A Cube-Packing Problem

Yonghui Fan ¹ Yuqin Zhang^{2*†} Guoyan Ye³

¹College of Mathematics
Hebei Normal University, 050016, Shijiazhuang, China
² Department of Mathematics
Tianjin University, 300072, Tianjin, China
Email: yuqinzhang@126.com
³ Department of Mathematics
ShijiaZhuang College, 050035, Shijiazhuang, China

Abstract

In this paper, we discuss a problem on packing a unit cube with smaller cubes, which is a generalization of one of Erdős favorite problems: square-packing problem. We first give the definition of the packing function $f_3(n)$, then give the bounds for $f_3(n)$.

keywords: Packing, cube.

(2000) Mathematics Subject Classification. 52C17

In 1932, Erdős posed one of his favorite problems on square–packing which was included in [1]: Let S be a unit square. Inscribe n squares with no common interior point. Denote by e_1, e_2, \dots, e_n the side lengths of these squares. Put $f(n) = \max \sum_{i=1}^{n} e_i$. In [2], P. Erdős and Soifer gave some results on f(n).

We [3] generated it to the case using equilateral triangles (isosceles right triangles) to pack a unit equilateral triangle (an isosceles right triangle with legs of length 1). In this paper, we generalize this kind of problem to the case in 3 dimensions, that is, using cubes to pack a unit cube, and obtain corresponding results.

We first give the definition of the packing function:

Definition 1. Let C be a unit cube in 3 dimensions. Inscribe n cubes C_1, C_2, \dots, C_n with no common interior point in such a way which satisfies: C_i has side of length $c_i (0 < c_i \le 1)$ and is placed so that its sides are parallel to those of C.

^{*}Corresponding author.

[†]Foundation items: This research was supported by National Natural Science Foundation of China (10571042), National Natural Science Foundation of China (10701033), National Natural Science Foundation of China(10671014).

Define
$$f_3(n) = max \sum_{i=1}^n c_i$$
.

In the same way, we can define $f_d(n)$ in d dimensions. We first discuss the upper bounds for $f_3(n)$.

Proposition 2. The following estimates are true for all positive integers

 $(1 + n)_{\xi} t \ge (n)_{\xi} t$ $(1 + n)_{\xi} t \ge (n)_{\xi} t$ $(1 + n)_{\xi} t \ge (n)_{\xi} t$ $(2) t_{\xi} t \ge (n)_{\xi} t$

Proof. It's easy to get the results by replacing a cube C_i with 2 or k+1 cubes with sides of length $\frac{c_i}{c_i}$.

cubes with sides of length $\frac{c_1}{2}$.

So $f_3(n)$ is a nondecreasing function. To give an upper bound for $f_3(n)$, we need the following lemma which is a well known result.

Lemma 3. (Hölder's Inequality) Let ξ , η be two random variables, $1 , <math>1 < q < \infty$ and 1/p + 1/q = 1. If $E|\xi|^p < \infty$, $E|\eta|^q < \infty$, then

$$\mathbb{E}|\xi\eta| \leq (\mathbb{E}(|\xi|^p))^{1/p} (\mathbb{E}(|\xi|^q))^{1/q},$$

where $E(\cdot)$ denotes mathematical expectation.

Lemma 4. Let c_1, \dots, c_n be n positive numbers, then

$$\sum_{i=1}^{n} c_i \le (\sum_{i=1}^{n} c_i^3)^{1/3} n^{2/3}. \tag{0.2}$$

Proof. Let $\Omega = \{w_1, w_2, \dots, w_n\}$ be a sample space. $P(w_i) = 1, i = 1, 2, \dots, n$ is a probability defined on Ω . ξ, η are two random variables

$$n, \dots, i = i, i = c_i, i = 1, \dots, n$$

 $n, \dots, i = i, i$

From (0.1), we know

$$= (\frac{n}{1}\sum_{i=1}^{n}c_{i}^{2})_{1/3}(\frac{n}{1}\sum_{i=1}^{n}I_{3/5})_{2/3} = u_{-1/3}(\sum_{i=1}^{n}c_{i}^{2})_{1/3}.$$

Then we get $\sum_{i=1}^{n} c_i \le (\sum_{i=1}^{n} c_i^3)^{1/3} n^{2/3}$.

Theorem 5. $f_3(n) \le n^{\frac{2}{3}}$.

Proof. Let c_i denote the side length of the cube C_i in the packing. Then $\sum_{i=1}^{n} c_i^3 \leq 1$. It follows easily from (0.2) that $\sum_{i=1}^{n} c_i \leq n^{\frac{2}{3}}$, so $f_3(n) \leq n^{\frac{2}{3}}$.

