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ABSTRACT. In this paper g-analogues of the Pascal matrix and the
symmetric Pascal matrix are studied. It is shown that the g-Pascal
matrix 7, can be factorized by special matrices and the symmetric
g-Pascal matrix @, has the LDU-factorization and the Cholesky fac-
torization. As by products, some g-binomial identities are produced
by linear algebra. Furthermore these matrices are generalized in one
or two variables where a short formula for all powers of ¢g-Pascal func-
tional matrix Pn[z] is given. Finally, it is similar to Pascal functional
matrix, we have the exponential form for g-Pascal functional matrix.

1. INTRODUCTION

Pascal triangle, Pascal matrix are an ancient topic [3]. Nevertheless, it has
carefully been studied only recently; see[l, 2, 4, 5, 6, 7, 9, 14, 15]. Bayat
and Teimoori [2] studied the generalized Pascal matrix by defining the
polynomials “ Factorial Binomial ”. El-Mikkawy and Cheon [7, 9] inves-
tigated the generalized Pascal matrix associated with the hypergeometric
function. In [6], Factorizations of the Pascal-type matrices obtained from
the two kinds Stirling numbers have been obtained.

The (n + 1) x (n + 1) Pascal matrix P, and symmetric Pascal matrix @,
are defined by P,(3,j) = (;) and Qn(4,j) := (i"JTj), respectively. In [4],
Brawer and Pirovino have shown Pascal matrix to be factorized by special
summation matrices and symmetric Pascal matrix to have the Cholesky
factorization by the Gaussian elimination method.
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More generally, for a nonzero real variable z, the Pascal matrix was gen-
eralized in Pp[z], Qn[z] and R,[z], respectively which are defined in [14],
and these generalized Pascal matrices were also extended in ®,[z,y] and
U, [z,y] (see [15]) for any two nonzero real variables z and y where

B, (z,y34,5) = ot Iyi+ C) i,7=0,1,...,n, with(;,) =0, ifi < j,

and

\Iln(x,y;i,j)=xi"'y"+"<’;’), i,j=0,1,...,n,
respectively. In [14] and [15], the factorizations of P,[z], Qn[z], Rn[z],
®,(z,y] and ¥, [z, y] are obtained, respectively.

In Sections 2 and 3, we study the (n + 1) x (n + 1) g-Pascal matrix and
symmetric g-Pascal matrix whose elements are related to g-binomial coef-
ficients. As a consequence it is shown that g-Pascal matrix and symmetric
g-Pascal matrix have analogous factorization of Pascal matrix and sym-
metric Pascal matrix. Furthermore, in Section 4, ¢-Pascal matrix and sym-
metric g-Pascal matrix are generalized in one or two variables. Similarly,
their factorizations are obtained. Moreover, in Section 5, we give a simple
formula for Powers of the g-Pascal functional matrix. Finally, it is simi-
lar to Pascal functional matrix, we have the exponential form for g-Pascal
functional matrix.

2. FACTORIZATION OF THE ¢-PASCAL MATRIX

Definition 2.1. We define the (n + 1) x (n + 1) g-Pascal matriz P,=P, 4
by

Pa(i,j) = [;] i,j=0,1,...,n,

where [;] = [;]q are the Gaussian polynomials, or g-binomial coefficients:

i e i B
| :=0ifi<j and | =—=——=ifi>jforij€eN,
[J] ’ LJ Gl —gn =T

6] = [ilg! = )i — 1)+ [1], [O)! =1, [i) = [d)y = (1 — ¢')/(1 = g).
The g-Pascal matrix P, is characterized by its construction rule:
Pn(z, 1) := Pp(i,0):=1fori =0,1,...,n, Pn(i,j):=0ifi < j,
Ppn(i,7) :=Pn(i—1,7) + ¢ I Pp(i—1,j—-1) fori,j=1,2,...,n (2.1)
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As in [4], we list several definitions which will be required in the develop-
ment of this paper. For any nonnegative integers n and k, the (n+1)x(n+1)

matrices I, S,(,k), ’Ds,k), and P,(,k) are defined by

I, := diag(1,1,...,1),
G-k ifg>
W - 9 ifi>g, ..
Sn (z’]) L {0 ifi<j, z’J—O,]-y-.-;n)
D®(G,5) == 1, for i=0,1,...,n,
DW(i+1,i) = —gf, for i=0,1,...,n—1,
DP(,5) = O, for i<jorj<i-l1,

