Restrained Domination Excellent Trees

¹Johannes H. Hattingh and ²Michael A. Henning*

¹Department of Mathematics and Statistics Georgia State University Atlanta, Georgia 30303, USA

²School of Mathematical Sciences University of KwaZulu-Natal Pietermaritzburg, 3209 South Africa

Abstract

A set S of vertices in a graph G = (V, E) is a restrained dominating set of G if every vertex not in S is adjacent to a vertex in S and to a vertex in $V \setminus S$. The graph G is called restrained domination excellent if every vertex belongs to some minimum restrained dominating set of G. We provide a characterization of restrained domination excellent trees.

Keywords: restrained domination, excellent trees

AMS subject classification: 05C69

1 Introduction

For a graph G = (V, E), a set S is a dominating set if every vertex in $V \setminus S$ has a neighbor in S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. We call a dominating set of cardinality $\gamma(G)$ a $\gamma(G)$ -set and use similar notation for other parameters. Domination and its many variations have been surveyed in [7, 8].

^{*}Research supported in part by the South African National Research Foundation and the University of KwaZulu-Natal.

In this paper we study a variation on the domination theme called restrained domination, introduced by Telle and Proskurowski [13], albeit indirectly, as a vertex partitioning problem and further studied in [1, 2, 3, 5, 6]. A set $S \subseteq V$ is a restrained dominating set (RDS) if every vertex in $V \setminus S$ is adjacent both to a vertex in S (i.e., S is a dominating set of G) and to a vertex in $V \setminus S$. Every graph has a RDS, since S = V is such a set. The restrained domination number of G, denoted by $\gamma_r(G)$, is the minimum cardinality of a RDS of G. Clearly, $\gamma(G) \leq \gamma_r(G)$. A RDS of G of cardinality $\gamma_r(G)$ we call a $\gamma_r(G)$ -set.

Fricke, Haynes, Hedetniemi, Hedetniemi, and Laskar [4] defined a graph G to be γ -excellent if every vertex of G belongs to some $\gamma(G)$ -set. They showed that the family of γ -excellent trees (trees where every vertex is in some minimum dominating set) is properly contained in the set of i-excellent trees (trees where every vertex is in some minimum independent dominating set). The γ -excellent trees have been characterized by Sumner [12], while the i-excellent trees have been characterized in [9] where it is shown that any such tree of order at least three can be constructed using a double-star as a base tree and recursively applying one of two operations. A constructive characterization of γ_t -excellent trees (trees where every vertex is in some minimum total dominating set) is given in [11]. In this paper, we present a characterization of γ_r -excellent trees (trees where every vertex is in some minimum RDS).

For notation and graph theory terminology we in general follow [7]. Specifically, let G = (V, E) be a graph with vertex set V of order n and edge set E, and let v be a vertex in V. The open neighborhood of v is $N(v) = \{u \in V \mid uv \in E\}$ and its closed neighborhood is the set $N[v] = \{v\} \cup N(v)$. For a set $S \subseteq V$, its open neighborhood is the set $N(S) = \bigcup_{v \in S} N(v)$ and its closed neighborhood is the set $N[S] = N(S) \cup S$.

For ease of presentation, we mostly consider rooted trees. For a vertex v in a (rooted) tree T, we let C(v) and D(v) denote the set of children and descendants, respectively, of v, and we define $D[v] = D(v) \cup \{v\}$. The maximal subtree at v is the subtree of T induced by D[v], and is denoted by T_v . A leaf of T is a vertex of degree 1, while a support vertex of T is a vertex adjacent to a leaf. A strong support vertex is adjacent to at least two leaves. A double star is a tree with exactly two vertices that are not leaves.

For $k \ge 1$ an integer, a k-branch of a tree T is a path P in T of length k (and order k+1) that contains a leaf of T and such that every internal vertex of P has degree 2 in T. A branch of T is a k-branch of T for some $k \ge 1$. If P is a k-branch of T and P is a u-v path where u is a leaf of T,

then we call v a k-branch vertex of T. In particular, a 1-branch vertex of T is a support vertex of T. By attaching a k-branch to a vertex v of a tree T, we mean adding to T a path of order k and joining a leaf of this path to v.

Our aim in this paper is present a characterization of γ_r -excellent trees. For this purpose, we introduce some additional notation. Let G = (V, E) be a graph, and let $u \in V$.

Definition 1. We define the restrained domination number of G relative to u, denoted $\gamma_r^u(G)$, as the minimum cardinality of a RDS in G that contains u. A RDS of cardinality $\gamma_r^u(G)$ containing u we call a $\gamma_r^u(G)$ -set. Hence, the graph G is γ_r -excellent if $\gamma_r^u(G) = \gamma_r(G)$ for every vertex $u \in V$.

Definition 2. We define a type-I almost restrained dominating set (type-I ARDS) of G relative to u as a set $S \subseteq V \setminus \{u\}$ such that S dominates $V \setminus \{u\}$ (possibly, S also dominates u) and $G[V \setminus S]$ has no isolated vertex.

Definition 3. We define a type-II almost restrained dominating set (type-II ARDS) of G relative to u as a set $S \subseteq V \setminus \{u\}$ such that S dominates V and $G[V \setminus S]$ has no isolated vertex, except possibly for the vertex u.

Definition 4. We define an almost restrained dominating set (ARDS) of G relative to u as a type-I ARDS or a type-II ARDS of G relative to u.

