A Cube-Packing Problem

Yonghui Fan ! Yuqin Zhang®*!  Guoyan Ye3

1College of Mathematics
Hebei Normal University, 050016, Shijiazhuang, China
2 Department of Mathematics
Tianjin University, 300072, Tianjin, China
Email: yuqinzhang@126.com
3 Department of Mathematics
ShijiaZhuang College, 050035, Shijiazhuang, China

Abstract

In this paper, we discuss a problem on packing a unit cube with
smaller cubes, which is a generalization of one of Erdés favorite prob-
lems: square-packing problem. We first give the definition of the
packing function f3(n), then give the bounds for f3(n).
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In 1932, Erdés posed one of his favorite problems on square-packing
which was included in [1]: Let S be a unit square. Inscribe n squares
with no common interior point. Denote by ej,es, - ,e, the side lengths

n

of these squares. Put f(n) = maz Y e;. In [2], P. ErdSs and Soifer gave
i=1

some results on f(n).

We [3] generated it to the case using equilateral triangles (isosceles right
triangles) to pack a unit equilateral triangle (an isosceles right triangle with
legs of length 1). In this paper, we generalize this kind of problem to the
case in 3 dimensions, that is, using cubes to pack a unit cube, and obtain
corresponding results.

We first give the definition of the packing function:

Definition 1. Let C be a unit cube in 3 dimensions. Inscribe n cubes
C1,Cs,- -+ ,Cy with no common interior point in such a way which satisfies:
C; has side of length ¢;(0 < ¢; < 1) and is placed so that its sides are parallel
to those of C.
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Theorem 5. f3(n) < ni.

Proof Let ¢; denote the side length of the cube C; in the packing. Then
Z ¢; < 1. It follows easily from (0.2) that E ¢ <n¥, s0 fa(n) < ni.
a

In a similar way, in the proof of Lemma 4, take p = d, q = a—, then we
can get the following theorem:

Theorem 6. fy(n) < n*%.

Definition 7. For a cube C, dissect each of its sides into n equal parts,
then through these dissecting pomts draw parallel surfaces of the surfaces
of C, so we get a packing of C by n3 cubes with sides of length - L Such a
conﬁguratmn is called an n3—grid. When C is a unit cube, the packmg is
a standard n3—packing.

See Figure 1 for the case n = 3.
a4
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Figure 1: a 33-grid

Proposition 8. f3(k3) = k2.

Proof. By Definition 6 it’s easy to know that for the standard &% —packing,
n=k%c; =} and 2 ¢i = § x k* = k%. So by the definition of f3(n) ,

fa(k®) > k? which a.long with Theorem 5 provides the desired equality. g

For 1 < n £ 7, we can give the following results.
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Theorem 9. f3(2) =1.

Proof. Let S;,S> be any two small cubes with sides 1, 2 which are packed
in the unit cube S. Simply observe that the 2 cubes may be moved to rest
on a common face of the unit cube. The result then follows from the 2-
dimensional consideration. z; + z2 < 1. It follows that f3(2) < 1.

Consider the standard 23—packing, that is, dissect the unit cube into 8
congruent small cubes with side length % The sum of sides length of any
two small cubes is 1.

So f3(2) =1. O

Theorem 10. If1 < n <7, then f3(n) = §;

Proof. We use induction on n.

By Theorem 8, when n = 2, f3(n) = §. Suppose f3(k) = % holds when
n=k<7.

When n = k+1, observe that it is impossible for all £+ 1 cubes to have
side length larger than 3. Then remove a cube of side length less than or
equal to . Then we have fa(k+1) < fa(k) + 3 M

Dissect the unit cube into 8 congruent small cubes with side length 1 5
and take (k + 1) of them, then the sum of their sides length is .(k2il

So f(k+1) = &)

By induction, when n=2,3,---,8, fa(n) = % holds. a

Now we discuss the lower bounds for f3(n).
Proposition 11. For k > 2, f3(k® — 1) > k% — }.
Proof. Consider the standard k3-packing with one cube removed. a
Proposition 12. For any positive integer n, f3(n) > (n3 —1)2,

Proof. By Proposition 7, fa(k%) = k2. For any positive integer n, there
exists an integer k such that ¥ <n < (k+1)3. So f3(n) > f3(k3) =k* =
(k+1—1)2. Since the function f(z) = (z — 1)? is increasing in the interval
[1,+00), fs(n) > (n¥ —1)%

0

In the same way, we can generalize the above results to those in d
dimensions.

We can easily see that the lower bound for f3(n) is not good at all, but
we can’t do better now. We can only give the lower bounds for some exact
values.

Proposition 13. f3(20) > 7
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Proof. Consider the packing with 20 cubes which can be obtained from a
standard 3%—packing by replacing a 23—grid with a single cube whose side
0

2
is%.Soi§q=(27—8)x§+§=7. ]

Proposition 14. When 1 < k <27, f3(27+7k) > 9+ k.

Proof. Begin with the standard 33—packing and replace each of k cubes
2747k
with 8 cubes each of whose side lengthis 3. > ¢ =9+kx(3x8-1)=
i=1
9 4 k. Then we get the result.

O
Proposition 15. f3(38) > 10.

Proof. Consider the packing with 38 cubes which can be obtained from a
standard 4%—packing by replacing a 3%—grid with a single cube whose side
38

length is 3. So Y ¢; = (64 - 27) x § + 3 = 10. ]

i=1
Proposition 16. f3(45) > 4.

Proof. First construct a packing with 38 cubes as in Proposition 14, then
replace the largest cube with 8 smaller cubes each of whose side is 3. So

i§q=(64—27)xz+8x-=479 O

Proposition 17. When 1 < k <8, fa(45+7k) > 22 + %,
When 9 < k < 45, f3(45+ 7k) > & + 3%,

Proof. We first construct a packing of 45 cubes as in Proposition 15. When
1 £ k < 8, we replace each of k cubes with side length % by 8 cubes with side

4547k
length 3. 2 =L +kx(Ex8-3)=22+3% When9<k<45 we

ﬁrst replace each of 8 cubes with side length § 3 py 8 cubes with side length
16, then replace each of k — 8 cubes with side length by 8 cubes with side

length 1. So z q=%+%x8+(k_8)x( 8__)_61+3k
~
' O
Proposition 18. f3(39) > 11.

Proof. We begin with constructing a packing with 20 cubes as in Proposi-
tion 12, then replace the largest cube with 20 smaller cubes constructed as

39
in Proposition 12. So > ¢; =19x 3 +2x3x19+2x 2 =11 O

i=1
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Proposition 19. f3(46) > 3.

Proof. First construct a standard 33 —packing, then replace a 23—grid of 8
cubes each of whose side is 3 with a 33—grid of 27 cubes each of whose side

length is 2. Sch,-—le +2xix2r=4. m]

Proposition 20. When 1 <k <19, f3(46 + 7k) > 3 + k;
When 20 < k < 46, f3(46 + 7k) > % + £=19),

Proof. We first construct a packing of 46 cubes as in Proposition 18. When
1 < k £ 19, we replace each of k£ cubes with side length % by 8 smaller

4647k
cubes with side length §. And Z =% +kx(zx8-H=3F+k

When 19 < k < 45, we replace each of 19 cubes with side length by 8
cubes each of with side length and replace each of (k — 19) cubes with
46+T7k
side length by 8 cubes each of whose side length is — . And Y ¢ =
i=1
T 419x (A x8-1)+(k-19)x =% + &19 Then we can get the
results.

a
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