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Abstract

If z is a vertex of a digraph D, then we denote by d* (z) and d™ (z)
the outdegree and the indegree of z, respectively. The global irreg-
ularity of a digraph D is defined by ig(D) = max{d*(z),d”(z)} —
min{d* (y),d” (y)} over all vertices  and y of D (including z = y).

A c-partite tournament is an orientation of a complete c-partite
graph. Recently, Volkmann and Winzen [9] proved that c-partite
tournaments with i,(D) = 1 and ¢ 2 3 orig(D) = 2andc > §
contain a Hamiltonian path. Furthermore, they showed that these
bounds are best possible.

Now, it is a natural question to generalize this problem by asking
for the minimal value g(,k) with ¢,k > 1 arbitrary such that all
c-partite tournaments D with ig(D) < i and ¢ > g(i, k) have a
path covering number pc(D) < k. In this paper, we will prove that
4i — 4k < g(i, k) < 4 — 3k — 1, when i > k+2. Especially in the case
k = 1, this yields that g(i,1) = 4i — 4, which means that all c-partite
tournaments D with the global irregularity i,(D) =iand ¢ > 4i —4
contain a Hamiltonian path.

Keywords: Multipartite tournaments; Path covering number; Hamil-
tonian path
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1 Terminology and introduction

In this paper all digraphs are finite without loops and multiple arcs. The
vertex set and arc set of a digraph D are denoted by V(D) and E(D),
respectively. If zy is an arc of a digraph D, then we write £ — y and say
z dominates y, and if X and Y are two disjoint vertex sets or subdigraphs
of D such that every vertex of X dominates every vertex of Y, then we say
that X dominates Y, denoted by X — Y. Furthermore, X ~» Y denotes
the fact that there is no arc leading from Y to X. By d(X,Y) we denote
the number of arcs from the set X to the set Y, i.e.,

dX,Y)=|{zyc E(D):z€ X,ye Y}

If D is a digraph, then the out-neighborhood N (z) = N*(z) of a vertex z is
the set of vertices dominated by z and the in-neighborhood Ny (z) = N~ (z)
is the set of vertices dominating . Therefore, if there is the arc zy € E(D),
then y is an outer neighbor of z and z is an inner neighbor of y. The
numbers df(z) = d*(z) = |[N*(z)| and dp(z) = d~(z) = |N~(z)| are
called the outdegree and indegree of z, respectively. For a vertex set X of
D, we define D[X] as the subdigraph induced by X. A cycle or path here
is always a directed cycle or directed path, and a cycle of length n is called
an n-cycle. A cycle or path of a digraph D is Hamiltonian, if it includes all
the vertices of D. The path covering number, pc(D), of a digraph D is the
minimum number of paths in D that are pairwise vertex disjoint and cover
the vertices of D. A factor is a spanning subgraph of a digraph. A factor
is a k-path-cycle, if it consists of a set of vertex disjoint paths and cycles,
where k stands for the number of paths in the set.

There are several measures of how much a digraph differs from being
regular. In [12], Yeo defines the global irregularity of a digraph D by

ig(D) = xg,%){d” (2),d”(=)} ~ C}I‘l,i(r})){d+ (¥),d™ ()}

and the local irregularity as 4,(D) = max |d*(z) — d~(z)| over all vertices
z of D. Clearly, 4/(D) < ig(D). If ig(D) = 0, then D is regular and if
ig(D) < 1, then D is called almost regular.

A c-partite or multipartite tournament is an orientation of a complete
c-partite graph. A tfournament is a c-partite tournament with exactly ¢
vertices. A semicomplete multipartite digraph is obtained by replacing each
edge of a complete multipartite graph by an arc or by a pair of two mutually
opposite arcs. If V1, Vs,..., V, are the partite sets of a c-partite tournament
or semicomplete c-partite digraph D and the vertex = of D belongs to the
partite set V;, then we definc V(z) = V;. If D is a c-partite tournament
with the partite sets Vi, V5, ...,V such that |V;| = n; for i = 1,2,...,c,
then we speak of the partition-sequence (n;) = ny,ns,...,n..
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In 1934, Rédei (5] showed that every tournament contains a Hamil-
tonian path. Clearly, for multipartite tournaments, this result becomes
false. Hence, an interesting question is to find sufficient conditions for
a multipartite tournament to contain a Hamiltonian path. Noting that
pc(D) < 1 means that D contains a Hamiltonian path, we recognize that
in 1988 Gutin, respectively Gutin and Yeo in 2000, gave a characterization
of semicomplete multipartite digraphs having this property.

