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Abstract

A set S of vertices in a graph G = (V, E) is a restrained dom-
inating set of G if every vertex not in S is adjacent to a vertex in
S and to a vertex in V \ S. The graph G is called restrained domi-
nation excellent if every vertex belongs to some minimum restrained
dominating set of G. We provide a characterization of restrained
domination excellent trees.
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1 Imtroduction

For a graph G = (V, E), a set S is a dominating set il every vertex in
V'\ S has a neighbor in S. The domination number v(G) is the minimum
cardinality of a dominating set of G. We call a dominating set of cardinality
v(G) a v(G)-set and use similar notation for other parameters. Domination

and its many variations have been surveyed in (7, 8].
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In this paper we study a variation on the domination theme called re-
strained domination, introduced by Telle and Proskurowski [13], albeit indi-
rectly, as a vertex partitioning problem and further studied in [1, 2, 3, 5, 6].
A set § C V is a restrained dominating set (RDS) if every vertex in V'\ S
is adjacent both to a vertex in S (i.e., S is a dominating set of G) and to
a vertex in V'\ S. Every graph has a RDS, since S =V is such a set. The
restrained domination number of G, denoted by +,(G), is the minimum car-
dinality of a RDS of G. Clearly, ¥(G) < 4~(G). A RDS of G of cardinality
vr(G) we call a v,.(G)-set.

Fricke, Haynes, Hedetniemi, Hedetniemi, and Laskar [4] defined a graph
G to be y-excellent if every vertex of G belongs to some y(G)-set. They
showed that the family of y-excellent trees (trees where every vertex is
in some minimum dominating set) is properly contained in the set of i-
excellent trees (trees where every vertex is in some minimum independent
dominating set). The y-excellent trees have been characterized by Sum-
ner [12], while the i-excellent trees have been characterized in [9] where
it is shown that any such tree of order at least three can be constructed
using a double-star as a base tree and recursively applying one of two op-
erations. A constructive characterization of v;-excellent trees (trees where
every vertex is in some minimum total dominating set) is given in [11]. In
this paper, we present a characterization of ~-excellent trees (trees where
every vertex is in some minimum RDS).

For notation and graph theory terminology we in general follow [7].
Specifically, let G = (V,E) be a graph with vertex set V of order n
and edge set E, and let v be a vertex in V. The open neighborhood of
vis N() = {u € V|uv € E} and its closed neighborhood is the set
N[v] = {v} U N(v). For aset S C V, its open neighborhood is the set
N(S) = UyesN(v) and its closed neighborhood is the set N[S] = N(S)US.

For ease of presentation, we mostly consider rooted trees. For a vertex
v in a (rooted) tree T, we let C(v) and D(v) denote the set of children
and descendants, respectively, of v, and we define D[v] = D(v) U {v}. The
maximal subtree at v is the subtree of T induced by D[v], and is denoted
by T,. A leaf of T is a vertex of degree 1, while a support vertez of T is
a vertex adjacent to a leaf. A strong support vertex is adjacent to at least
two leaves. A double star is a tree with exactly two vertices that are not
leaves.

For k > 1 an integer, a k-branch of a tree T is a path P in T of length k
(and order k + 1) that contains a leaf of T and such that every internal
vertex of P has degree 2 in T. A branch of T is a k-branch of T for some
k> 1. If Pis a k-branch of T and P is a u—v path where u is a leaf of T,
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then we call v a k-branch vertex of T. In particular, a 1-branch vertex of T
is a support vertex of T. By attaching a k-branch to a vertex v of a tree T,
we mean adding to T a path of order k and joining a leaf of this path to v.

Our aim in this paper is present a characterization of y.-excellent trees.
For this purpose, we introduce some additional notation. Let G = (V, E)
be a graph, and let u € V.

Definition 1. We define the restrained domination number of G relative to
u, denoted v¥(G), as the minimum cardinality of a RDS in G that contains
u. A RDS of cardinality v#(G) containing u we call a 4%(G)-set. Hence,
the graph G is vy-ezcellent if v*(G) = v (G) for every vertex u € V.