In a similar way, in the proof of Lemma 4, take $p = d, q = \frac{d}{d-1}$, then we can get the following theorem:

Theorem 6. $f_d(n) \leq n^{\frac{d-1}{d}}$.

Definition 7. For a cube C, dissect each of its sides into n equal parts, then through these dissecting points draw parallel surfaces of the surfaces of C, so we get a packing of C by n^3 cubes with sides of length $\frac{1}{n}$. Such a configuration is called an n^3 -grid. When C is a unit cube, the packing is a standard n^3 -packing.

See Figure 1 for the case n=3.

Figure 1: a 3³-grid

Proposition 8. $f_3(k^3) = k^2$.

Proof. By Definition 6, it's easy to know that for the standard k^3 -packing, $n=k^3, c_i=\frac{1}{k}$ and $\sum\limits_{i=1}^n c_i=\frac{1}{k}\times k^3=k^2$. So by the definition of $f_3(n)$, $f_3(k^3)\geq k^2$ which along with Theorem 5 provides the desired equality.

For $1 < n \le 7$, we can give the following results.

Theorem 9. $f_3(2) = 1$.

Proof. Let S_1, S_2 be any two small cubes with sides x_1, x_2 which are packed in the unit cube S. Simply observe that the 2 cubes may be moved to rest on a common face of the unit cube. The result then follows from the 2-dimensional consideration. $x_1 + x_2 \le 1$. It follows that $f_3(2) \le 1$.

Consider the standard 2^3 -packing, that is, dissect the unit cube into 8 congruent small cubes with side length $\frac{1}{2}$. The sum of sides length of any two small cubes is 1.

So
$$f_3(2) = 1$$
.

Theorem 10. If $1 < n \le 7$, then $f_3(n) = \frac{n}{2}$;

Proof. We use induction on n.

By Theorem 8, when n = 2, $f_3(n) = \frac{n}{2}$. Suppose $f_3(k) = \frac{k}{2}$ holds when n = k < 7.

When n=k+1, observe that it is impossible for all k+1 cubes to have side length larger than $\frac{1}{2}$. Then remove a cube of side length less than or equal to $\frac{1}{2}$. Then we have $f_3(k+1) \leq f_3(k) + \frac{1}{2} = \frac{(k+1)}{2}$. Dissect the unit cube into 8 congruent small cubes with side length $\frac{1}{2}$,

Dissect the unit cube into 8 congruent small cubes with side length $\frac{1}{2}$ and take (k+1) of them, then the sum of their sides length is $\frac{(k+1)}{2}$.

So
$$f(k+1) = \frac{(k+1)}{2}$$
.

By induction, when
$$n=2,3,\cdots,8,\ f_3(n)=\frac{n}{2}$$
 holds. \square

Now we discuss the lower bounds for $f_3(n)$.

Proposition 11. For $k \ge 2$, $f_3(k^3 - 1) \ge k^2 - \frac{1}{k}$.

Proof. Consider the standard k^3 -packing with one cube removed.

Proposition 12. For any positive integer n, $f_3(n) \ge (n^{\frac{1}{3}} - 1)^2$.

Proof. By Proposition 7, $f_3(k^3) = k^2$. For any positive integer n, there exists an integer k such that $k^3 \le n \le (k+1)^3$. So $f_3(n) \ge f_3(k^3) = k^2 = (k+1-1)^2$. Since the function $f(x) = (x-1)^2$ is increasing in the interval $[1, +\infty)$, $f_3(n) \ge (n^{\frac{1}{3}} - 1)^2$.

In the same way, we can generalize the above results to those in d dimensions.

We can easily see that the lower bound for $f_3(n)$ is not good at all, but we can't do better now. We can only give the lower bounds for some exact values.

Proposition 13. $f_3(20) \ge 7$.

Proof. Consider the packing with 20 cubes which can be obtained from a standard 3³-packing by replacing a 2³-grid with a single cube whose side

is
$$\frac{2}{3}$$
. So $\sum_{i=1}^{20} c_i = (27-8) \times \frac{1}{3} + \frac{2}{3} = 7$.

Proposition 14. When $1 \le k \le 27$, $f_3(27 + 7k) \ge 9 + k$.

Proof. Begin with the standard 3^3 -packing and replace each of k cubes with 8 cubes each of whose side length is $\frac{1}{6}$. $\sum_{i=1}^{27+7k} c_i = 9 + k \times (\frac{1}{6} \times 8 - \frac{1}{3}) = 9 + k$. Then we get the result.

Proposition 15. $f_3(38) \ge 10$.