Theorem 1.1 (Gutin [2], Gutin, Yeo [4]) IfD be a semicomplete mul-
tipartite digraph, then pc(D) < k (k = 1) holds if and only if D contains a
k-path-cycle factor.

In this paper, we will study the existence of a k-path-cycle factor de-
pending on the global irregularity of 2 multipartite tournament D. A first
result in this direction was made by Zhang [13] in 1989.

Theorem 1.2 (Zhang [13]) Every regular c-partite tournament D with
¢ 2 2 contains a Hamiltonian path.

This result was improved by Yeo [11].

Theorem 1.3 (Yeo [11]) Every regular semicomplete c-partite digraph D
with ¢ > 2 contains ¢ Hamiltonian cycle.

Recently, Volkmann and Winzen [9] examined the cases i,(D) = 1 and
ig(D) =2.

Theorem 1.4 (Volkmann, Winzen [9]) Let D be a c-partite tourna-
ment with the partite sets V1,Va,..., V. such that V1| < |Wo] <... < V.

i) Ifig(D) =1, then D contains a Hamiltonian path if and only if ¢ > 3
orce=2and |Vz| < V3| + 1.

i) Ifig(D) =2 and ¢ > 5, then D contains a Hamiltonian path.

Furthermore, they showed that the bound ¢ > 5 in Theorem 1.4 ii) is
best possible. The aim is now to extend such kind of results to multipartite
tournaments of arbitrary irregularity, which means to solve the following
problem.

Problem 1.5 For alli and k, find the smallest value g(i, k), such that all
c-partite tournaments with i, < i and ¢ > g(i, k) have a k-path-cycle factor.

Theorems 1.3 and 1.4 lead to g(0,1) = 2, g(1,1) = 3 and g(2,1) = 5.
Using the methods as in the article [9), it is a simple matter to obtain
the inequality g(i,k) < 4i -3k + 1 for i > k > 1. In this article, we
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suppose that ¢ > k + 2 > 3. This condition is essential to improve the
bound by g(i,k) < 4 — 3k — 1. A class of examples will demonstrate
that g(i,k) > 4i — 4k such that especially in the case k = 1 we arrive at
9(i,1) = 4i — 4, when i > 3.

Further new results about Hamiltonian paths in multipartite tourna-
ments can be found in [8, 10]. For more informations about multipartite
tournaments, we refer to [1, 3, 7).

2 Preliminary results
The following results play an important role in our investigations.

Lemma 2.1 (Tewes, Volkmann, Yeo [6]) If D is a c-partite tourna-
ment with the partite sets V1, Va, ..., V. such that [Vi| < |Vo| £ ... < |V,
then V| < |Vi| + 2ig(D).

The following two results can be found in [12]. The cases of equality
can implicitly be found in the proofs of the lemmas.

Lemma 2.2 (Yeo [12]) Let V1, Vs,..., V. be the partite sets of a semi-
complete multipartite digraph D. Let X CY C V(D) and let y; = Y N V]
andz; = | XNV foralli=1,2,...,c. Then

dX,)Y - X)+d(Y - X, X) + dX,Y - X)+d(Y - X, X)
X1 Y - X|
> Y| -max{yli=1,2,...,c}.

Furthermore, if equality holds above, then y; — 2z; = y; —2z; and y; —x; =
Yi—-ziandthusx; =z and y; = y; foralll <i,j <c.

Lemma 2.3 (Yeo [12]) If D is a semicomplete c-partite digraph, then the
following holds.

4(D) >  max {

|d(X, V(D) - X) — d(V(D) —X,X)I}
T @#£XCV(D)

Ry

In the case of equality, we observe that d*(z) = d~(z)+i1(D) forallz € X,
if d(X, V(D) - X) > d(V(D) - X, X) and d-(z) = d*(z) + it(D) for all
z € X, if dV(D) - X,X) > d(X,V(D) - X).

If we interpret the inequality pe(D) > 0 in such a way that the digraph

D does not contain a cycle-factor, then we can combine two results of Yeo
and Gutin and Yeo, respectively.
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Theorem 2.4 (Yeo [12], Gutin, Yeo [4]) Let D be a semicomplete c-
partite digraph. Then pc(D) > k > 0 if and only if V(D) can be partitioned
into subsets Y, Z, Ry, Ry such that

Ry~ Y, (RiUY)~ Ry, Y is an independent set (1)
and |Y| > |Z| + k.