Definition 5. The almost restrained domination number of G relative to u, denoted $\gamma_r(G;u)$, is the minimum cardinality of an ARDS of G relative to u. An ARDS of G relative to u of cardinality $\gamma_r(G;u)$ we call a $\gamma_r(G;u)$ -set. A type-I (respectively, type-II) ARDS of G relative to u of cardinality $\gamma_r(G;u)$ we call a type-I (respectively, type-II) $\gamma_r(G;u)$ -set.

Definition 6. We say that G is γ_r -excellent relative to u if

- $\bullet \ \gamma_r^u(G) = \gamma_r(G; u) + 1,$
- \bullet there exists both a type-I and a type-II $\gamma_{\tau}(G;u)\text{-set,}$ and
- every vertex of G is in some $\gamma_r^u(G)$ -set or in some $\gamma_r(G; u)$ -set.

2 The Family \mathcal{F}

We define the family \mathcal{F} to consist of all trees that can be obtained from a γ_r -excellent tree T' relative to a vertex u of T' by adding a path P_6 to T' and joining u to a central vertex of this path. As an example, the tree T shown in Figure 1 and the tree T shown in Figure 2 both belong to the family \mathcal{F} . (Notice that in both examples, the component T' of T - uv that contains the vertex u is a γ_r -excellent tree relative to a vertex u.)

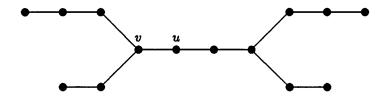


Figure 1: A γ_r -excellent tree T in \mathcal{F} .

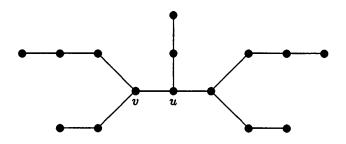


Figure 2: A γ_r -excellent tree T in \mathcal{F} .

3 The Family \mathcal{T}

In this section we construct a family of γ_r -excellent trees. Let T be the family of trees that contain $\{P_2\} \cup \mathcal{F}$ and is closed under the four operations \mathcal{O}_1 , \mathcal{O}_2 , \mathcal{O}_3 and \mathcal{O}_4 listed below, which extend a tree T' by attaching one or more branches to a vertex of T', called its *attacher*. We say that a leaf v of a tree T is a good leaf if T has order at least 3 and there exists a $\gamma_r(T)$ -set that contains N[w] where w is the neighbor of v.

- Operation \mathcal{O}_1 . Attach to a support vertex of T' a 1-branch.
- Operation \mathcal{O}_2 . Attach to a good leaf of T' a 3-branch.
- Operation \mathcal{O}_3 . Attach to a 2-branch vertex of degree 2 in T' a 2-branch and a 3-branch.
- Operation \mathcal{O}_4 . Attach to a 3-branch vertex of degree at least 2 in T' both a 2-branch and a 3-branch.

If $T \in \mathcal{T}$, and T is obtained from a sequence T_1, \ldots, T_m of trees where $T_1 = P_2$ and $T = T_m$, and, if $m \geq 2$, T_{i+1} can be obtained from T_i by

operation \mathcal{O}_1 , \mathcal{O}_2 , \mathcal{O}_3 or \mathcal{O}_4 for $i=1,\ldots,m-1$, then we say that T has length m in T.

4 Preliminary Results

Lemma 1 Let T be a tree that contains a strong support vertex. Let T' be obtained from T by deleting a leaf-neighbor of a strong support vertex. Then, (i) $\gamma_r(T) = \gamma_r(T') + 1$, and (ii) T is γ_r -excellent if and only if T' is γ_r -excellent.

Proof. Let w be a strong support vertex, and let T' = T - v where v is a leaf-neighbor of w. Removing v from a $\gamma_r(T)$ -set produces a RDS of T', and so $\gamma_r(T') \leq \gamma_r(T) - 1$. On the other hand, every RDS of T' can be extended to a RDS of T by adding to it the vertex v, and so $\gamma_r(T) \leq \gamma_r(T') + 1$. This establishes Statement (i). Statement (ii) follows readily from the observation that removing v from a $\gamma_r(T)$ -set produces a $\gamma_r(T')$ -set, while adding v to a $\gamma_r(T')$ -set produces a $\gamma_r(T')$ -set. \square

As an immediate consequence of Lemma 1, we have the following result.

Corollary 1 Let T' be a nontrivial tree and let T be obtained from T' by operation \mathcal{O}_1 . Then, (i) $\gamma_r(T) = \gamma_r(T') + 1$, and (ii) T is γ_r -excellent if and only if T' is γ_r -excellent.

Lemma 2 Let T' be a tree of order at least 3. Let v be a leaf of T' and let w be the neighbor of v. Let T be the tree obtained from T' by adding to it the path x, y, z and the edge vx. Then, (i) $\gamma_r(T) = \gamma_r(T') + 1$, and (ii) if T is γ_r -excellent, then T' is γ_r -excellent and there exists a $\gamma_r(T')$ -set containing N[w].

Proof. We begin the proof by proving two claims.

Claim 1 $\gamma_r(T) \leq \gamma_r(T') + 1$.

Proof. Let S' be a $\gamma_r(T')$ -set. Then, $v \in S'$ and $S' \cup \{z\}$ is a RDS of T, and so $\gamma_r(T) \leq |S' \cup \{z\}| = |S| + 1 = \gamma_r(T') + 1$. \square

Claim 2 $\gamma_r(T') \leq \gamma_r(T) - 1$.