PG, 5) = Pali,)g 9%,

Clearly, ) = P,. Furthermore we need the (n + 1) x (n + 1) matrices

, 1 of
PR = [0 o |
R (2
[T 0
Fr = nOk 1 D,E:n_k)]’ k=1,2,...,n—1, and f;!:=D1(10)’
([ —k— 0
G = k=1 (n-k)|» k=1,2,...,m =1, and G, =S80,
Y Sk

It is easy to see that
DO~ =8¢ and F! =G
Lemma 2.2. For any nonnegative integer k, one has
DB = Plk+D), (2:2)

Proof: It is clear that the (i, 5)-entry of D pik) equals 0 if ¢ < 4, and
equals 1 if i = 4, and it is easily verified that (D$FB)(5,0) = 0, for
i=0,1,...,n. Now suppose i > j. By the definition of the matrix product
and the recurrence (2.1) we get that for i > j > 0:

(DPPIN G, 5) = PFG5) - PP -1,5)
= Pali,7)q¢ % — ¢*Pa(i — 1,5)q Tk (by (2.1))
= Pa(i—1,j - 1)g D
P, 5).
This completes the proof. O

Remark 2.3. In fact, the matrix ‘D,(fc) performs the first Gaussian elimi-
nation step for the matrix P&,
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By Lemma 2.2 and the definition of the F’s, it follows immediately that
AR FPa=1I. or Pa=F R4 R (2.3)
Therefore, we have

Theorem 2.4. The q-Pascal matriz P, can be factorized by the matrices

G 's:

Pn = gngn—l tte gl . (2.4)
For example, when n=3, we have the following factorization
1 000 1 0 00 10 0 0
Dy = 1100 0 1 00 01 0 O
3711110 0 ¢g 10 00 10
1111 0 ¢ ¢ 1 0 0 ¢2 1

From (2.3) we immediately get factorization of the inverse of g-Pascal ma-
trix:

Pl=RR - Fu="P, (2.5)
where B, (s, 5) = (—1)" 7 Pa(i, 1)a( 7).

In fact, it follows (see also [8], P118.) from A% - F, = P, or P =P,
by means of a simple computation.

3. THE CHOLESKY FACTORIZATION OF THE SYMMETRIC ¢-PASCAL
MATRIX

Definition 3.1. We define the symmetric q-Pascal matriz Q, as

Qu(iyj) = [i 7 ]

, t,3=01,...,n

Obviously, @n(i,5) = @a(4,%), @n(i,J) = Pn(i + 4,5). Thus, by the re-
cursion of the g-Pascal matrix P, the elements of Q, obey the following
construction rule:

Q.(0,7) := Qnp(,0) ;=1 for 4,7=0,1,...,n,
Qn('l,]) = Qn('l"l,J)"*‘qun(?:,J—l) fOl' i)j=112)"':n' (31)
By Lemma 2.2, the matrix equation A% - F,P, = I, shows that the
g-Pascal matrix P, is changed into the unit matrix I, by Gaussian elimi-

nation method. Similarly, @, can be changed into upper triangular by the
matrices A, k=1,2,...,n.
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Lemma 3.2. One has
where P, (i, ) := ’Pn(z',j)qj’, i,j=0,1,...,n

Proof: First assume ¢ > j. Applying the ¢-Vandermonde convolution

formula
[a:b] v [ H k(b=n-+K) (3.3)

)
(M
[;6] [jik]qk("-ﬂk)
- 7]

For the case i < j we have similar result. It implies that P,PT = Q,, and
from (2.3) we obtain (3.2). o

we obtain

(PP, 4)

.’r[v]u be/]z

s

From (3.2) and (2.3), it is easy to deduce the following result:
Q. =P, PL. (3.4)
Furthermore,
P, = Pudiag(l,q,q%,... ,q"z)
= (Pndiag(l,q%,qz,...,q’i‘“z))diag(l,q%,qz,...,q’i‘”z).

So we can immediately get the LDU-factorization and the Cholesky fac-
torization of Q,,.

