.1. We construct the graceful diameter four tree T(L) shown
in Figure 7. Here, |E(T(L))| = q = 85 and deg(zo) = 2k+1 = 39. So,
k= 19and S= (85,1,84,2,...,19,66). Herem = 6, t;, =2, t, =4, s =
5= 2 A1 =2 A= 1, A3=1 A= 1, and As = 2. We take
Bo= 1, fr = 1,and B3 = 0. Therefore,r= 7,7 = k—r= 19-7= 12,

(85,1,...,12,73), and A2 = (13,72,14,...,19,66). We obtain a
graceful labeling of T(L), as given in Figure 7, by assigning the label 0
to xo, giving labelings to the neighbours of zo as per step 2, and finally,
giving labelings to the remaining vertices of T(L) by using the technique
described in [4]. Then in Figure 8 we make z; adjacent to zo, give the label
86 to z;, and move all the components in Ag.l), 7= 1,2, to ;. The tree
in Figure 9 is obtained by applying inverse transformation to the lobster
found in Figure 8, making z, adjacent to z;, giving the label 87 to z3, and
moving all the components in féé)(Agg) ), 3= 1,2, to z3. Continuing in
this manner we finally get the graceful labeling of L presented in Figure 10.

SRR R

Figure 6: A lobster L of type (a) in Table 3.1. Here m = 6, ¢, = 2, t; =4,
and s = 5.
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Continuation of Table 3.2

Lob- | (e,e,0%)" | (0,0,0) (0,0,0%)! (e,0,0)! | (0,0,¢)
sters | or or or
i (0,0, o.)2 (ese 0)2 (0, €, 0)2
d 0(1) _— — 1—-m 1 —
s, s<m
e 0(1) 1-¢, m (2) if| — 1 —
m=-1<t'<m|t/=m-1 s, s<m
Table 3.3
Lob- (e,0,0), | (o0,0,0) (e,e,0) (e,0,0)" or | (0,0,€)
sters| | e>0 (0,¢,0)2
a 0 1t t< S t+1—-m 0 —
m s, s<m
b 0(23) |1 -t t<|t+1l =»|t'+1>m —
m, (.t) t’, v <m ift'<m
c 0 —_— 1-m 0 —
s, s<m
d 0 12, m—-|m,ift = —_— 0 —
1< <m m—1 s, s<m
e 0(023) —_— 1 = |t+1—=m —_—
tt'<m |ift'<m
Table 3.4
Lob- (0,€,0) | (0,0,0)* or | (e,€,0) (e,0,0)! or (0,0,¢)
sters | (0, 0,0)2 (0,e,0)?
a 0 _ 1 - [t'+1—->mifl ——
¢ t<m |t'<m
b — [0(1) —_ 1-m(1) 0 —
s, s<m
c — [ 0(2) —_— 1-m(2) 0 —
s, 8s<m

Proof: For every lobster L of this theorem we first construct the diameter
four tree T(L) corresponding to L. Let |E(T(L))| = q and deg(zo) = 2k+
1. We give the label 0 to zg. We partition the sequence S in Construction
3.1 into two parts, i.e. we take n = 2, in Construction 3.1.

Let L be a lobster of type () in Table 3.1. We follow the two steps given

below.
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Figure 7: The tree T(L) corresponding to the lobster in Figure 6.
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Figure 8: The graceful lobster obtained by making z; adjacent to zo, giving
the label 86 to z;, and moving all of the branches in Agl), i= 1,2, to ;.
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by even branches in step 2(ii), and odd (or even) branches by even branches
only in step 2(iv). For lobsters of type (e), we set {; = tand ¢t = tin
steps 1, 2(i), 2(ii), 2(iv), 2(v), and 2(vi). For lobsters of type (f), we set
ty = tand t3 = m in steps 1, 2(i), 2(ii), 2(iii), 2(v), and 2(vi). For lobsters
of type (g), we set £; = 0and ¢ = 0 in steps 1, 2(i), 2(iv), 2(v), and 2(vi).
For lobsters of type (), we set t; = 0 and ¢; = m, in steps 1, 2(i), 2(ii),
2(iii), 2(v), and 2(vi). For lobsters of type (i), we set ¢; = Oand ¢ = 0in
steps 1, 2(i), 2(iv), 2(v), and 2(vi), replace odd branches by even branches
in step 2(i) and odd (or even) branches by even branches in step 2(iv).