Proof. Let S be a $\gamma_r(T)$ -set, and let $S' = S \cap V(T')$. If $v \in S$, then S' is a RDS of T' and $S \cap \{x,y,z\} = \{z\}$, and so $\gamma_r(T') \leq |S'| = |S| - 1 = \gamma_r(T) - 1$. If $v \notin S$ and $w \in S$, then $S \cap \{x,y,z\} = \{y,z\}$ and $S' \cup \{v\}$ is a RDS of T', and so $\gamma_r(T') \leq |S' \cup \{v\}| = |S'| + 1 = |S| - 1 = \gamma_r(T) - 1$. Hence we may assume that $v \notin S$ and $w \notin S$, for otherwise the desired result follows. Then, $\{x,y,z\} \subset S$. If $S' \cup \{v\}$ is a RDS of T', then, by Claim 1, $\gamma_r(T) - 1 \leq \gamma_r(T') \leq |S' \cup \{v\}| = |S'| + 1 = |S| - 2 = \gamma_r(T) - 2$, which is impossible. Hence, $S' \cup \{v\}$ is not a RDS of T'. However, $S' \cup \{v\}$ is a dominating set of T'. Thus, w must be isolated in $T'[S' \cup \{v\}]$. Hence, $S' \cup \{v,w\}$ is a RDS of T', and so $\gamma_r(T') \leq |S' \cup \{v,w\}| = |S'| + 2 = |S| - 1 = \gamma_r(T) - 1$. \square

We now return to the proof of Lemma 2. Statement (i) of Lemma 2 is a consequence of Claims 1 and 2. To prove Statement (ii), suppose that T is γ_r -excellent. Let $u \in V(T')$ and let S be a $\gamma_r(T)$ -set containing u. Let $S' = S \cap V(T')$. Proceeding exactly as in the proof of Claim 2, we can show that there is a $\gamma_r(T')$ -set containing the set S' (either S' or $S' \cup \{v\}$ or $S' \cup \{v, w\}$ is a $\gamma_r(T')$ -set). Hence there is a $\gamma_r(T')$ -set containing the vertex u. Therefore, T' is γ_r -excellent.

Let D be a $\gamma_r(T)$ -set containing the vertex x, and let $D' = D \cap V(T')$. Then, $\{x, y, z\} \subset D$ and $v \notin D$ (for otherwise, $D \setminus \{x, y\}$ is a RDS, contradicting the minimality of D), and so $w \notin D$. Thus as in the proof of Claim 2, the set $D' \cup \{v, w\}$ is a $\gamma_r(T')$ -set containing N[w]. \square

As a consequence of Lemma 2 we have the following result.

Corollary 2 Let T' be a tree of order at least 3 and let T be obtained from T' by operation \mathcal{O}_2 . Then, (i) $\gamma_r(T) = \gamma_r(T') + 1$ and (ii) T is γ_r -excellent if and only if T' is γ_r -excellent.

Proof. Let v be the attacher of T' (and so, v is a leaf of T') and let w be the neighbor of v in T'. Statement (i) follows by Lemma 2(i). If T is γ_r -excellent, then by Lemma 2(ii), T' is γ_r -excellent. Suppose that T' is γ_r -excellent. Let $u \in V(T')$ and let S' be a $\gamma_r(T')$ -set containing u. Then, $v \in S'$ and $S' \cup \{z\}$ is a $\gamma_r(T)$ -set containing u. If $w \in S'$, then $(S' \setminus \{v\}) \cup \{y, z\}$ is a $\gamma_r(T)$ -set containing y. It remains to show that there is a $\gamma_r(T)$ -set containing x. Since v is a good leaf in T', there is a $\gamma_r(T)$ -set S^* that contains N[w]. Thus the set $(S^* \setminus \{v, w\}) \cup \{x, y, z\}$ is a $\gamma_r(T)$ -set containing the vertex x. Therefore, T is γ_r -excellent. This establishes Statement (ii). \square

Lemma 3 Let T be obtained from a tree T' by operation O_3 . Then, (i)

 $\gamma_r(T) = \gamma_r(T') + 3$ and (ii) T is γ_r -excellent if and only if T' is γ_r -excellent.

Proof. Let v be the attacher of T' (and so, v is a 2-branch vertex of degree 2 in T'), and let v, x, y be a 2-branch of T'. Further, let $N(v) = \{u, x\}$. Let v, x'_1, y'_1 and v, x_1, y_1, z_1 be the 2-branch and 3-branch attached to v when applying operation \mathcal{O}_3 to obtain the tree T. We begin the proof by proving two claims.

Claim 3 $\gamma_r(T) \leq \gamma_r(T') + 3$.

Proof. Let S' be a $\gamma_r(T')$ -set. If $v \in S'$, let $S = S' \cup \{x_1', y_1', z_1\}$, while if $v \notin S$, let $S = S' \cup \{y_1, y_1', z_1\}$. In both cases, S is a RDS of T and |S| = |S'| + 3, whence $\gamma_r(T) \le |S| = \gamma_r(T') + 3$. \square

Claim 4 $\gamma_r(T) \geq \gamma_r(T') + 3$.