Definition 2. We define a type-I almost restrained dominating set (type-1
ARDS) of G relative to u as a set S C V' \ {u} such that S dominates
V'\ {u} (possibly, S also dominates u) and G[V' \ S] has no isolated vertex.

Definition 3. We define a type-II almost restrained dominating set (type-
IT ARDS) of G relative to u as a set S C V' \ {u} such that S dominates V'
and G[V \ S] has no isolated vertex, except possibly for the vertex w.

Definition 4. We define an almost restrained dominating set (ARDS) of
G relative to u as a type-I ARDS or a type-II ARDS of G relative to u.

Definition 5. The almost restrained domination number of G relative to
u, denoted v,(G; ), is the minimum cardinality of an ARDS of G relative
to u. An ARDS of G relative to u of cardinality v,(G;u) we call a 7-(G; u)-
set. A type-I (respectively, type-II) ARDS of G relative to u of cardinality
v-(G;u) we call a type-I (respectively, type-II) v-(G;u)-set.

Definition 6. We say that G is ~.-ezcellent relative to u if
* 77(G) =% (Giu) +1,
e there exists both a type-I and a type-1l v,(G; u)-set, and
e every vertex of G is in some ~*(G)-set or in some ~,-(G;u)-set.

2 The Family F

We define the family F to consist of all trees that can be obtained from
a -y-excellent tree 7" relative to a vertex u of T by adding a path Ps to
T’ and joining u to a central vertex of this path. As an example, the tree
T shown in Figure 1 and the tree T shown in Figure 2 both belong to the
family F. (Notice that in both examples, the component T” of T — uw that
contains the vertex u is a y.-excellent tree relative to a vertex u.)
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Figure 1: A ~-excellent tree T in F.

Figure 2: A ~y.-excellent tree T in F.
3 The Family T

In this section we construct a family of y.-excellent trees. Let 7 be the
family of trees that contain { P,}UF and is closed under the four operations
01, Oz, O3 and O, listed below, which extend a tree T’ by attaching one or
more branches to a vertex of 77, called its attacher. We say that a leaf v of
a tree T is a good leaf if T has order at least 3 and there exists a -, (T)-set
that contains N|w] where w is the neighbor of v.

e Operation O;. Attach to a support vertex of T’ a 1-branch.

o Operation O,. Attach to a good leaf of T/ a 3-branch.

e Operation O3. Attach to a 2-branch vertex of degree 2 in 77 a
2-branch and a 3-branch.

o Operation Q4. Attach to a 3-branch vertex of degree at least 2 in
T’ both a 2-branch and a 3-branch.

If T € T, and T is obtained from a sequence T\,..., T, of trees where
Ty = Pyand T = Ty, and, if m > 2, T;; can be obtained from T; by
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operation Oy, Op, O3 or Q4 fori=1,...,m — 1, then we say that T has
length min 7.

4 Preliminary Results

Lemma 1 Let T be a tree that contains a strong support vertex. Let T’
be obtained from T by deleting a leaf-neighbor of a strong support vertez.
Then, (i) v (T) = v (T’) + 1, and (ii) T is yr-excellent if and only if T' is
~r-excellent.

Proof. Let w be a strong support vertex, and let TV = T — v where v
is a leaf-neighbor of w. Removing v from a ~,(T)-set produces a RDS
of TV, and so v-(T') < v(T) — 1. On the other hand, every RDS of
T’ can be extended to a RDS of T by adding to it the vertex v, and so
¥+(T) < v-(T’) + 1. This establishes Statement (i). Statement (ii) follows
readily from the observation that removing v from a -, (T)-set produces a
~v-(T"')-set, while adding v to a v(T”)-set produces a ~,(T)-set. O

As an immediate consequence of Lemma 1, we have the following result.

Corollary 1 Let T' be a nontrivial tree and let T be obtained from T’ by
operation O1. Then, (i) v(T) = v (T') + 1, and (ii) T is yr-excellent if
and only if T’ is “yr-excellent.

Lemma 2 Let T’ be a iree of order al least 3. Let v be a leaf of T' and
let w be the neighbor of v. Let T be the tree obtained from T’ by adding
to it the path z,y,z and the edge vz. Then, (i) v-(T) = v(T’) + 1, and
(i) #f T is yr-excellent, then T’ is ~y.-ezcellent and there exists a v-(T"')-set
containing N|w).