Theorem 3.3. The LDU -factorization and Cholesky factorization for Q,
is given by B
Q, =PI, PT (3.5)
and N
Qn =P, PT, (3.6)
respectively, where T,, := diag(1,q,4%,...,4%), Pn(6,5) = Puli, )" /2,
4,j=0,1,...,n

From (3.5) and (2.5) we have factorization of the inverse of symmetric
g-Pascal matrix:

Q;I = ﬁffil'ﬁn (3.7)
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By carrying out the multiplication of the equation (3.4) we obtain an iden-
tity for the ¢g-binomial coefficients:

Corollary 3.4. Fori,j=0,1,...,n, one has
pEIHIH
[ j ; ]

We notice that this corollary follows also from (3.3) with a — 4, b — j and
n— j.

Remark 3.5. The diagonal entries of the matrix Q,, are essentially the
g-Catalan numbers [13], which are defined as

Ci(q) == ﬁ [2:]

Therefore we have

KTk 2 2k
Qn(k, k) = g [l} ¢" = [ k ] =[k+1]Ci(g), k2>0.
From the matrix equation (3.7) or I,, = Qn'ﬁ,f i’; 1P, we find
Corollary 3.6. Fori,j=0,1,...,n, one has

R o [

k=0 l=0

Corollary 3.4 and 3.6 yield
Corollary 3.7. Fori,j=0,1,...,n, one has

S s er e

k=0 l=0 m=0

4. FACTORIZATION OF THE ¢-PASCAL FUNCTIONAL MATRIX

We generalize g-Pascal matrix in one variable as follows:

Definition 4.1. Let x be any real number. The g-Pascal functional matriz
of the first kind, P,[z], is defined for 4,5 =0,1,...,n as

[ e itizg,
. = J =
Pn(z;4,5) { 0 otherwise.
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Here and in the sequel to this paper, for convenience, we set 0° := 1. Then
P,[0] equals the identity matrix. Obviously, P,[1] = P, and Pn[z]=Py[z]
if g = 1; see [5, 14].
Define (n + 1) x (n + 1) matrix SH [z] and D) [z] by

5W9(x;4,5) = 8P, 5)2*~7 and  D(=34,5) = DI (G, )z* 7,
respectively. Then for k=1,2,...,n-1

Al = "0 pt

e O[]
0 chn_k)[a:]], and .7:;,[:8] : Dn [x],

k- 0
Gk[z] :=[ Ok ! S,(cn—k)[z]], and Gn[z] := S©[z].

Clearly, Fi[z] = G '[z], k =1,2,...,n. We need again the (n+1) x (n+1)
matrices Wy [z], Un[z], Tnlz], Whiz, ], Un[z,y):

Tnlz] := diag(l,z,...,2"),

Wiz, 434, 5) := S G, f)e* =3y,

Un(z, 333, 5) := DD (3, 5)a 3y,

Whz] := Wi|1, 2],

Up[z] := Un[1,2).

By definition, we see that

S®Nz] = FulzlSP I 2],
Grlz] = TulzlGeT, 2],
Palz] = Tulz]Pnd; (2l

Hence, by Theorem 2.4 we have

Pn[:l?] = jn[zlgngn—l Tt gljf;—l[w]
(Jn[‘”]gnjn_l[x])(Jn[x]gn—ljn_I[x]) e (Jn[J’]gpyn_l[-T])
= Gplz]Gn-1lz]- - Gilz]).

Theorem 4.2. Let x be any nonzero real number. The g-Pascal functional
matriz of the first kind Pp|z] can be factorized by the matrices Gi[z]:

Pnlz] = Gnlz|Gn-1(z] - - - Gi[z]. (4.1)

For the inverse of P,[z], we get
P le] = 67 (@)G5 (2] -+~ 67 ) = Alel RBole] - - Fulal,
which implies, together with (2.5), that the following relation holds
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Theorem 4.3. One has
Prllz] = Alz]Rla] - Fule] = Palz], (4.2)

where By (231, 5) = Pal, gl 7 ) (=2) 7.
Definition 4.4. Let z be any real number. The g-Pascal functional matriz
of the second kind, Ry[z], is defined for i, =0,1,...,n as

[z:] i ifi>j
i3} = J - !
Rn(z;,7) { 0 otherwise.