Proof. Let S be a $\gamma_r(T)$ -set, and let $S' = S \cap V(T')$. If $v \in S$, then S' is a RDS of T' and $S \setminus S' = \{x'_1, y'_1, z_1\}$, and so $\gamma_r(T') \leq |S'| = |S| - 3 = \gamma_r(T) - 3$. Hence we may assume that $v \notin S$, for otherwise the desired result follows. Then, $\{y, y_1, y'_1, z_1\} \subset S$. If $|S \cap \{x, x_1, x'_1\}| \geq 2$, then removing all but one vertex from this intersection produces a RDS of T, contradicting the minimality of S. Hence, $|S \cap \{x, x_1, x'_1\}| \leq 1$. If $S \cap \{x, x_1, x'_1\} = \emptyset$, then |S'| = |S| - 3 and S' is a RDS of T'. On the other hand, suppose $|S \cap \{x, x_1, x'_1\}| = 1$. Without loss of generality, we may assume $x \in S$. Thus, |S'| = |S| - 3. If $u \in S$, then $S \setminus \{x\}$ is a RDS of T, a contradiction. Hence, $S \cap N[v] = \{x\}$, and so S' is a RDS of T'. Thus, in both cases S' is a RDS of T' and |S'| = |S| - 3, whence $\gamma_r(T') \leq |S'| = \gamma_r(T) - 3$. \square

Statement (i) of Lemma 3 is an immediate consequence of Claims 3 and 4.

Claim 5 If T' is γ_r -excellent, then T is γ_r -excellent.

Proof. Let $w \in V(T')$ and let S' be a $\gamma_r(T')$ -set containing w. If $v \notin S'$, then $S' \cup \{y_1, y_1', z_1\}$ is a $\gamma_r(T)$ -set containing w. If $v \in S'$, then $S' \cup \{x_1', y_1', z_1\}$ is a $\gamma_r(T)$ -set containing w. Observe that if w = u, then $v \notin S'$, while if w = v, then $v \in S'$. Hence it remains to show that there is a $\gamma_r(T)$ -set containing the vertex x. Suppose $v \in S^*$. If $u \in S^*$, then $S^* \setminus \{v, x\}$ is a RDS of T', contradicting the minimality of S^* . Hence, $u \notin S^*$. The set $(S^* \setminus \{v, x\}) \cup \{u\}$ is

not a RDS of T' but is a dominating set of T'. Hence there must be a neighbor w of u such that $w \notin S^*$ and w is isolated in $T'[S^* \cup \{u\}]$. But then $(S^* \setminus \{v, x\}) \cup \{w\}$ is a RDS of T', contradicting the minimality of S^* . Hence, $v \notin S^*$. Thus, $(S^* \setminus \{x\}) \cup \{x_1, y_1, y_1', z_1\}$ is a RDS of T of cardinality $|S^*| + 3 = \gamma_r(T') + 3 = \gamma_r(T)$ and is therefore a $\gamma_r(T)$ -set containing the vertex x_1 . Therefore, T is γ_r -excellent. \square

Claim 6 If T is γ_r -excellent, then T' is γ_r -excellent.

Proof. Let $w \in V(T')$ and let S be a $\gamma_r(T)$ -set containing w. Let $S' = S \cap V(T')$. If $v \in S$, then $S \setminus S' = \{x_1', y_1', z_1\}$ and S' is a RDS of T' of cardinality $|S| - 3 = \gamma_r(T) - 3 = \gamma_r(T')$ and is therefore a $\gamma_r(T')$ -set containing the vertex w. If $v \notin S$, then proceeding as in the proof of Claim 4, we can choose such a set S so that S' is a RDS of T' and |S'| = |S| - 3. Thus, S' is a $\gamma_r(T')$ -set containing the vertex w. Hence, T' is γ_r -excellent. \square

Statement (ii) of Lemma 3 is an immediate consequence of Claims 5 and 6. This completes the proof of Lemma 3. \square

Lemma 4 Let T be obtained from a tree T' by operation \mathcal{O}_4 . Then, (i) $\gamma_r(T) = \gamma_r(T') + 3$ and (ii) T is γ_r -excellent if and only if T' is γ_r -excellent.

Proof. Let v be the attacher of T' (and so, v is a 3-branch vertex of degree at least 2 in T'), and let v, x, y, z be a 3-branch of T'. Further, let $U = N(v) \setminus \{x\}$ in T'. Let v, x'_1, y'_1 and v, x_1, y_1, z_1 be the 2-branch and 3-branch, respectively, attached to v when applying operation \mathcal{O}_4 to obtain the tree T. We begin the proof by proving two claims.

Claim 7 $\gamma_r(T) \leq \gamma_r(T') + 3$.

Proof. Let S' be a $\gamma_r(T')$ -set. If $v \in S'$, let $S = S' \cup \{x_1', y_1', z_1\}$, while if $v \notin S$, let $S = S' \cup \{y_1, y_1', z_1\}$. In both cases, S is a RDS of T, and so $\gamma_r(T) \leq |S| = |S'| + 3 = \gamma_r(T') + 3$. \square

Claim 8 $\gamma_r(T) \geq \gamma_r(T') + 3$.