The following theorem is almost identical with Theorem 3.1 in [9]. The
proof is similar to the proof of Lemma 4.3 in [12] and Theorem 3.2 in [4].
Since we will use the proof of this theorem in the following section, we will
echo it here.

Theorem 2.5 Let V1, Vs,..., V. be the partite sets of the semicomplete
multipartite digraph D such that |V1| < [Va| <€ ... < |V,|. Assume that
pc(D) > k for an integer k > 0. According to Theorem 2.4, V(D) can be
partitioned into subsets Y, Z, Ry, Ry satisfying (1) such that |Z| +k+1 <
Y| < |Ve| — t with an integer t > 0. Let V; be the partite set with the
property thatY CV;. Let Q@ =V(D)-Z-V;, Q; = QNRy1, Q2 = QNRy,
Yi=RiNV; and Yo = Ry NV;. Then

|V(D)| = |Ve—1| = 2|Ve| + 3k 4 3 + |13

ig(D) 2 5
ifQ=10,

iy(D) > [V(D)| - IV—1|-22|V¢:|+3]C+3+|Y1|,
if Q2 = 0, and

[V(D)| = |Ve=1]| = 2|Ve| +3k+ 3 + ¢

i9(D) > (D) > ;

f Q1 # 0 and Q2 #0.

Proof. Let V(D) be partitioned into the subsets Y, Z, R, R, satisfying
(1) such that |Z| + k+1 < |Y]| < |V¢| — t for integers k > 0 and ¢ > 0.
If @1, Q2, Y1 and Y, are defined as above, then we observe that |Z] <
Y| -1-k<[Ve|-1-k-t, Q1 =Y - Qs (Q1UY1)~ (Q2UY2) and
iuYaUY CVi. Ifi=c, thenlet j =c—1and if i < ¢, thenlet j =c.
‘We now consider the following three cases.

Case 1. Let Q; = ®. Then it follows that Q2 = Q. Let §* =
min{d~(w)lw € V;}. Since Y C V; and thus d~(y) < |Z| forall y € ¥
we observe that 6* < |Z] < |Y| -k -1 < |V| - |Y2| -1 — k. Let
A* = max{d*(w),d” (w)|w € V(D) — V;} and note that d*(w) + d~(w) >
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[V(D)|-|V;]| for all w € V(D) —V;. The fact that 3~ o, (d™(z) —d*(z)) >
|Q2|(Y| = |Z] — |Ya]) = |Q2|(1 + k& — |Y2|) implies that there is a ver-
tex ¢ € Q2 such that d=(q) > d*(q) + k — |Y2| + 1. This leads to
2d~(q) —k+|Ya| -1 > d*(g)+d~(g) > |V(D)| - |V;|, and thus we conclude
that A* > 'V(D)'"lv’;"'k-lyzl“. This implies

: . o V(D) = Vsl +k— Y] +1
WD) > o -g > 0 l’l; WL v ol + k41
[V(D)| = [V5] — 2|Vi| + 3k + 3 + [Y3|
2
[V(D)| = [Ve-1| = 2|Ve| + 3k + 3 + |2
> 5 :

and the first part is proved.

Case 2. Let Q2 = 0. This is analogous to Case 1 (change the orienta-
tion of all arcs in D).

Case 3. Let Q) # 0 and Q2 # 0. Since |Vi| + |Vj| < |Veoi| + V|, we
deduce that |Q| — |Vj| > [V(D)| - |Vi| - 12| - |V;| 2 [V(D)| = [Ve-1| = [Ve| -
(IVel -1 -k —t). By Lemma 22 with X = Q, and Y = Q; UQ2 = Q, and
because Q NV; = O, it follows that

d(Q1,Q2) + d(Q2, Q1) + d(Q1,Q2) + d(Q2, Q1)

1C1] Q2]
_ d(Q1,Q0) , d(@1,Q2)
1@l |Q2l
> 1QI = [V;l 2 [V(D)] = [Veur| — 2IVel + 14+ +1.
Consequently
(i) d(Q|(12,1iQ2) > [V(D)| = |Ve-al ’;2|Vc| +1+k+¢ (Yal + Y3 or
(ii) d(?é;?ﬂ > V(D) = [Ve-1] _22|Vc| +14+k+t +1%l - %],