It is easy to see that
Rnle] = Tnlz]PnTnlz] or Ralz] = Pula]Tnle?),

where J,[z?] = diag(1,z?,...,2%"). Thus, by (2.4) and (4.1), we have

Ralz] = Walz]Ga-1[z™"] -+ Gi[z™"]
or

Ralz] = Gn(2]Gn-1lz] - G1[2] Ju[2?].
Using (2.5) and (4.2), we get

Ra'e) = T 2Py Ty el = Al Rl Faca [z Ua[2]
or
Re] = T 1P ] = Tnle~?) Ale) Relz] - - - Fula].

Theorem 4.5. Let x be any nonzero real number. Then

(i) The g-Pascal functional matriz of the second kind R,[z] can be fac-

torized by the matrices Gi[z] and the diagonal matriz J,[z?]

Ren[z] = Walz]Gn-1[z7"] - Gi[z7] (4.3)
or

R[] = GnlzlGn-1lz] - Ga[z) Tn[z?). (4.4)

(ii) The inverse of the g-Pascal functional matriz of the second kind can
be factorized by the diagonal matriz Jn[z~2] and the matrices Fi|z]

Rzl = Az~ Rz Facalo™ Un 2] (4.5)
or
R [z] = Tnle 2| A [z)Rela] - - - Ful2). (4.6)
Definition 4.6. Let = be any nonzero real number. The symmetric g-
Pascal functional matriz, Qn|z], is defined for 7,5 =0,1,...,n as
o [z ifi> 7,
Qn(z;,5) = { 0J otherwise.
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Evidently, Qy,[z] = J»[r]@nJx[z]. By Theorem 3.3 we have
Onlz] = Jnlz)QnTnlz] = Tule]PaZ.PL Tnlz] )
(Tn )P [2))In (Ju[2]PT Tulz]) = PalalTaRE[a].

Theorem 4.7. Let x be any nonzero real number. The LDU-factorization
and Cholesky factorization for symmetric g-Pascal functional matriz Qy[z]
are given by

On[z] = PalzlZT.RE[z] (4.7)
and

Qnlz] = On[210% [al, (4.8)
respectively, where O, (z;4,7) := Pa(i,§)¢ /22, i,7=0,1,...,n.

As seen in Definition 4.1, 4.4, 4.6, the g-Pascal functional matrices and the
symmetric g-Pascal functional matrix have been defined for one variable z.
Now we generalize these definitions for two variables = and y.

Definition 4.8. Let z and y be any two nonzero real numbers. We define
the (n + 1) x (n + 1) matrices Pp[z,y] and Q,[z,y] for i, =0,1,...,n by
. [(]at-dyit  ifix>j,
: = J -
Pr(@,334,9) { 0 otherwise,

and [+]
o Higi-dyiti ifi>
. = J =)
Q. (:L‘, v .7) { 0 otherwise.

By definition, we see that
Pﬂ[z’ 1] = pﬂ[“’]? ’Pn[layl = Rﬂ(ylr Qﬂ[l’y] = Q‘n[y]'

It is easy to see that the following theorems hold by the similar arguments
for P,lz] and Qn[z].

Theorem 4.9. Let x and y be any two nonzero real numbers. Then the
following results hold

(a') Pﬂ[_xx y] = Pﬂ[‘r’ _y]7

(®)  Qnl-z,y] = Qulz, -y,

© Pille,y] = Pal-2,y7") = Pulz,—y7Y],

(d) Pulz,y] = Walz,yGn-1[zy~] - Gi[ey™],

() Pillz,y] = Aley | Rlzy ™' Faoiloy ™ WUnle, ul,
(f)  Qnle,y] = Palz, y)TnPT [z~ y]) = Pulzy|Z.PT [z, ).
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For the previous several kinds of g-Pascal matrix, we also can get

Theorem 4.10.

detP, == detP, =1,

detQ, = detP, = (detﬁn)2 = gén(n+1)@n+1)
detP,[x] = detPp[z] = 1,

detR,[z] = xn(n+l)’

detQp[z] = (det’.@,,[g;])2 = gnt1)(2n+1)/6 n(nt1)
detPn[z,y) = detQnlz, y) = y™"*).