For lobsters of types (a), (b), (c), (d), and (e) in Table 3.2, the proof follows
if we proceed as the proof involving the lobsters of types (d), (c), (), (9),
and (k), respectively, in Table 3.1 by repeating steps 1 and 2 by replacing
step 2(i) with “ The centers of the odd branches followed by the even
branches incident on zg in L get labels from the beginning of A;”.

For lobsters L of type (a) in Table 3.3, the proof follows if we proceed as
the proof involving the lobsters of type (@) in Table 3.1 by modifying steps
1 and 2 in the following manner.

1. We determine r;, and hence A; and A;. Let the number of pendant
branches incident on z;, i = 0,1,...,s, be 2)\;, where \; > 1. The terms
of A, are the labels given to the centers of the pendant branches only, so
|Az| = 23°;_o Ai- Let this value be 2r, so we get 1y = k—r,

2. (i) Fori= 0,1,...,¢, the centers of the odd (respectively, even) branches
incident on z; in L get labels from the beginning (respectively, end) of Agi),
where A(lo) = A

(ii) Set ta = ¢ in step 2(iv).

(iii) For i = 0,...,s, the centers of 2\; pendant branches incident on z;
in L get 2)\; — 1 labels from the beginning and the last label of A(i), where
AQ = 4,

Next consider the lobsters of type (b) in Table 3.3. Let p be an integer
defined as p = m if either ¢’ = mort’ <m witheachz;, i= ¢'+1,...,m,

is attached to an even number of even branches and p = ¢ if / < m with
each z;, i = ¢'+1,...,m, is attached to an even number of odd branches.

307



The proof follows if we proceed as the proof involving the lobsters of type
(a) in Table 3.1 by modifying steps 1 and 2 in the following manner.

1. Set t; = t and s = p, and replace pendant branches by even branches
in step 1.

2.(i) Same as step 2(i).

(ii) Set t; = t in step 2(ii).

(iii) Set t2 =t and m = m +¢t' —p, and replace odd (or even) branches by
odd branches in step 2(iv).

(iv) Set t; = t and s = p, and replace pendant branches by even branches
in steps 2(v) and 2(vi).

If we proceed as the proof involving the lobsters of type (a) in Table 3.3 by
setting ¢ = 0 in steps 1 and 2 we get a proof for the lobsters of type (c)
in Table 3.3; by setting t = m in steps 1, 2(i), and 2(iii) we get a proof
for lobsters of type (d) in Table 3.3. A proof follows for lobsters of type (e)
in Table 3.3 if we proceed as the proof involving the lobsters of type (b) in
Table 3.3 by setting ¢ = 0 in steps 1, 2(i), 2(iii), and 2(iv).

For lobsters L of type (a) in Table 3.4, the proof follows if we proceed as
the proof involving the lobsters of type (a) in Table 3.1 with the following
changes in step 1 and step 2 below.

1. Here A, will consist of the labels given to the centers of the odd branches
only and A, will consist of the labels given to the centers of the even
branches only so |A;| = 2r; + 1 is the number of odd branches of L.

2. (i) Among the odd branches incident on zo, the centers of any even
number of branches get labels from the beginning of A; and the centers of
the rest of these branches get labels from the end of A;.

(ii) For i = 1,2,...,m + ¢ — p, among the odd branches incident on z;,
the centers of any odd number of branches get labels from the beginning of
Agi) and the centers of the rest of these branches get labels from the end of
Agi) , where p is an integer defined as in the proof involving the lobsters of
type (b) in Table 3.3.
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(iii) For ¢ = 0,1,2,...,p, among the even branches incident on z;, the
center of one branch gets label from the end of Ag) and the centers of the
rest of these branches get labels from the beginning of Ag) .