Proof. We begin the proof by proving two claims.
Claim 1 4(T) < w(T") + 1.

Proof. Let S’ be a v.(T")-set. Then, v € S’ and S'U {2z} isa RDS of T,
andso 1+(T) < |S'U{2}|=|S|+1=%(T")+1.O

Claim 2 ~,.(T') <~ (T)-1.
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Proof. Let S be a v.(T)-set, and let S’ = SNV(T’). Ifv e S,then S’ isa
RDS of T* and SN{z,y,z} = {2}, and so v.(T’) < |§'| = |S|-1 =7 (T)~-1.
Ifv ¢ Sand we S, then SN {z,y,2} = {y, 2} and S’U {v} is a RDS of
T', and so 7-(T") < |S'U {v}| = |9’|+1 =|S| -1 = %(T) — 1. Hence
we may assume that v ¢ S and w ¢ S, for otherwise the desired result
follows. Then, {z,y,2} C S. If S’U {v} is a RDS of T”, then, by Claim 1,
Y(T) =1 < %(T) < |8V {v}| =[]+ 1 =S| - 2 = v(T) - 2, which
is impossible. Hence, S’ U {v} is not a RDS of T'. However, S’ U {v} is
a dominating set of T/. Thus, w must be isolated in T'[S’ U {v}]. Hence,
S’ U {v,w} is a RDS of T”, and so ¥.(T’) < |S'U {v,w}| = ||+ 2 =
IS|-1=%(T)-1.0D

We now return to the proof of Lemma 2. Statement (i) of Lemma 2 is
a consequence of Claims 1 and 2. To prove Statement (ii), suppose that T
is yr-excellent. Let u € V(T”) and let S be a +,(T')-set containing u. Let
S’ = SN V(T'). Proceeding exactly as in the proof of Claim 2, we can
show that there is a +,.(T")-set containing the set S’ (either S’ or S’ U {v}
or 8’ U {v,w} is a v.(T")-set). Hence there is a ,(T")-set containing the
vertex u. Therefore, T” is ~y,.-excellent.

Let D be a «,(T)-set containing the vertex z, and let D' = Dn V(T).
Then, {z,y,z} C D and v ¢ D (for otherwise, D\ {z,y} is a RDS, con-
tradicting the minimality of D), and so w ¢ D. Thus as in the proof of
Claim 2, the set D’ U {v,w} is a v.(T’)-set containing N[w]. O

As a consequence of Lemma 2 we have the following result.

Corollary 2 Let T be a tree of order at least 3 and let T be obtained from
T' by operation Oz. Then, (i) v+(T) = %(T')+ 1 and (i) T is y,.-excellent
if and only if T' is ~y,-excellent.

Proof. Let v be the attacher of 7/ (and so, v is a leafl of T') and let w
be the neighbor of v in T’. Statement (i) follows by Lemma 2(i). If T
is yr-excellent, then by Lemma 2(ii), T’ is ,-excellent. Suppose that T’
is yr-excellent. Let » € V(T”) and let S’ be a ~,.(T")-set containing u.
Then, v € S’ and S’ U {2} is a 7. (T)-set containing u. If w € S, then
(S'\ {v})U{y, 2} is a 4-(T)-set containing y. It remains to show that there
is a v (T)-set containing z. Since v is a good leaf in 7", there is a . (T')-set
S* that contains N[w]. Thus the set (S* \ {v,w}) U {z,y,2} is a .(T)-
set containing the vertex x. Therefore, T is «,-excellent. This establishes
Statement (ii). O

Lemma 3 Let T be oblained from a tree T' by operation O3. Then, (i)
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Y (T) = v (T')+3 and (ii) T is y--ezcellent if and only if T’ is v,-excellent.

Proof. Let v be the attacher of 7" (and so, v is a 2-branch vertex of degree 2
in T’), and let v,z,y be a 2-branch of T'. Further, let N(v) = {u,z}. Let
v,z},¥] and v, z1,y1,21 be the 2-branch and 3-branch attached to v when
applying operation O3 to obtain the tree T. We begin the proof by proving
two claims.