Proof. Let S be a $\gamma_r(T)$ -set, and let $S' = S \cap V(T')$. If $v \in S$, then S' is a RDS of T' and $S \setminus S' = \{x'_1, y'_1, z_1\}$, and so $\gamma_r(T') \leq |S'| = |S| - |S|$

 $3=\gamma_r(T)-3$. Hence we may assume that $v\notin S$, for otherwise the desired result follows. Then, $\{y,y_1,y_1',z,z_1\}\subset S$. If $|S\cap\{x,x_1,x_1'\}|\geq 2$, then removing all but one vertex from this intersection produces a RDS of T, contradicting the minimality of S. Hence, $|S\cap\{x,x_1,x_1'\}|\leq 1$. If $S\cap\{x,x_1,x_1'\}=\emptyset$, then |S'|=|S|-3 and S' is a RDS of T'. On the other hand, suppose $|S\cap\{x,x_1,x_1'\}|=1$. Without loss of generality, we may assume $x\in S$. Thus, |S'|=|S|-3. If $|S\cap U|\geq 1$, then $S\setminus\{x\}$ is a RDS of T, a contradiction. Hence, $S\cap N[v]=\{x\}$, and so S' is a RDS of T'. Thus, in both cases S' is a RDS of T' and |S'|=|S|-3, whence $\gamma_T(T')\leq |S'|=|S'|-3=\gamma_T(T)-3$. \square

Statement (i) of Lemma 4 is an immediate consequence of Claims 7 and 8.

Claim 9 If T' is γ_r -excellent, then T is γ_r -excellent.

Proof. Let $w \in V(T')$ and let S' be a $\gamma_r(T')$ -set containing w. If $v \notin S'$, then $S' \cup \{y_1, y_1', z_1\}$ is a $\gamma_r(T)$ -set containing w. If $v \in S'$, then $S' \cup \{x_1', y_1', z_1\}$ is a $\gamma_r(T)$ -set containing w. Observe that if w = x, then $v \notin S'$, while if w = v, then $v \in S'$. Hence it remains to show that there is a $\gamma_r(T)$ -set containing the vertex x_1 . Let S^* be a $\gamma_r(T')$ -set containing the vertex x. Then, $\{y, z\} \subset S^*$. If $v \in S^*$, then $S^* \setminus \{x, y\}$ is a RDS of T', contradicting the minimality of S^* . Hence, $v \notin S^*$. Thus, $(S^* \setminus \{x\}) \cup \{x_1, y_1, y_1', z_1\}$ is a RDS of T of cardinality $|S^*| + 3 = \gamma_r(T') + 3 = \gamma_r(T)$ and is therefore a $\gamma_r(T)$ -set containing the vertex x_1 . Hence, T is γ_r -excellent. \square

Claim 10 If T is γ_r -excellent, then T' is γ_r -excellent.

Proof. Let $w \in V(T')$ and let S be a $\gamma_r(T)$ -set containing w. Let $S' = S \cap V(T')$. If $v \in S$, then $S \setminus S' = \{x_1', y_1', z_1\}$ and S' is a RDS of T' of cardinality $|S| - 3 = \gamma_r(T) - 3 = \gamma_r(T')$ and is therefore a $\gamma_r(T')$ -set containing the vertex w. If $v \notin S$, then proceeding as in the proof of Claim 8, we can choose such a set S so that S' is a RDS of T' and |S'| = |S| - 3. Thus, S' is a $\gamma_r(T')$ -set containing the vertex w. Hence, T' is γ_r -excellent. \square

Statement (ii) of Lemma 4 is an immediate consequence of Claims 9 and 10. This completes the proof of Lemma 4. \square

Lemma 5 If $T \in \mathcal{F}$, then T is a γ_r -excellent tree.

Proof. The tree T can be obtained from a γ_r -excellent tree T' relative to a vertex u of T' by adding a path P_6 : a, b, c, d, e, f and the edge ud to T'.

We show first that $\gamma^u_r(T') = \gamma_r(T) - 3$. Every $\gamma^u_r(T')$ -set can be extended to a RDS of T by adding to it the vertices in the set $\{a,b,f\}$, and so $\gamma_r(T) \leq \gamma^u_r(T') + 3$. Conversely, let S be a $\gamma_r(T)$ -set and let S' be the restriction of S to the tree T', i.e., $S' = S \cap V(T')$. If $u \in S$, then S' is a RDS of T' containing u and $S \setminus S' = \{a,b,f\}$. Thus, $\gamma^u_r(T') \leq |S'| = |S| - 3 = \gamma_r(T) - 3$. If $u \notin S'$, then S' is an ARDS of T' relative to u and $|S \setminus S'| = 4$, and so $\gamma^u_r(T') - 1 = \gamma_r(T'; u) \leq |S'| = |S| - 4 = \gamma_r(T) - 4$, whence $\gamma^u_r(T') \leq \gamma_r(T) - 3$. Consequently, $\gamma^u_r(T') = \gamma_r(T) - 3$.

Let $v \in V(T')$. Since T' is a γ_r -excellent tree relative to the vertex u, there is a set S_v containing the vertex v that is a $\gamma_r^u(T')$ -set or a $\gamma_r(T';u)$ -set. If S_v is a $\gamma_r^u(T')$ -set, then the set $S_v \cup \{a,b,f\}$ is a $\gamma_r(T)$ -set containing v. If S_v is a $\gamma_r(T';u)$ -set, then the set $S_v \cup \{a,d,e,f\}$ or the set $S_v \cup \{a,b,c,f\}$ is a $\gamma_r(T)$ -set containing v (observe that $\gamma_r(T';u)+4=\gamma_r^u(T')+3=\gamma_r(T)$). Hence every vertex in V(T') is in some $\gamma_r(T)$ -set.