Assume that (i) holds as the case when (ii) holds can be treated similarly.
Because of Ry = @, UY] and R, = Q2 UY>, Lemma 2.3 yields

d(@1, V(D) — Q1) —d(V(D) - @1, Q1)

ig(D) 2u(D) 2 TN
1
— d(QhQ?) +d(Q11YUY2) —d(YUY2$Q1)
Q1 @l
, dQuZUY) -d(ZUYi,Q) _d(@nQ)
|Qul 1@l
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V(D) = |[Vec1| = 2|Ve| +14+k+¢
LRI -t )
+ (Y]+[¥2) = (12| + 1al)
V(D) = |Ve—1| = 2|Ve| + 14+ K+t
VD)= Wenl “ AV ¥ Ltk g
s V(D) = [Veer| = 2IVel +3 + 3k +
2 2 .
This completes the proof of the theorem. 0O

An analysis of the proof of the last theorem yields the following result.

Corollary 2.6 Let V;,Va,...,V, be the partite sets of the semicomplete
multipartite digraph D such that |Vi| < |Vo| < ... < |V|. Assume that
pe(D) > k for an integer k > 1. Let Y,Z,R1, Ry,Q,Q1,Q2,V;,Y; and Ys
be defined as in Theorem 2.5.

IfQ1 =0 and ig(D) = lV(D)I_W"*’|_§IVC'+3"+3+|Y’| , then the following
holds.

t) min{d~ (w)lw e V;} = |Z|=|Y|-k-1.

i) |Y| = |Vi| — |Ya|, which means that |Y1| =0 and |V;NZ| =0.
i) Y — Q2 — (Y2 U Z).
w) d”(g2) = d*(g2) + k — |Y2| + 1 for all g2 € Q3.

v) max{d*(w),d” (w)|lw € V(D) - V;} = d~(q) for a vertez q € Q2 such
that |V (q)| = |Ve-il

vi) ig(D) = max{d~(q)lg € Q2} — min{d™ (w)|w € V;}.
vii) |Vi| = |Vel. |

viii) |V(D)| = |Ve1| = 2|Ve| + 3k + 3 + |Y2| is even.

Let j=c—-1,ifi=candj=c ifi<ec IfQi #0 and Q2 # 0 and
ig(D) = 'V(D)l”wc‘"2'21V°|+3k+3+t, then we conclude that

&) iy(D) = (D).
b) {IVil,|V51} = {IVel, [Ve-1l}-
c) VinzZ =40, |Z|=|YI_1'—’°: |Y|=|Vc|_t'

d) there is equality in Lemma 2.2 with X = Q1 and Y = Q = Q1 U Qy,
which means that |V, N Q1| = ViNQu| and |V, NQ| = [VINQ| for
all<ilm<csuchthat Vv NQ # B and VN Q # 0.
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e) V;CQ

) d(QQ,Qz) V(D)= |Vc-1| 2| Vel +14-k+t — |Ya| + V4| and
d(Q1, V(D)|=|Veo1|=2|Vel+1+k
(Cl?é?z) V(D)|-| 1|2 | |+++t+|Y2|_|Y1|.

9) d*(q1) = d~(q1) +ig(D) for all g € Q1 and d~(g2) = d*(gz) +i4(D)
for all g5 € Q4.

h) Q2 = (ZUYs), (ZuT) — Q1.
3) (V(D)| = |Ve=1| — 2|Ve| + 3k + 3 + ¢ is even.

Corollary 2.7 Let V4, Va,...,V, be the partite sets of a semicomplete mul-
tipartite digraph D such that |V| < |Va| < ... < |V,|. If there exists a pos-
itive integer k such that i,(D) < V(D )I-[Vc_121—2|Vc|+3k+2’ then pc(D) < k.

The proof of the following theorem is also important in the following
section and can be found in a weaker form in [9).

Theorem 2.8 Let V1, Vs,..., V. be the partite sets of the semicomplete c-
partite digraph D such that 1 <r = |Vj| < |Vo| £ ... L |Ve| <1 +p for an
integer p > 0. If ¢ > max{2,3 + —-"M} for an integer k > 0, then
it follows that pc(D) < k.

Proof. According to Corollary 2.7, it is sufficient to show that
[V(D)| = |Ve-1| — 2|Ve| + 3k +2

ig(D) < 5
Because of ¢ > 3+-2—'M we conclude that i,(D) < (&=3rt3k+2-p
and together with |V|, |V2| s Ve—2| 27, |Ve|] £ 7+ pandc > 2 thls
implies
V(D) — IVe_r| — 2|Ve| + 3k +2
2
Vil +|Val + ... + [Veoo| = [Ve| + 3k +2
2
> (¢=3)r —2p+3k+2 > iy(D),
the desired result. o

If D is a multipartite tournament, then, according to Theorem 2.1, we can
choose p = 2i4(D) in the previous theorem.