Claim 3 v (T) < v(T') + 3.

Proof. Let S’ be a 7, (T")-set. If v € §’, let S = S’ U {z},¥], 21}, while
ifv ¢S, let S=5U{y,vyi,21}. In both cases, S is a RDS of T and
|S| = |5'| + 3, whence v(T") < |S|=%(T")+3.D

Claim 4 %(T) > v(T") + 3.

Proof. Let S be a v,(T)-set, and let ' = SNV (T'). If v € S, then &'
isa RDS of T’ and S\ S’ = {z],y],21}, and so 7. (T") < |§'| = |S| -3 =
4r(T)—3. Hence we may assume that v ¢ S, [or otherwise the desired result
follows. Then, {y,v1,%1,21} C S. If |SN{z, z;,z!}| > 2, then removing all
but one vertex from this intersection produces a RDS of T, contradicting
the minimality of S. Hence, |SN {z,z1,z{}| < 1. If $N {z,z;,z}} = 0,
then |S’| = |S| — 3 and S’ is a RDS of T’. On the other hand, suppose
|S N {z,z1,z1}| = 1. Without loss of generality, we may assume z € S.
Thus, |§’| =|S|-3. Ifu € S, then S\ {z} is a RDS of T, a contradiction.
Hence, SN N[v] = {z}, and so S’ is a RDS of T". Thus, in both cases S’ is
a RDS of T’ and |S’| = |S| — 3, whence v(T') < |S'| = v(T) - 3. O

Statement (i) of Lemma 3 is an immediate consequence of Claims 3 and 4.
Claim 5 If T’ is y,-excellent, then T is ~y.-excellent.

Proof. Let w € V(T”’) and let S’ be a «-(T")-set containing w. If v ¢ S,
then S’ U {31,%{,21} is a ~(T)-set containing w. If v € S’, then S'U
{z1,¥1, 21} is a % (T)-set containing w. Observe that if w = u, then v ¢ S,
while if w = v, then v € §’. Hence it remains to show that there is a ~,.(T)-
set containing the vertex z,. Let S* be a «.(T')-set containing the vertex
z. Suppose v € S*. If u € S*, then S*\ {v,z} is a RDS of T”, contradicting
the minimality of S*. Hence, u ¢ S*. The set (S* \ {v,z}) U {u} is
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not a RDS of T’ but is a dominating set of T’. Hence there must be a
neighbor w of u such that w ¢ S* and w is isolated in TV[S* U {u}]. But
then (S* \ {v,z}) U {w} is a RDS of T, contradicting the minimality of
S*. Hence, v ¢ S*. Thus, (S* \ {z}) U {z1,¥1,¥1,21} is a RDS of T of
cardinality |S*| + 3 = ¥(T') + 3 = ~.(T) and is therefore a ~,(T)-set
containing the vertex z;. Therefore, T is y,-excellent. O

Claim 6 If T is vy.-excellent, then T’ is ~y.-excellent.

Proof. Let w € V(T’) and let S be a +,(T)-set containing w. Let S’ =
SNV({T). Ifv & S, then S\ & = {z{,y},z1} and S’ is a RDS of T’
of cardinality |S| — 3 = % (T) — 3 = ¥(T") and is therefore a ~.(T')-
set containing the vertex w. If v € S, then proceeding as in the proof
of Claim 4, we can choose such a set S so that S’ is a RDS of T’ and
[8’) = |S| — 3. Thus, S’ is a v-(T")-set containing the vertex w. Hence, T’
is yq-excellent. O

Statement (ii) of Lemma 3 is an immediate consequence of Claims 5
and 6. This completes the proof of Lemma. 3. O

Lemma 4 Let T be obtained from a tree T’ by operation O4. Then, (i)
¥ (T) = 4 (T')+3 and (ii) T is v,-ezcellent if and only if T' is vyr-excellent.

Proof. Let v be the attacher of T’ (and so, v is a 3-branch vertex of
degree at least 2 in T”), and let v,z,y, z be a 3-branch of T”. Further, let
U= N@)\{z}in T'. Let v,z},y] and v,z1,y1, 21 be the 2-branch and
3-branch, respectively, attached to v when applying operation O, to obtain
the tree T'. We begin the proof by proving two claims.