5. POWERS OF THE ¢g-PASCAL FUNCTIONAL MATRIX

Let us consider again the g-Pascal matrix P,. It turns out that there is
a short formula for the elements of all powers of B,. To do so we let

s = S,(c','g denote the g-numbers

= Y L_h" ] (5.1)

iyteetig=n Tk
ilaeeeig 20

Here, [, " . ] is called a ¢-multinomial coefficient defined by [0 0] =

[ih_" ]q = [n)!/([¢1])!- - - [¢&]!). For instance, S,(co) =1, S,(cl) = k, S,(cz) e

ik
k+(5)(1+q), S§") =1,8"=%r, [#]. The g-numbers Sé") are studied

by Goldman and Rota in [11], where S’é"), i.e. Gp in [11], are called the
Galois numbers. They satisfy the following recurrence:

Grny1 =2Gn+(¢" = 1)Gpn-1, Go=1, G =2.
Theorem 5.1. For any positive integer k, one has
PEla] = PnlxSk] (5.2)

where Pp[xSk] = ([;]S,(ci_j):z"‘j )i

Proof (by induction on k): It clearly holds for k = 1. Suppose that it holds
for a certain k > 1, and we want to prove it for k + 1. With the definition
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of the matrix product and the inductive assumption, we find
(P¥H'al)is = (Palz]Pxlel)i; = (Palz]PalzSk]);

S [ -[pg e

l=j r=0

[ ] i_.i_j i—73 T
N Lj-x JZ Z [ r ][il""’ik]

r=0 i1+ Fig=r
1] peensig 20

_j_ 11, )ik)ik-l»l

iyt bipgg =ied

Appeens ik+12°
[ 4] s
= ;] (zSk+1)"7,
for i > j and it follows that (P*¥+![z]); ; = 0 for i < j. This completes the
proof. m}

For n=3, we write explicitly the following:

Fﬂm 0 o o 17°
31 _ ! 0 0
Bl = e fix A
L [0]13 [1]22 [2]"” [3]
BH 0 0 0
R S I
T [BsPa [Pz [ o |
|

2
0
sl (s [se [3)

where S§V = 3, sy) =3+32 =6+3q S =3+6[3+ 32 =
10 + 8q + 8¢% + ¢°.

Now we consider negative integer powers of P, [z]. To do so we first consider
the following lemma.

Lemma 5.2. For any positive integer k, there holds
Prla) = LT.PE 21T, (5.3)
where fn = diag(l’ _I’Q9 _q R (_1) q(z))-

Proof: By the definition of ﬁdz] (noticing [;] =0, if ¢ < j), we have

Pawsing) = ] e =[] (O Boy

331



or
Pulz) = TP [T
Hence
PHa) = @uPogu 03 = TP L[=Z;). O
Theorem 5.3. For any positive integer k, one has

Prkz) = Pr(zSk o] (54)
where Pn[xSk = ([ ]q(‘_ S(I_])( —z)* _J),,

Proof: By (4.2), (5.3) and (5.2), we get
Prkle) = Prla) = TuBE Al = TR 1 [3Sk ) Ta ! = PalzSi ).
This completes the proof. m]

Now we consider the problem of the calculation for the g-numbers S(").
First of all, we adopt the following conventions. From now on we let ¢; be
the #th unit vector in R**1,i =0,1,...,n, and e := (1,...,1)7 € R**! the
summation vector. Then, we have the following ]emma

Lemma 5.4. For any positive integer k, one has

i .
eFPre=Y [;] SN =50 i=0,1,...,n (5.5)

=0

Proof: This result has been implied by the procedure of the proof of
Theorem 5.1.

Theorem 5.5. The g-numbers S,(c") satisfy the following recurrence rela-

tion:
Sth=1+ Z [ ] ZS"’ s™ =1, =G, (5.6)

i=0 =1

Proof: By Lemma 5.4, we have
n n
n| (n—j n|
- -1
j=0 i=0
namely,

n—1
n i
s -0 =3 7]

=0
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Hence

k n-1
n
st -5 =X [ 7]

j=11i=0
n-1 k
s =1+ 3 (7|8 o
i=0 j=1
For example,
s("’—1+2[ ]1+G s‘"’—1+2[ ]1+Gn+s§"’).