It remains for us to establish that every vertex in $V(T) \setminus V(T')$ is in some $\gamma_r(T)$ -set. Every $\gamma_r^u(T')$ -set can be extended to a $\gamma_r(T)$ -set by adding to it the vertices in the set $\{a,b,f\}$. Since T' is a γ_r -excellent tree relative to the vertex u, there exists both a type-I and a type-II $\gamma_r(T';u)$ -set. Let D_1 be a type-I $\gamma_r(T';u)$ -set and let D_2 be a type-II $\gamma_r(T';u)$ -set. Then, D_1 can be extended to a $\gamma_r(T)$ -set by adding to it the vertices in the set $\{a,d,e,f\}$, while D_2 can be extended to a $\gamma_r(T)$ -set by adding to it the vertices in the set $\{a,b,c,f\}$. Hence, every vertex in $V(T) \setminus V(T')$ is in some $\gamma_r(T)$ -set. \square

Lemma 6 If $T \in \mathcal{T}$, then T is a γ_r -excellent tree.

Proof. We proceed by induction on the length m of the sequence of trees needed to construct the tree $T \in \mathcal{T}$. If m=1, then $T=P_2$, which is a γ_r -excellent tree, or $T \in \mathcal{F}$ and T is a γ_r -excellent tree by Lemma 6. This establishes the base case. Assume, then, that the result holds for all trees in \mathcal{T} of length less than m, where $m \geq 2$. Let T be a tree of length m in \mathcal{T} . Thus, $T \in \mathcal{T}$ can be obtained from a sequence T_1, T_2, \ldots, T_m of m trees where $T_1 = P_2$ and $T = T_m$, and for $i = 1, \ldots, m-1$, the tree T_{i+1} can be obtained from T_i by operation \mathcal{O}_1 , \mathcal{O}_2 , \mathcal{O}_3 or \mathcal{O}_4 . Applying the inductive hypothesis to the tree $T' = T_{m-1} \in \mathcal{T}$, we have that T' is a γ_r -excellent tree. Since the tree T is obtained from T' by operation \mathcal{O}_1 , \mathcal{O}_2 , \mathcal{O}_3 or \mathcal{O}_4 , the desired result follows from Corollary 1, Corollary 2, Lemma 3 and Lemma 4. \square

5 Main Result

Theorem 7 A nontrivial tree T is a γ_r -excellent tree if and only if $T \in \mathcal{T}$.

Proof. The sufficiency follows from Lemma 6. To prove the necessity, we proceed by induction on the order $n \geq 2$ of a γ_r -excellent tree T. If n=2, then $T=P_2 \in \mathcal{T}$. This establishes the base case. Assume then that $n\geq 3$ and that if T' is a γ_r -excellent tree of order at least 2 but less than n, then $T' \in \mathcal{T}$. Let T be a γ_r -excellent tree of order n. If T is a star, then T can be obtained from P_2 by repeated applications of operation \mathcal{O}_1 , and so $T \in \mathcal{T}$. Hence we may assume that diam $T \geq 3$.

If diam T=3, then T is a double star and the set of leaves of T is a unique $\gamma_r(T)$ -set. But then T is not γ_r -excellent, a contradiction. Hence, diam $T \ge 4$ (and so, $n \ge 5$).

Suppose that T has a strong support vertex w with v as one of its leafneighbors. Let T'=T-v. By Lemma 1, T' is γ_r -excellent. Applying the inductive hypothesis to T', we have $T'\in \mathcal{T}$. We can now restore the tree T from T' by applying operation \mathcal{O}_1 with w as the attacher, and so $T\in \mathcal{T}$. Thus we may assume that T has no strong support vertex, for otherwise $T\in \mathcal{T}$ as required.

Let T be rooted at a leaf r of a longest path P. Let P be a r-z path, and let y be the neighbor of z. Then, z is a leaf and y is a support vertex. By assumption, $\deg_T y = 2$. Let x denote the parent of y on this path, y denote the parent of x, and y the parent of y. We show that $\deg_T x = 2$.

Claim 11 $\deg_T x = 2$.

Proof. Suppose that $\deg_T x \geq 3$ and consider a $\gamma_\tau(T)$ -set S that contains the vertex x. Then, every descendant of x is in S. In particular, $\{y,z\} \subset S$. If $v \in S$, then $S \setminus \{x,y\}$ is a RDS of T, contradicting the minimality of S. Hence, $v \notin S$. Let $S' = (S \setminus \{x,y\}) \cup \{v\}$. By the minimality of S, the set S' is not a RDS. However, S' is a dominating set. This implies that there exists a vertex $w \notin S'$ such that $N(w) \subset S'$. Necessarily, $w \in N(v) \setminus \{x\}$. It now follows that $(S \setminus \{x,y\}) \cup \{w\}$ is a RDS of T, contradicting the minimality of S. Hence, $\deg_T x = 2$. \square

By Claim 11, every vertex at distance diam(T) - 2 from r on a longest path emanating from r has degree 2.

Suppose that $\deg_T v=2$. Let $T'=T-\{x,y,z\}$. Then, v is a leaf of T'. By Lemma 2(ii), the tree T' is γ_r -excellent. Applying the inductive hypothesis to T', we have $T'\in \mathcal{T}$. By Lemma 2(ii), there exists a $\gamma_r(T')$ -set containing N[u]. Hence the vertex v is a good leaf in the tree T'. Thus we can restore the tree T from T' by applying operation \mathcal{O}_2 with v as the attached vertex, and so $T\in \mathcal{T}$. Thus we may assume that $\deg_T v\geq 3$, for otherwise $T\in \mathcal{T}$ as required.

Claim 12 The vertex v is not a support vertex.