Claim 7 7 (T) < 7(T") + 3.

Proof. Let S’ be a v.(T')-set. If v € S, let S = 5" U {z},y],21}, while
ifvgs, let S=5U{y,y},21}. In both cases, S is a RDS of T, and so
w(T) LS| =|8'1+3=7(T")+3.0

Claim 8 'YT(T) 2 'Yr(TI) + 3.
Proof. Let S be a v,.(T)-set, and let S’ = SNV(T’). If v € S, then S’

isa RDS of TV and S\ S’ = {z},%{, %1}, and so v (T’) < || = |S| -
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3 = 4.(T) — 3. Hence we may assume that v ¢ S, for otherwise the
desired result follows. Then, {y,y1,%1,2, 21} C S. If |Sn {z,z1,z1}| = 2,
then removing all but one vertex from this intersection produces a RDS
of T, contradicting the minimality of S. Hence, |SN {z,z;,z{}| < 1. If
SN {z,xz,zi} = 0, then |S’| = |S| —3 and §' is a RDS of T’. On the
other hand, suppose |S N {z,z,z{}| = 1. Without loss of generality, we
may assume z € S. Thus, |§'| = |S]|-3. If [SNU| > 1, then S\ {z} is
a RDS of T, a contradiction. Hence, S N N[v] = {z}, and so S’ is a RDS
of T’. Thus, in both cases S’ is a RDS of T’ and |S’| = |S| — 3, whence
W(T') <18 =18 -3=»(T)-3.0

Statement (i) of Lemma 4 is an immediate consequence of Claims 7 and 8.
Claim 9 If T is vy,-excellent, then T is ~y.-ezcellent.

Proof. Let w € V(T') and let S’ be a v,-(T")-set containing w. If v ¢ S,
then S’ U {y),¥],2z1} is a - (T)-set containing w. If v € S’, then S'U
{z1, %1, 21} is a v-(T)-set containing w. Observe that il w = z, then v ¢ 5,
while if w = v, then v € S’. Hence it remains to show that there is a v.(T)-
set containing the vertex z,. Let $* be a v,.(T")-set containing the vertex z.
Then, {y,2} C S*. If v € S*, then S*\ {z,y} is a RDS of T”, contradicting
the minimality of S*. Hence, v ¢ S*. Thus, (§*\ {z}) U {z1, 1,91, z1} is
a RDS of T of cardinality |S*| + 3 = ¥ (T") + 3 = 7(T') and is therefore a
v-(T)-set containing the vertex z;. Hence, T is y.-excellent. O

Claim 10 If T is yq-excellent, then T’ is ~y,-excellent.

Proof. Let w € V(T”) and let S be a v.(T)-set containing w. Let $' =
SNV(T). Ifv e S, then S\ S = {z},%],z1} and S’ is a RDS of T’
of cardinality |S| — 3 = ¥~(T) — 3 = ¥(T") and is therefore a ~v.(T")-
set containing the vertex w. If v ¢ S, then proceeding as in the proof
of Claim 8, we can choose such a set S so that S’ is a RDS of TV and
|S’| = |S] — 3. Thus, S’ is a v-(T")-set containing the vertex w. Hence, T’
is vy--excellent. O

Statement (ii) of Lemma 4 is an immediate consequence of Claims 9
and 10. This completes the proof of Lemma 4. O

Lemma 5 IfT € F, then T is a yr-excellent tree.
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Proof. The tree T can be obtained from a vyr-excellent tree T” relative to
a vertex u of T’ by adding a path Pg:a,b,c,d, e, f and the edge ud to T".

We show first that y*(T”) = +,-(T') —3. Every v#(T")-set can be extended
to a RDS of T by adding to it the vertices in the set {a,b, f}, and so
v(T) < 4%(T’) + 3. Conversely, let S be a v,(T)-set and let S’ be the
restriction of S to the tree T, ie., ' = SNV(T’). If u € S, then S’ is
a RDS of T’ containing v and S\ S’ = {a,b, f}. Thus, ¥¥(T") < |8']| =
S| —3=+,(T)—38. If u ¢ S’, then S’ is an ARDS of T’ relative to » and
IS\ 8] = 4, and so ¥3(T") — 1 = % (T";u) < |§'] = IS| - 4 = %(T) — 4,
whence ¥¥(T") < v-(T) — 3. Consequently, v+(T") = v(T) - 3.