Corollary 2.9 (Volkmann, Winzen [9]) Let V},V5,...,V, be the par-
tite sets of a c-partite tournament D such that 1 <r =|V1] <|Vp| < ... <

|Vel. If ¢ > max{2, ﬁﬂw— + 3} for an integer k > 0, then it follows
that pe(D) < k.
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3 Main results

If i(D) > k + 2, then Corollary 2.9 is not best possible as we will see in
Theorem 3.2. But at first, we will prove the following helpful lemma.

Lemma 3.1 Let V1, V5, ...,V be the partite sets of a multipartite tourna-
ment D with iy(D) > k+ 2 for an integer k > 1 such that r = |V;| < ... <
Vel < 7 +2iy(D) - py and || + [Va| + .. + [Veeal = (c = 27 + pp for
integers 0 < py < 2iy(D) and 0 < pa. Furthermore let D have the property

(la*(z) —d~(z)| >! for avertex z€ V(D)) = z€V,.1 (2)

with I € {0,1}. Let pc(D) > k and let the sets Y,Y1,Y2,Q,Q1, Q2 and
Z be defined as in Theorem 2.5 such that Y C V.. If g) of Corollary 2.6
holds for the case that Q1 # 0 and Q2 # 0, and if iv) of Corollary 2.6 with
k > |Ya| +1 holds for the case that @y =0, and if

w)* d¥ () =d (q)+k—|Ya| +1 for all gy € Q,
with k > |Y1| 4+ holds for the case that Q2 = 0, then it follows that

4i,(D) -3k —-5-p, —po
T

Proof. Let pe(D) > k and let the sets Y,Y7,Y5,Q,Q1,Q2 and Z be
defined as in Theorem 2.5. First we will show that the assumptions of this
lemma imply that @ C V,..;.

If Q; = 0 and iv) of Corollary 2.6 with k& > |Y2| + holds, then we arrive
at |[d*(g2) —d~(g2)| > ! for all g, € Q; and (2) implies that Q2 = Q C V,_;.

If Q2 = 0 and iv)* with k& > |Y;| 4+ { holds, then we arrive at |d*(q;) —
d™(q1)| > ! and (2) implies that @; = Q C V..

If @, # 0 and Q2 # 0 and g) of Corollary 2.6 holds, then it follows
that [d*(q1) — d~(q1)| = ¢4(D) > 1 for all ¢; € Q; and |d*(g2) — d~(g2)] >
ig(D) > 1 for all g, € Q,. Hence, (2) implies that Q C V,_;.

So, in all cases we have shown that @ C V._;. Since Y C V, this yields
ViUVaU...UV,5 C Z. Suppose that ¢ > La(P)=Sk=d-pi-ps | 3 pjg
implies

c<3+

r+2ig(D)—pr 2 (Ve[ 2[Y|2 12| +k+12(c-2)r+p2+k+1

(4i9(D) —3k—4-p1 —po
r

4ig(D) -3k —4-p1+r+k+1

3

51

a contradiction. ]

v

+1)r+k+1+p2

= 2i,(D)<2%+3 = i(D)<k+
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Theorem 3.2 Let V;,V,...,V, be the partite sets of a c-partite tourna-
ment D with iy(D) > k + 2 for an integer k > 1 such that 1 <r = |V3| <
IVal < ... < Vel Ife> 2aBI=3k=3 | 3 then pe(D) < k holds.

Proof. Suppose that pe(D) > k. According to Corollary 2.9, this leads
toc = ﬁﬂw + 3 > 2. Regarding Theorem 2.8, we observe that
p = 2iy(D) and D has the partition-sequence r,1,..., 7, |Vo_1|,7 + 2i4(D).
To get no contradiction, it follows that d*(z) = d (z) = ﬂ;"’*‘l
for all z € V; and d*(y) = d~(y) = &2rHlVearl 4§ (D) for all y €
ViuVaU...UV._3. In other words,

(ld*(z) —d™(z)] >0 for avertex z € V(D)) = z€ V..