Proof. Suppose that v is a support vertex of T. Let S be a $\gamma_r(T)$ -set that contains x. Then, $\{x, y, z\} \subset S$. Since S contains the leaf-neighbor of v, the set $S \setminus \{x\}$ is a RDS of T, contradicting the minimality of S. \square

By Claim 12 and our earlier assumption that there is no strong support vertex, the maximal subtree T_v of v can be obtained from a star $K_{1,k+\ell}$, where $k+\ell \geq 2$ and $k \geq 1$, by subdividing k edges exactly twice and subdividing ℓ edges exactly once. For $i=1,\ldots,k$, let v,x_i,y_i,z_i denote the 3-branches attached to v in T_v (where $x_1=x,y_1=y$ and $z_1=z$), and if $\ell \geq 1$, then for $i=1,\ldots,\ell$, let v,x_i',y_i' denote the 2-branches attached to v in T_v . Let X, Y and Z denote the set of vertices at distance 1, 2 and 3, respectively, from v in T_v . If $\ell \geq 1$, let $X' = \{x_1',\ldots,x_\ell'\}$ and $Y' = \{y_1',\ldots,y_\ell'\}$.

Claim 13 $\ell \leq k+1$.

Proof. Suppose that $\ell \geq k+2$. Let S be a $\gamma_{\tau}(T)$ -set that contains the vertex v. Then, $S \cap V(T_v) = X' \cup Y' \cup Z$. Let $S' = (S \setminus (X' \cup \{v\}) \cup (Y \setminus Y') \cup \{u, x'_{\ell}\}$. Then, S' is a dominating set of T with $|S'| \leq |S| - 1 = \gamma_{\tau}(T) - 1$. By the minimality of the set S, the set S' is not a RDS of T. This implies that there exists a vertex $w \notin S'$ such that $N(w) \subset S'$. Since $N(w) \not\subset S$, it follows that $u \notin S$ and $w \in N(u) \setminus \{v\}$. This implies that $(S' \setminus \{u\}) \cup \{w\}$ is a RDS of T of cardinality $\gamma_{\tau}(T) - 1$ (observe that the vertex v is dominated by the vertex $x'_{\ell} \in S'$ in this RDS), contradicting the minimality of S. Hence, $\ell \leq k+1$. \square

Claim 14 $k-1 \leq \ell$.

Proof. Suppose that $\ell \leq k-2$. Let S be a $\gamma_r(T)$ -set that contains the vertex x_1 . If $v \in S$, then $S \setminus \{x_1, y_1\}$ is a RDS of T, contradicting

the minimality of S. Hence, $v \notin S$. If $u \in S$, then $S \setminus \{x_1\}$ is a RDS of T, a contradiction. Hence, $u \notin S$. Further by the minimality of S, $S \cap V(T_v) = \{x_1\} \cup Y \cup Z$. Let $S' = (S \setminus \{x_1, y_1, \ldots, y_k\}) \cup X' \cup \{v\}$. Then, S' is a dominating set of T with $|S'| = |S| - (k+1) + (\ell+1) = \gamma_r(T) - k + \ell \le \gamma_r(T) - 2$. By the minimality of the set S, the set S' is not a RDS of T. This implies that there exists a vertex $w \notin S'$ such that $N(w) \subset S'$. Since $N(w) \not\subset S$ and $u \notin S$, it follows that u = w. But then $S' \cup \{u\}$ is a RDS of T of cardinality $\gamma_r(T) - 1$, contradicting the minimality of S. Hence, $k-1 \le \ell$. \square

By Claim 13 and Claim 14, $k-1 \le \ell \le k+1$.

If $\ell=k-1$, then let T' be obtained from T by deleting all vertices in T_v except for the path v,x,y,z. Hence, T can be obtained from the tree T' by repeatedly applying operation \mathcal{O}_4 . By Lemma 4, the tree T' is γ_r -excellent. Applying the inductive hypothesis to T', we have $T' \in \mathcal{T}$. Thus we can restore the tree T from T' by repeatedly applying operation \mathcal{O}_4 with v as the attached vertex, and so $T \in \mathcal{T}$.

If $\ell=k+1$, then let T' be obtained from T by deleting all vertices in T_v except for the path v, x_1', y_1' . Hence T can be obtained from the tree T' by first applying operation \mathcal{O}_3 with v as the attached vertex and then, if $k\geq 2$, by repeatedly applying operation \mathcal{O}_4 with v as the attached vertex. By Lemma 3 and Lemma 4, the tree T' is γ_r -excellent. Applying the inductive hypothesis to T', we have $T'\in \mathcal{T}$. Thus we can restore the tree T from T' by applying operation \mathcal{O}_3 and repeatedly applying operation \mathcal{O}_4 with v as the attached vertex, and so $T\in \mathcal{T}$.

If $\ell=k\geq 2$, then let T' be obtained from T by deleting all vertices in T_v except for the path v,x,y,z and the path v,x_1',y_1' . Hence, T can be obtained from the tree T' by repeatedly applying operation \mathcal{O}_4 . By Lemma 4, the tree T' is γ_r -excellent. Applying the inductive hypothesis to T', we have $T'\in \mathcal{T}$, whence $T\in \mathcal{T}$.

Hence we may assume that $k = \ell = 1$, for otherwise $T \in \mathcal{T}$ as desired. Thus the maximal subtree T_v rooted at v is the path z, y, x, v, x'_1, y'_1 . Let $T' = T - V(T_v)$. We proceed further with the following two claims.