Let v € V(T”). Since T is a ~y-excellent tree relative to the vertex u,
there is a set S, containing the vertex v that is a y¥(7")-set or a v, (T"; u)-
set. If S, is a y*(T")-set, then the set S,U{a,b, f} is a (T)-set containing
v. If S, is a 4(T";u)-set, then the set S, U {a,d, e, f} or the set S, U
{a,b, ¢, f} is a 4, (T)-set containing v (observe that v-(T";u)+4 = y*(T') +
3 =4,(T)). Hence every vertex in V(T”) is in some ~,(T')-set.

It remains for us to establish that every vertex in V(T)\ V(T"”) is in some
~r(T)-set. Every «4¥(T”)-set can be extended to a 4-(T)-set by adding to it
the vertices in the set {a,b, f}. Since T” is a y,-excellent tree relative to the
vertex u, there exists both a type-I and a type-II v,(T"; u)-set. Let D, be a
type-I 4.(T"; u)-set and let D, be a type-II +,(T’; u)-set. Then, D; can be
extended to a 4-(T)-set by adding to it the vertices in the set {a,d, e, f},
while Ds can be extended to a «,(T)-set by adding to it the vertices in the
set {a, b,c, f}. Hence, every vertex in V(T)\ V(T") is in some ~,(T)-set. O

Lemma 6 [fT €T, then T is a yr-ezcellent tree.

Proof. We proceed by induction on the length m of the sequence of trees
needed to construct the tree T € 7. If m = 1, then T = P, which is a
~--excellent tree, or T € F and T is a 7y,.-excellent tree by Lemma 6. This
establishes the base case. Assume, then, that the result holds for all trees
in 7 of length less than m, where m > 2. Let T be a tree of length m in
T. Thus, T € T can be obtained from a sequence T}, 75, ..., Ty, of m trees
where T) = P, and T =T,,,and fori=1,...,m — 1, the tree T;;; can be
obtained from T; by operation O;, O, O3 or O,. Applying the inductive
hypothesis to the tree T’ = T,,—; € 7, we have that T’ is a ~y,-excellent
tree. Since the tree T is obtained from T’ by operation O, O3, O3 or
4, the desired result follows from Corollary 1, Corollary 2, Lemma 3 and
Lemma 4. O
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5 Main Result

Theorem 7 A nontrivial tree T is a ~yr-excellent tree if and only if T € T.

Proof. The sufficiency follows from Lemma 6. To prove the necessity, we
proceed by induction on the order n > 2 of a vy,-excellent tree T. If n =2,
then T = P, € 7. This establishes the base case. Assume then that n > 3
and that if T is a ~,-excellent tree of order at least 2 but less than n, then
T' € T. Let T be a v.-excellent tree of order n. If T is a star, then T
can be obtained from P, by repeated applications of operation Oy, and so
T € T. Hence we may assume that diam7T > 3.

If diamT = 3, then T is a double star and the set of leaves of T is a
unique v, (T)-set. But then T is not ~y-excellent, a contradiction. Hence,
diam T > 4 (and so, n > 5).

Suppose that T has a strong support vertex w with v as one of its leaf-
neighbors. Let T/ = T — v. By Lemma 1, T is v.-excellent. Applying the
inductive hypothesis to T”, we have T’ € 7. We can now restore the tree
T from T’ by applying operation O, with w as the attacher, andso T € 7.
Thus we may assume that T has no strong support vertex, for otherwise
T € T as required.

Let T be rooted at a leaf r of a longest path P. Let P be a r~z path,
and let ¥ be the neighbor of z. Then, z is a leaf and y is a support vertex.
By assumption, degry = 2. Let z denote the parent of y on this path, v
denote the parent of x, and u the parent of v. We show that degrz = 2.

Claim 11 degrz = 2.