For lobsters of types (b) and (c) in Table 3.4, we replace m + t’ — p with
m, p with s, and even branches with pendant branches in steps 1 and 2 in
the proof involving the lobsters of type (a) in Table 3.4. Further, in case
of lobsters of type (c) we replace odd branches with even branches in both
the steps. a

In the previous theorem we have taken n = 2, i.e. we have partitioned
the sequence S in Construction 3.1 into two parts. In the theorem below
(Theorem 3.4) we take n = 3 and improve some of the results in Table 3.3
and Table 3.4.

Theorem 3.4 The lobsters in Table 3.3(b), 3.3(e), or 3.4(a), with the ad-
ditional condition that for a fixed integer s, 0 < s < m, each z;, 1 =
0,1,...,s, is attached to an even number of pendant branches, are grace-
ful.

Proof: As in the proof of Theorem 3.3, for every lobster L of this theorem
we first construct the diameter four tree T(L) corresponding to L. Let
|[E{T(L))| = q and deg(zo) = 2k + 1. We give the label 0 to zp. We
partition the sequence S in Construction 3.1 into three parts, i.e. we take
n = 3, in Construction 3.1. For any lobster L of this theorem we follow
the two steps given below.

1. We determine r, and r3, and hence A;, As, and A3. Since each z;, 1 =
0,1,...,s, is attached to an even number of pendant branches, the sum
total of all the pendant branches incident on the central path of L is an
even number, say 2p. The terms of Az will be the labels given to the
centers of the pendant branches only, i.e. JA3] = 2p. Since |S|= 2k + 1,
|A1]+|A2| = 2(k—p)+1. Now we determine A, and Az by repeating step
1 in the respective proofs involving the lobsters described in Tables 3.3(b),
3.3(e), and 3.4(a), by setting k= k —p.

2. We label the centers of the branches incident on the zp in T(L) in the
following manner:
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Figure 9: The graceful lobster obtained by applying inverse transformation
to the lobster in Figure 8, making z2 adjacent to z;, giving the label 87 to
z9, and moving all the components in féé)(Ag-z)), i= 1,2, to z5.
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e 75

BB 1677 Bagp 9 W D

Figure 10: The lobster L with a graceful labeling.

For lobsters of type (z), z = b,¢,...,1, in Table 3.1, the proof follows if
we proceed as the proof involving the lobsters of type (a) in Table 3.1 by
modifying steps 1 and 2. For lobsters of type (b), we set t; = ¢2 in step
1, repeat step 2(i), set ¢z = ¢, in step 2(ii), substitute step 2(iii) with “for
i=1t;+1,t; +2,...,1s, the centers of the even branches incident on z; get
labels from the beginning of Agi)”, replace odd (or even) branches by even
branches in step 2(iv), and set t; = ¢ in steps 2(v) and 2(vi). For lobsters
of type (c), we set t; = 0 and ¢ = ¢t insteps 1 and 2. For lobsters of type
(d), we set t; = t and t5 = ¢ in steps 1, 2(i), 2(ii), 2(iv), 2(v), and 2(vi),
replace odd branches by odd (or even) branches in step 2(i), odd branches
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(i) Repeat step 2 of the respective proofs involving the lobsters in Tables
3.3(b), 3.3(e), and 3.4(a), by setting k = k —p.

(ii) Fori = 0,1,...,s, among the pendant branches incident on z; in L, the
center of one branch gets the last label of Ag) and the centers of the rest
of these branches get labels from the beginning of A:(,,i), where Ago) = As.

We notice that the labeling of the centers of the branches incident on the
center zo of T(L) given in step 2 follows part (b) of Lemma 2.4. Therefore,
by Lemma 2.4, there exists a graceful labeling of T'(L) with the above labels
of the center zg and the centers of the branches incident on zy. Finally, we
apply Theorem 3.2, for n = 3, on T(L) and the path H = zo,z1,...,Zm,
so as to get a graceful labeling of L. o

Next we show that by partitioning the sequence S of Theorem 3.2 in a
slightly different manner we get graceful lobsters in which the combination
of odd, even, and pendant branches incident on zg will be different from
those in Theorems 3.3 and 3.4. For this we modify Construction 3.1 as
given below.

Construction 3.5 Let the tree T, the path H’, the labeling f, and the
sequence S be the same as in Construction 3.1. In (a), (), (¢), and (d)
below, we construct the trees T, T3, T4, and T5, respectively. For (a), (b),
and (c), we take n = 3 in Construction 3.1, and use the notations A;, Az,
and As, whereas for (d) we take n = 2 in the same construction, and use
the notations A; and As.