Proof. Consider the packing with 38 cubes which can be obtained from a standard 4^3 -packing by replacing a 3^3 -grid with a single cube whose side length is $\frac{3}{2}$ So $\sum_{i=1}^{38} c_i = (64 - 27) \times \frac{1}{2} + \frac{3}{2} = 10$

length is
$$\frac{3}{4}$$
. So $\sum_{i=1}^{38} c_i = (64 - 27) \times \frac{1}{4} + \frac{3}{4} = 10$.

Proposition 16. $f_3(45) \ge \frac{49}{4}$.

Proof. First construct a packing with 38 cubes as in Proposition 14, then replace the largest cube with 8 smaller cubes each of whose side is $\frac{3}{8}$. So

$$\sum_{i=1}^{45} c_i = (64 - 27) \times \frac{1}{4} + 8 \times \frac{3}{8} = \frac{49}{4}.$$

Proposition 17. When $1 \le k \le 8$, $f_3(45+7k) \ge \frac{49}{4} + \frac{9k}{8}$. When $9 \le k \le 45$, $f_3(45+7k) \ge \frac{61}{4} + \frac{3k}{4}$.

Proof. We first construct a packing of 45 cubes as in Proposition 15. When $1 \le k \le 8$, we replace each of k cubes with side length $\frac{3}{8}$ by 8 cubes with side

length $\frac{3}{16}$. $\sum_{i=1}^{45+7k} c_i = \frac{49}{4} + k \times (\frac{3}{16} \times 8 - \frac{3}{8}) = \frac{49}{4} + \frac{9k}{8}$. When $9 \le k \le 45$, we

first replace each of 8 cubes with side length $\frac{3}{8}$ by 8 cubes with side length $\frac{3}{16}$, then replace each of k-8 cubes with side length $\frac{1}{4}$ by 8 cubes with side

length
$$\frac{1}{8}$$
. So $\sum_{i=1}^{45+7k} c_i = \frac{49}{4} + \frac{9}{8} \times 8 + (k-8) \times (\frac{1}{8} \times 8 - \frac{1}{4}) = \frac{61}{4} + \frac{3k}{4}$.

Proposition 18. $f_3(39) \ge 11$.

Proof. We begin with constructing a packing with 20 cubes as in Proposition 12, then replace the largest cube with 20 smaller cubes constructed as

in Proposition 12. So
$$\sum_{i=1}^{39} c_i = 19 \times \frac{1}{3} + \frac{2}{3} \times \frac{1}{3} \times 19 + \frac{2}{3} \times \frac{2}{3} = 11.$$

Proposition 19. $f_3(46) \ge \frac{37}{3}$.

Proof. First construct a standard 3^3 -packing, then replace a 2^3 -grid of 8 cubes each of whose side is $\frac{1}{3}$ with a 3^3 -grid of 27 cubes each of whose side

length is
$$\frac{2}{9}$$
. So $\sum_{i=1}^{46} c_i = 19 \times \frac{1}{3} + \frac{2}{3} \times \frac{1}{3} \times 27 = \frac{37}{3}$.

Proposition 20. When
$$1 \le k \le 19$$
, $f_3(46+7k) \ge \frac{37}{3}+k$; When $20 \le k \le 46$, $f_3(46+7k) \ge \frac{94}{3} + \frac{(k-19)}{3}$.

Proof. We first construct a packing of 46 cubes as in Proposition 18. When $1 \le k \le 19$, we replace each of k cubes with side length $\frac{1}{3}$ by 8 smaller cubes with side length $\frac{1}{6}$. And $\sum_{i=1}^{46+7k} c_i = \frac{37}{3} + k \times (\frac{1}{6} \times 8 - \frac{1}{3}) = \frac{37}{3} + k$. When $19 \le k \le 45$, we replace each of 19 cubes with side length $\frac{1}{3}$ by 8 cubes each of with side length $\frac{1}{6}$ and replace each of (k-19) cubes with side length $\frac{2}{9}$ by 8 cubes each of whose side length is $\frac{1}{9}$. And $\sum_{i=1}^{46+7k} c_i = \frac{37}{3} + 19 \times (\frac{1}{6} \times 8 - \frac{1}{3}) + (k-19) \times \frac{1}{3} = \frac{94}{3} + \frac{(k-19)}{3}$. Then we can get the results.

Acknowledgement

We thank the referee for a careful reading of this paper and for many insightful suggestions, especially for the proofs of Theorem 8 and Theorem 9.

References

- [1] P. Erdős, Some of my favorite problems in number theory, Combinatorics and Geometry, Resenhas 2(1995), 165-186.
- [2] P. Erdős and Soifer, Squares in a square, Geombinatorics IV(1995), 110-114.
- [3] Y. Q. Zhang and Y. H. Fan, Packing and covering a unit equilateral triangle with equilateral triangles, the Electronic Journal of Combinatorics 12, #R55(2005).