Proof. Suppose that degy =z > 3 and consider a +,(T)-set S that contains
the vertex z. Then, every descendant of = is in S. In particular, {y, 2} C S.
If v € S, then S\ {z,y} is a RDS of T, contradicting the minimality of S.
Hence, v ¢ S. Let 8’ = (S\ {z,y}) U {v}. By the minimality of S, the set
S’ is not a RDS. However, S’ is a dominating set. This implies that there
exists a vertex w ¢ S’ such that N(w) C §’. Necessarily, w € N(v) \ {z}.
It now follows that (S \ {z,y}) U {w} is a RDS of T, contradicting the
minimality of S. Hence, degpz = 2. 0

By Claim 11, every vertex at distance diam(T) — 2 from r on a longest
path emanating from r has degree 2.
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Suppose that degrv = 2. Let T' = T — {z,y,z}. Then, v is a leaf of
T'. By Lemma 2(ii), the tree T" is vy.-excellent. Applying the inductive
hypothesis to T”, we have T' € T. By Lemma 2(ii), there exists a v.(T")-
set containing N[u]. Hence the vertex v is a good leaf in the tree T”. Thus
we can restore the tree T from T by applying operation O with v as the
attached vertex, and so T € 7. Thus we may assume that degpv > 3, for
otherwise T € T as required.

Claim 12 The verltez v is not a support vertez.

Proof. Suppose that v is a support vertex of T'. Let S be a +(T")-set that
contains z. Then, {z,y,z} C S. Since S contains the leaf-neighbor of v,
the set S\ {z} is a RDS of T, contradicting the minimality of S. O

By Claim 12 and our earlier assumption that there is no strong support
vertex, the maximal subtree T, of v can be obtained from a star K k..,
where k+ ¢ > 2 and k > 1, by subdividing k edges exactly twice and
subdividing £ edges exactly once. For ¢ = 1,...,k, let v, z;, 3:, z; denote
the 3-branches attached to v in T, (where z; =z, y; = y and z; = 2), and
if £ > 1, then for i = 1,...,¢, let v,z},y; denote the 2-branches attached
tovin T,. Let X, Y and Z denote the set of vertices at distance 1, 2
and 3, respectively, from v in T,,. If £ > 1, let X’ = {z},...,z,} and
Y'={yi,.... e}

Claim 13 ¢<k+1.

Proof. Suppose that £ > k+ 2. Let S be a v,(T)-set that contains the
vertex v. Then, SNV(T,) = X'UY'UZ. Let &' = (S\(X'U{v})U(Y\Y")U
{u,z;}. Then, S’ is a dominating set of T with |S'| < |S] -1 =v(T) -1.
By the minimality of the set S, the set S’ is not a RDS of T'. This implies
that there exists a vertex w ¢ S’ such that N(w) C §’. Since N(w) ¢ S, it
follows that u ¢ S and w € N(u)\ {v}. This implies that (S’'\ {u})U{w} is
a RDS of T of cardinality v, (T") — 1 (observe that the vertex v is dominated
by the vertex z; € S’ in this RDS), contradicting the minimality of S.
Hence, £ < k+1.0

Claim 14 k—-1< 4.

Proof. Suppose that £ < k — 2. Let S be a «,(T)-set that contains
the vertex z;. If v € S, then S\ {z1,11} is a RDS of T, contradicting
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the minimality of S. Hence, v ¢ S. If u € S, then S\ {z1} is a RDS
of T, a contradiction. Hence, u ¢ S. Further by the minimality of S,
SNV(T,) = {z1}uYUZ. Let &' = (S\ {z1,,.-- 9} U X' U {v}.
Then, S’ is a dominating set of T with |§'| = |S| - (k+ 1)+ (£+1) =
7 (T) — k + £ < v(T) — 2. By the minimality of the set S, the set S’ is
not a RDS of T. This implies that there exists a vertex w ¢ S’ such that
N(w) C &. Since N(w) ¢ S and u € S, it follows that « = w. But then
S’'U{u}is a RDS of T of cardinality v.(T') — 1, contradicting the minimality
of S. Hence, k—1<¢. 0

By Claim 13 and Claim 14, k-1 < £ < k+1.