(a) We partition S as § = A, U A, U A3, where A, = A\ {g -1},
Ay = {g-71}U A; (where ¢ — 7, occurs as the first term of As), and
Ag = As. We construct the tree T, from T by identifying the vertex yo of
path H’ with ap and moving the components (incident on the vertex ag)
in4;, j= 1,23, toy;, i = 1,2,...,55, 0 < s; < m, in the following

manner:

(i) We retain 2;\8”, /\((,1) > 0, components from A, at y. In particular, we
retain 2pp, 0 < po £ )\(()1), components whose labels are from the beginning
of A; and 2)\31) — 2pg components whose labels are from the end of A;.
We retain 2/\(()2) +1, ,\(()2) > 0, components from A at y. In particular,
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we retain 2)\32) components whose labels are from the beginning of A
and one component whose label is the last term of A,. We retain 2>\(()3) ,
/\((,3) > 1, components from Az at y in the same manner in which we
have retained 2/\((,3) components of A3z at yp in Construction 3.1. After
deleting the components to be kept at yg, let the sequences obtained from
Aj 5= 1,2,3,be A

(#) If s; > 1, then, for 1 < i < s;, to y; we move 21\?), ,\sj) > 1, components
from A; in the same way as we have moved the components from Aj toy;
in Construction 3.1.

(b) We partition S as S = A;UA;UA;, where A = Ay, Ay = Aj\{g—73},
and A3 = {q—r2} U A3z (where q — r3 occurs as the first term of Az). We
construct the tree T3 from T by identifying the vertex yo of path H’ with ag
and moving the components in A;, j = 1,2,3,toy;, i= 1,2,...,s;, 0 <
s; < m, in the following manner:

(i) We retain 2;\((,1) +1, /\(()1) > 1, components from A; at gy in the same
manner in which we have retained 21\80 + 1 components of A; at yp in
. Construction 3.1. We retain 2)\,(32)+1, /\((,2> > 0, components whose labels are
from the beginning of A at y9. We retain 2/\((,3) +1, /\(()3) 2> 0, components
from A3 at yp, among which 2)\((,3) components get labels from the beginning
of Az and the remaining one gets the label from the end of A;. After
deleting the components to be kept at yy, let the sequences obtained from
Aj, 5= 1,2,3,be A

(it) Same as (i) in (a).

(c) We partition S as S = A UA2U A3, where A; = A\ {g—n}, A3 =
{g—r1}UA2\{g—72}, and A3 = {g—r;2}U A3 (where, g—r; occurs as the
first term of A, and g — r; occurs as the first term of A3). We construct the
tree Ty from T by identifying the vertex yo of path H’ with ap and moving
the components in 4;, j = 1,2,3, toy;, i= 1,2,...,8;, 0< s; <m, in
the following manner:

(i) We retain 2)\81) , )\81) > 0, components from A; at yp in the same
manner as we have done in (a). We retain 2)\((,2), )\82) > 0, components
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whose labels are from the beginning of A; at 3. We retain 2/\((,3) +1,
A,‘,3> > 0, components from Az at yp in the same manner as we have done
in (c). After deleting the components to be kept at yo, let the sequences
obtained from 4;, j = 1,2,3, be figl) .

(it) Same as (i1) in (a).

(d) Here we partition S as S = A; U A3, where A; and Aj are as defined
k. We construct a tree Ty from T by identifying the
vertex yo of H’ with ap and moving the components in /L-, i= 1.2, to

in (a) with ro =

¥i, 1= 1,2,...,55, 0 < s; <m, in the same manner as in (a). m|

Theorem 3.6 The trees Ty, T3, T4, and T in Construction 3.5 are grace-
ful.

Proof: The proof follows if we proceed exactly as the proof of Theorem
3.2 involving the tree T} in Construction 3.1.

Theorem 3.7 The lobsters in Table 3.5 below are graceful.