Claim 15
$$\gamma_r^u(T') = \gamma_r(T'; u) + 1 = \gamma_r(T) - 3$$
.

Proof. Let S_u be a $\gamma_r(T)$ -set containing the vertex u, and let $S'_u = S_u \cap V(T')$. Then, S'_u is a RDS of T' containing u and $S_u \setminus S'_u = \{y, y'_1, z\}$. Thus, $\gamma_r^u(T') \leq |S'_u| = |S_u| - 3 = \gamma_r(T) - 3$. On the other hand, every

 $\gamma_r^u(T')$ -set can be extended to a RDS of T by adding to it the vertices in the set $\{y, y_1', z\}$, and so $\gamma_r(T) \leq \gamma_r^u(T') + 3$. Consequently, $\gamma_r^u(T') = \gamma_r(T) - 3$.

Let S_x be a $\gamma_r(T)$ -set containing the vertex x, and let $S_x' = S_x \cap V(T')$. Then, $u \notin S_x$ and $S_x \setminus S_x' = \{x, y, y_1', z\}$. Thus, $\gamma_r(T'; u) \le |S_x'| = |S_x| - 4 = \gamma_r(T) - 4$. On the other hand, let D be a $\gamma_r(T'; u)$ -set. Then, $u \notin D$, and D dominates V(T') or $T'[V \setminus D]$ has no isolated vertex. If D dominates V(T'), let $D^* = D \cup \{x, y, y_1', z\}$. If $T'[V \setminus D]$ has no isolated vertex, let $D^* = D \cup \{v, x_1', y_1', z\}$. In both cases, D^* is a RDS of T, and so $\gamma_r(T) \le |D^*| = \gamma_r(T'; u) + 4$. Consequently, $\gamma_r(T'; u) = \gamma_r(T) - 4$. \square

Claim 16 The tree T' is γ_r -excellent relative to u.

Proof. By Claim 15, $\gamma_r^u(T') = \gamma_r(T';u) + 1$. Let S_v be a $\gamma_r(T)$ -set containing the vertex v, and let $S_v' = S_v \cap V(T')$. Then, S_v' is a type-I $\gamma_r(G;u)$ -set. Let S_x be a $\gamma_r(T)$ -set containing the vertex x, and let $S_x' = S_x \cap V(T')$. Then, S_x' is a type-II $\gamma_r(G;u)$ -set. It remains for us to show that every vertex of T' is in some $\gamma_r^u(T')$ -set or in some $\gamma_r(T';u)$ -set. Let $w \in V(T')$. Let S_w be a $\gamma_r(T)$ -set containing w and let $S_w' = S_w \cap V(T')$. If $u \in S_w$, then $S_w \setminus S_w' = \{y, y_1', z\}$. Thus, S_w' is a RDS of T' containing u with $|S_w'| = \gamma_r(T) - 3$. Hence, by Claim 15, S_w' is a $\gamma_r^u(T')$ -set. If $u \notin S_w$, then $|S_w \setminus S_w'| = 4$ and S_w' is a ARDS of T' relative to u with $|S_w'| = \gamma_r(T) - 4$. Hence, by Claim 15, S_w' is a $\gamma_r(T';u)$ -set. \square

By Claim 16, the tree T' is γ_r -excellent relative to u. Since the tree T can be obtained from T' by adding the path z, y, x, v, x'_1, y'_1 and the edge uv, we have that $T \in \mathcal{F} \subset \mathcal{T}$. \square

References

- [1] G. S. Domke, J. H. Hattingh, S. T. Hedetniemi, R. C. Laskar, and L. R. Markus, Restrained domination in graphs. *Discrete Math.* 203 (1999), 61-69.
- [2] G. S. Domke, J. H. Hattingh, M. A. Henning, and L. R. Markus, Restrained domination in graphs with minimum degree two. J. Combin. Math. Combin. Comput. 35 (2000), 239-254.
- [3] G. S. Domke, J. H. Hattingh, M. A. Henning, and L. R. Markus, Restrained domination in trees. *Discrete Math.* 211 (2000), 1-9.

- [4] G. H. Fricke, T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, and R. C. Laskar, Excellent trees. *Bulletin of ICA* 34 (2002), 27-38.
- [5] J. H. Hattingh and M. A. Henning, Characterisations of trees with equal domination parameters. J. Graph Theory 34 (2000), 142-153.
- [6] M. A. Henning, Graphs with large restrained domination number. 16th British Combinatorial Conference (London, 1997). Discrete Math. 197/198 (1999), 415-429.
- [7] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [8] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds), *Domination in Graphs: Advanced Topics*, Marcel Dekker, New York, 1998.
- [9] T. W. Haynes and M. A. Henning, A characterization of *i*-excellent trees. *Discrete Mathematics* 248 (2002), 69-77.
- [10] M.A. Henning, Graphs with large total domination number. J. Graph Theory 35(1) (2000), 21-45.
- [11] M.A. Henning, Total domination excellent trees. Discrete Math. 263 (2003), 93-104.
- [12] D. Sumner, talk presented at the Sixteenth Cumberland Conference on Graph Theory, Combinatorics, and Computing held at Georgia State University, Atlanta, USA, May 2003.
- [13] J. A. Telle and A. Proskurowski, Algorithms for vertex partitioning problems on partial k-trees. SIAM J. Discrete Math. 10 (1997), 529– 550.