If £ =k —1, then let T’ be obtained from T by deleting all vertices in T,
except for the path v, x,y, z. Hence, T can be obtained from the tree 7’ by
repeatedly applying operation O,. By Lemma 4, the tree T” is «y--excellent.
Applying the inductive hypothesis to 7', we have T’ € T. Thus we can
restore the tree T from T’ by repeatedly applying operation O, with v as
the attached vertex, andso T € 7.

If £ = k+ 1, then let T’ be obtained from T by deleting all vertices
in T, except for the path v,z{,y]. Hence T can be obtained from the
tree T’ by first applying operation O3 with v as the attached vertex and
then, if k > 2, by repeatedly applying operation O4 with v as the attached
vertex. By Lemma 3 and Lemma 4, the tree T is y.-excellent. Applying
the inductive hypothesis to T’, we have 7’ € T. Thus we can restore the
tree T from T” by applying operation O3 and repeatedly applying operation
Q4 with v as the attached vertex, andso T € 7.

If £ =k > 2, then let T be obtained from T by deleting all vertices
in T, except for the path v,z,y,2z and the path v,z},y;. Hence, T can
be obtained from the tree T’ by repeatedly applying operation O4. By
Lemma 4, the tree T’ is vy.-excellent. Applying the inductive hypothesis to
T',wehave T' € T, whence T € T.

Hence we may assume that k = £ = 1, for otherwise T € 7 as desired.
Thus the maximal subtree T, rooted at v is the path 2,y,z,v,z},¥]. Let
T'=T - V(T,). We proceed further with the following two claims.

Claim 15 v*(T") = v (T;u) + 1 = v(T) - 3.

Proof. Let S, be a +.(T)-set containing the vertex u, and let S}, = S, N
V(T'). Then, S, is a RDS of T’ containing » and S, \ S, = {y,7},2}.
Thus, v¥(T') < |S.| = |Sul = 3 = ¥(T) — 3. On the other hand, every
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¥#(T")-set can be extended to a RDS of T by adding to it the vertices in the
set {y,y1, 2}, and so ¥-(T) < 4*(T")+3. Consequently, v(T") = ¥(T) -3.

Let Sz be a «,(T')-set containing the vertex z, and let S, = S, N V(T").
Then, u ¢ Sz and S:\S;, = {z,¥,91, z}. Thus, % (T";u) < |SL| = |S:| -4 =
7(T) — 4. On the other hand, let D be a v,.(T’;u)-set. Then, u ¢ D, and
D dominates V(T”’) or T'[V \ D] has no isolated vertex. If D dominates
V(T"), let D* = DU {z,y,y},2z}. If T'[V \ D] has no isolated vertex,
let D* = DU {v,z],y},2}. In both cases, D* is a RDS of T, and so
¥(T) < |D*| = %(T";u) + 4. Consequently, v(T";u) = ¥(T) - 4. O

Claim 16 The tree T' is y--excellent relative to u.

Proof. By Claim 15, v*(T") = ¥ (T';u) + 1. Let S, be a .(T)-set
containing the vertex v, and let S, = S, N V(T’). Then, S, is a type-l
¥+(G;u)-set. Let S; be a v,(T)-set containing the vertex z, and let S, =
Sz M V(T’). Then, S. is a type-Il 4.(G;u)-set. It remains for us to show
that every vertex of 7" is in some y*(T’)-set or in some v,-(T’; u)-set. Let
w € V(T'). Let Sy, be a 4-(T)-set containing w and let S/, = S,, N V(T").
If w € Sy, then Sy \ S, = {y,¥1,2}. Thus, S, is a RDS of T’ containing
u with [S},| = ¥+(T) — 3. Hence, by Claim 15, S., is a y*(T')-set. If
u & Sy, then |S, \ S| = 4 and S, is a ARDS of T” relative to u with
|S%] = ¥(T) — 4. Hence, by Claim 15, S, is a v(T"; u)-set. D

By Claim 18, the tree T’ is y,-excellent relative to u. Since the tree T
can be obtained from T’ by adding the path z,y,z,v,z{,y] and the edge
uv, we havethat T e FC 7.0
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