Table 3.5
Lob- zg is attached to | Combination of branches
sters | incidentonz;, 1 <7< m
(a) (e, 0,¢€) or | same as the lobsters in Theorem 3.4.
(01 0’ e)
(b) (0, 0,0) same as the lobsters of type (a) in Table 3.4
and having the additional condition men-
tioned in Theorem 3.4.
(c) (e, e,0) or same as the lobsters in Theorem 3.4.
(0,€,0) or
(e,0,0)
(d) (e, 0, 0) same as the lobsters of type (a), (b), (¢), (€),
(f), (g), or (h) in Table 3.1.
(e) (e, 0, 0) or | same as the lobsters of type (d) in Table 3.1.
(0,e,0)
(H (0,¢,0) same as the lobsters of type () in Table 3.1.
(g) (e, 0,0) same as the lobsters of type (b) or (e) in
Table 3.3.
(h) same as (c) same as the lobsters of type (a), (b), (d), or
(e) in Table 3.2.
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Continuation of Table 3.5

Lob- zg is attached to | Combination of branches

sters | incidenton z;, 1 <i<m

(i) same as (b) same as the lobsters of type (a) or (c) in
Table 3.2.

[6)] same as (c) same as the lobsters of type (a), (c), or (d)
in Table 3.3.

(k) same as (d) same as the lobsters of type (b) in Table 3.4.

) same as (f) same as the lobsters of type (c) in Table 3.4.

(m) same as (g) same as the lobsters of type (a) in Table 3.4.

Proof: As before, for every lobster L of this theorem, we first construct
the diameter four tree T(L) corresponding to L.

Let L be a lobster of type (a) in Table 3.5. We follow the two steps given
below.

1. We partition S into three parts as in Construction 3.5(a). We deter-
mine r; and 73, and hence A;, A, and A3;. The total number of pendant
branches incident on the central path of L is an even number, say 2p. The
terms of A3 will be the labels given to the centers of the pendant branches
only, i.e. |A3| = 2p. Then, |A;|+|A2| = 2(k —p)+1 =2ry + 1. Let the
combination of branches incident on z;, 1 < ¢ < m, be the same as those
in the lobsters of Theorem 3.4 derived from the lobsters of type (b) or (e)
in Table 3.3. Let the number of even branches incident on zg be 2Xg + 1,
Ao > 0. We label T(L) such that the centers of the even branches incident
on g get 2f, labels from A;, 0 < By < Ag, and 2(Xg — Bo) + 1 labels from
As. Let the number of even branches incident on the rest of the z;, and
the labels that they get, be the same as in the proof involving the lobsters
in Theorem 3.4 derived from the lobsters of type (b) or (e) in Table 3.3.
We have |Az| = 2(Xo — fo) + 1+ Tio (2N — 28:) + F_,,, 2)i. Let this
number be 2r+1. Therefore, |A;| = 2r; = (2ro+1)—(2r+1) = 2(ro—7).
If the combination of branches incident on z;, 1 < 7 < m, are the same as
those in the lobsters of Theorem 3.4 derived from the lobsters of type (a)
in Table 3.4, then the terms of A; will be the labels of the centers of all the
odd branches only.
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2. We label the centers of the branches incident on zo in T(L) in the
following manner:

(i) The centers of the odd branches incident on zo get labels from the
beginning of A,. If the combination of branches incident on z;, 1 < i < m,
are the same as those in the lobsters of Theorem 3.4 derived from the
lobsters of type (b) or (e) in Table 3.3, then the centers of the even branches
incident on zo in L get 28y labels from the end of A;, 2(\o — Bo) labels
from the beginning and the last label of Az. If the combination of branches
incident on z;, 1 < ¢ < m, are the same as those in the lobsters of Theorem
3.4 derived from the lobsters of type (a) in Table 3.4, then among the even
branches incident on zg, the center of one even branch gets the last label
from A, and the centers of the rest of these branches get labels from the
beginning of Aj.

(ii) The centers of all the odd and even branches incident on z;, 1 < i < m,
and all the pendant branches incident on z;, 0 < i < s, get labels in
the same manner as described in step 2 of the proof involving the lobsters
described in Theorem 3.4.