=0 i=0
Lemma 5.6. For any positive integer m, one has

P
eL(Pa—L)fe=0 or Y (-1)"" ( )S{j{‘l) =0, ifp>m. (5.7)
1=0

Proof: First we state that, for any square matrix A having nonzero entries
under the diagonal, the first m rows of A™ are always zero. Thus, if m < p,
the Lemma 5.4 yields for every n > p

P
0 = fP-Lye=Y (3) 17 ehple
=0
P
Set(fsm. o
=0
Theorem 5.7. For any positive integers m and n, one has

S =3 (1) (s e

k=1 1=0 p=!

Proof: By Lemma 5.4 and 5.6, we have

n n—1 n—1
Y5 = Y eLBle=Y eL(P-I.+1.)e
k=1 =0 =0
n—1 1 n-1 n
- YAy ()m-rre=Y 3 (J)enm-Lye
=0

p=0 {1=0 p=0
n l
= Z[ l)]e ) — 1In) e—Z(pnl)ei(’Pn—In)"e
p=0 Li= p=0 +

= 2 (% I)Z yr(7) s -
p=0 =
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Remark 5.8. The identity (5.8) enabled us to reduce the summation to
m summands, the values of which depend only on = for fixed m. The first
two instances of identities (5.8) are as follows.

@ g =[()- (s ()
o S [()- ()« )]s
) -2+ ()

6. THE EXPONENTIAL FORM FOR ¢g-PASCAL FUNCTIONAL MATRIX
In this section we shall use two well-known formulas ([10, 12]):

o [F][]=CIRZ) e

(ii) Euler’s formula: For any positive integer n,

n—1

ey =] (= - d*v) = Z[ ]( DeeBanyt,  (62)
k=0 k=0
(z-9)° = 1.

Theorem 6.1. Let x and y be any two nonzero real numbers. Then we
have

Pala]Paly] = Palz=y]. (6.3)

Proof: Clearly, both P,[z]P,[y] and P.[z—y] are lower triangular, and
have all main diagonal entries equal to 1. So we assume 7 > j and write
i=j+ 1 with ! > 0. Then

!
('Pn[a’]’ﬁnly])i,j = Z(Pﬂ{z])j+l,j+k(ﬁn[y])j+k'j
=0

(12t et o

B k;, [j j l} [llc}('l)kq(g)m“"y" (by(6.2))

]

It

e o
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Call and Velleman (5] found the exponential form of the Pascal matrix P|z].
Now, using the g-exponential function [10] exp,(z) = Y77, ﬁ{]‘-!, we also
can conclude that the g-Pascal functional matrix 7, [z] has an exponential
form.

Theorem 6.2. For any real number z, we have
Pule] = exp,(aLa), (6.4)
where L,, is the (n + 1) x (n + 1) matriz with entries

Cn(i,j)={ 4] fi=5+1,

0 otherwise.

Note that in particular, if ¢ = 1 in Theorem 6.2, then we can get the
following results of Call and Velleman [5]: P,[z] = exp(zL). If taking
z =1 in Theorem 6.2, we have P, = exp,(L,). To prove Theorem 6.2, we
will need the following Lemma.

Lemma 6.3. For every positive integer k, the entries of LX are given by
the formula

otherwise.

Lﬁ(l,]) — { M'/[]]I Zf"' - .7 + k (65)

Proof: By induction on £, it is easy to complete the proof. Note that for
k>n+1 we have £k = 0. O

Proof of Theorem 6.2: Since exp,(z) = Y nr, T%’I'T’ Lk =0fork>n+1,
then we have

expgy(zLyn) Z [k:]' ck.

k=0
Applying Lemma 6.3, exp,(zL,) is a lower triangular matrix, and the di-
agonal entries are all 1. Now suppose ¢ > j, and let i —j = k. Then the only
matrix in the sum above which has a nonzero (i, j) entry is (z*/[k]!)LE, so

zF [i]1
(expy (oLl = () = Tl = [*] ot = Pataiisg).

Similarly to P,[z], P,[z] also has an exponential form.
Theorem 6.4. For any real number z, there holds

Polz] = expy(—xLn), (6.6)

where expy,(z) = 3072, I—rq(")
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Proof: The proof is similar to the proof in Theorem 6.2, hence we omit it
here.

Acknowledgement: The author thanks to the referee for his suggestions which
has improved the original manuscript to the present version.
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