We notice that the labeling of the centers of the branches incident on the
center zg of T(L) given in step 2 follows part (b) of Lemma. 2.4. Therefore,
by Lemma 2.4 there exists a graceful labeling of T(L) with the above labels
of the center zo and the centers of the branches incident on zg. Finally, we
apply Theorem 3.6, for n = 3, on T(L) and the path H = z¢,z1,...,Zm,
so as to get a graceful labeling of L.

For the rest of the lobsters in Table 3.5 the proof follows if we proceed as
the proof involving the lobsters of type (a) in Table 3.5 by modifying steps
1 and 2 only.

For lobsters of type (b) in Table 3.5:

1. We partition S into three parts as in Construction 3.5(b). Here 4,, A,
and A3 will consist of the labels given to the centers of the odd, even, and
pendant branches, respectively.
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2. (i) The centers of the even branches incident on z¢ get labels from the
beginning of A;. Among the pendant branches incident on zg, the center
of one branch gets the last label of As, whereas, the centers of the rest of
these branches get labels from the beginning of Aa.

(ii) The centers of all the branches incident on z;, 1 < i < m, and all the
odd branches incident on zo get labels in the same manner as described in
step 2 of the proof involving the lobsters in Theorem 3.4.

For lobsters of type (c) in Table 3.5:

1. We partition S into three parts as in Construction 3.5(c). The terms of
Ag will be the labels given to the centers of all the pendant branches only,
so |A3| is the number of pendant branches incident on the central path, say
2p + 1. Therefore, |A;| + |A2| = 2(k —p) = 2r. Let the combination of
branches incident on z;, 1 < i < m, and the labels of the centers of these
branches be the same as those in the lobsters of Theorem 3.4 derived from
the lobsters of type (b) or (e) in Table 3.3. Let the number of even branches
incident on zo be 2X, Ag > 0. We give a labeling to T(L) such that, among
the even branches incident on z, the centers of 28, of them get labels from
Ay, 0 < By < Ao, and the centers of the rest of these branches get labels
from A;. We have |A2| = 2(do — Bo) + iy (2Xs — 26:) + TP, 2N
Let this number be 2r so |A;| = 2r; = 2ry — 2r. If the combination of
branches incident on z;, 1 < i < m, are the same as those in the lobsters
of Theorem 3.4 derived from the lobsters of type (a) in Table 3.4, then the
terms of A; will be the labels given to the centers of all the odd branches
only.

2. (i) The centers of the odd branches incident on xo get labels from the
beginning of A;, and among the pendant branches incident on zg the center
of one branch gets the last label of A3 and the centers of the rest of them
get labels from the beginning of A3. If the combination of branches incident
on z;, 1 £ i £ m, are the same as those in the lobsters of Theorem 3.4
derived from the lobsters of type (b) or (e) in Table 3.3, then the centers
of the even branches incident on zg¢ get 25 labels from the end of A; and
2(Mo — Bo) labels from the beginning of A,. If the combination of branches
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incident on z;, 1 < ¢ < m, are the same as those in the lobsters of Theorem
3.4 derived from the lobsters of type (a) in Table 3.4, then the centers of
the even branches incident on zo get labels from the beginning of A,.

(ii) The centers of the branches incident on z;, 1 < ¢ < m, get labels in
the same manner as described in step 2 of the proof involving the lobsters

in Theorem 3.4.
For lobsters L of types (d) — (m) of Table 3.5:

1. We partition S into two parts as in Construction 3.5(d), and deter-
mine A, and A,. For lobsters of type (d), we proceed as step 1 in the
proof involving the lobsters of type (a) derived from those of type (b) in
Table 3.3, with the changes given below. We first define a positive inte-
ger py as py = i1,t2, 0, ¢, ¢, 0, and O, if the combination of branches
incident on z;, 1 < ¢ < m, are the same as those in the lobsters of types
(a), (B), (c), (e}, (f), (g), and (h), respectively, in Table 3.1. Then we
replace ro with k, p with s, ¢ with p;, and even branches with pendant
branches. If L is of type (e) (respectively, (f)), then we proceed as the
proof involving the lobsters of type (d) by setting p, = ¢ (respectively,
p1 = 0). If L is of type (g), with the combination of branches incident
onon z;, 1 <1i < m, are the same as those in the lobsters of type (b)
(respectively, (e)) in Table 3.3, then we repeat step 1 of the proof involving
the lobsters in (a) derived from those of type (b) in Table 3.3, by setting
ro = k (respectively, ro = k and t = 0). If L is of type (h), then we repeat
the procedure of the proof involving the lobsters of type (d), by setting
p1 = t (respectively, p; = 0) if the combination of branches incident on
xz;, 1 €1 < m, are the same as those in the lobsters of type (a) (respec-
tively, (b), (d), or (e)), in Table 3.2. If L is of type (i), then we repeat
the procedure of the proof involving the lobsters of type (d), by setting
p1 = t (respectively, p; = 0) if the combination of branches incident on
z;, 1 < i < m, are the same as those in the lobsters of type (a) (respec-
tively, (c)), in Table 3.2. If L is of type (4), (k), and (1), then the terms of
Aj will be the labels given to the centers of all the pendant branches only.
If L is of type (m), then the terms of Ay will be the labels given to the
centers of all the even branches only.
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2. (i) If L is of type (d), then we repeat step 2(3) in the proof involving the
lobsters of type (a) derived from those of type (b) in Table 3.3, by replacing
even branches with pendant branches. If L is of type (e) (respectively,
(f)), then we repeat the procedure of the proof of the lobsters of type (d)
by replacing odd branches with odd (or even) (respectively, even) branches.
If L is of type (g), then we simply repeat step 2(¢) in the proof involving
the lobsters in (a) derived from the lobsters of type (b) in Table 3.3. If L is
of type (k) and (i), then we repeat the procedure of the proof involving the
lobsters of type (d) by replacing odd branches with odd branches followed by
even branches. If L is of type (j), then the centers of the odd (respectively,
even) branches incident on zp get labels from the beginning (respectively,
end) of the sequence A;, and among the pendant branches incident on zg,
the center of one branch gets the last label of A; while the centers of the
rest of these branches get labels from the beginning of A,. If L is of type (k)
(respectively, (1)) , then we replace even branches with pendant branches
(respectively, even branches with pendant branches and odd branches with
even branches) in the proof for the lobsters of type (d). If L is of type (m),
then we repeat step 2(i) in the proof involving the lobsters in (a) derived
from those of type (a) in Table 3.4.

(ii) The centers of the branches incident on z;, 1 < i < m, in L get labels as
described in step 2 in the proof involving the respective lobsters mentioned
in the second column of Table 3.5. o

Remark 3.8 In all the lobsters to which we give graceful labelings in this
paper, the vertex z,, gets the largest label and z,,_; gets the label 0.
Therefore, we get more graceful lobsters by attaching a caterpillar to the
vertex Tm, or by attaching a suitable caterpillar (any number of pendant
branches or an odd (or even) branch, or a combination of both) to the
vertex z,,—; in any of the lobsters discussed in Theorem 3.3, 3.4, and 3.6.

4 Conclusion

In this paper we give graceful labelings to several types of lobsters. The
lobsters which appear in Theorems 3.3, 3.4, and 3.7 have the following
properties.
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1. The degree of xp is at least two, the degree of each z;, 1 <i<m -1,
is at least four, and the degree of z,, is at least three.

2. If some (or all) z;, 1 < i < m, is attached to a combination of all
three types of branches, then this combination is either of the type (o, 0, €)
or (e,e,e). However, if z¢ is attached to all three types of branches then
the combination may be from all possible combinations in which the total
number of branches is odd.

3. We can partition the vertices of the central path into at most five parts
such that the vertices in each part appear consecutively in the central path
and are attached to the same combination (z,y, z) of branches. For ex-
ample, in the lobsters of type (a) in Table 3.1 the central path have been
partitioned into exactly five parts.

In this paper we also cover the graceful lobsters (as discussed in Remark
3.8) in which for some ¢, 1 <t < m, the vertices z;, t+1 < ¢ < m, and the
branches incident on them induce a caterpillar, while the vertices z;, 0 <
1 < t, exhibit the properties 1, 2, and 3 above. Bermond’s conjecture
will be resolved if one can give graceful labeling to lobsters in which any
vertex of the central path is attached to an arbitrary combination (z,y, z)
of branches or no branch.
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