Note that because of ¢ = ﬁ,,(D)T—_ak—g + 3 in the following we may consider
the case that i,(D) = V(D)|~ |V°“2' 2Vel+3k+3

Let thesets Y, Ry, Ry, Z,Q, Q1, Q2,V;, Ya, Yg and t be defined as in The-
orem 2.5.

Case 1. Let Q; = 0, and thus Q = Q,. This yields that i)-viii) of
Corollary 2.6 with |Yz| =0, |Y| = |V,| and & > 0 are valid. Now Lemma
d.lyieldsc <3+ ﬁﬂw, a contradiction.

Case 2. Assume that Q; = (). By symmetry, we arrive at a contradic-
tion similarly to Case 1.

Case 3. Suppose that Q; # 0 and Q2 # 0. Hence a)-j) of Corollary 2.6
with ¢ = 0 hold. With c) we see that |Y| = |V;| and thus |Y;| = |Y2| = 0.
Again, using Lemma 3.1, we arrive at a contradiction. This completes the
proof of this theorem. o

Since max {4—"’# +3|re N} = 4iy(D) — 3k, we see that the fol-
lowing result is an improvement of Theorem 3.2.

Theorem 3.3 Let V1,Va,...,V, be the partite sets of a c-partite tourna-
ment such that 1 <r =|Vi| < |Vo| < ... < |Vi|. Ife=4iy(D)-3k—1 and
ig(D) 2 k + 2 for an integer k > 1, then pc(D) < k.

Proof. If v > 2, then Theorem 3.2 and the fact that ig(D) > k + 2
yield the desired result. Let r = 1, ¢ = 4i4(D) — 3k — 1 and suppose

that pe(D) > k. If [Ve| < 2ig(D) — 1, then (RU-Wemrl-2Vel3k32

M =1 (D), a contradiction to Corollary 2.7. If |Ve| = 2i4(D)
and |Vl| + |Va| + ...+ |Vee2| = ¢ — 1, then, similarly as in the proof of
Theorem 2.8 with p = 2i4(D) — 1, we see that D contains a Hamiltonian
path, a contradiction. Analogously, if [V;| = 2i4(D) + 1 and |V;| + |V2| +
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..+ |Ve=2| = ¢, then we arrive at a contradiction. The following three
cases remain to be considered.

Case 1. Assume that |V;| = 2i,(D). As seen above this implies that
D has the partition-sequence 1,1,...,1,|Vc_1|,24,(D).

If |Ve—i1| — 3k = 2p + 1 with p € Z, we conclude that {d*(z),d"(z)} =
{8iy(D) +p - 2,3i,(D) +p— 1}, if 2 € ViUVaU...UV,_, and d*+(y) =
d~(y)=2ig(D)+p—-1forallyeV,.

If |Vo—1| — 3k = 2m with m € Z, it follows that d*(z) = d~(z)
3ig(D)+m —2forall z € ViUV U...UV._, and {d*(y),d"(¥)}
{2i4(D) — 14+ m,2iy(D) — 2+ m} for all yeV..

In both cases we deduce that

(Jd*(z) —d~(z)| >1 for avertex z€ V(D)) = z € Ve1.

Furthermore, we observe that i,(D) = L2I=Veor=2IVelt3k+3

Let thesets Y, Ry, Ry, Z, Q, Ql, Q32,Vi,t,Y; and Yg be deﬁned as in The-
orem 2.5. Now Corollary 2.6 g) and iv) and condition iv)* of Lemma 3.1
hold, and this lemma with p; = 1 yields

¢ < 3+ 4iy(D) — 3k — 6 = 4iy(D) — 3k - 3,

a contradiction.

Case 2. Let 1,1,...,1,2,|V._1|,2ig(D)+1 be the partition-sequence of
D. If |V._1| — 3k = 2m +1 for an m € Z, then there is a vertex € V; such
that d*(z) > 3ig(D)+m or d™(z) > 3ig(D) +m and a vertex y € V; such
that d*(y) < 2¢4(D)+m —1 or d~(y) < 2i,(D)+m— 1, a contradiction to
the definition of i4(D). Hence, in the following we can assume that |V._,|—
3k = 2p for an p € Z. This implies that d*(z) = d~ (z) = 3ig(D) —1+p for
allz € ViUV U...UV,_3, {d*(y),d” (¥)} = {3ig(D)+p—1,3iy(D)+p—2}
forall y € V.—2 and d¥(z) = d~(2) = 2ig(D)+p—1for all z € V.. In other
words this means that

(ld*(z) —d~(z)| >1 foravertex z€ V(D)) = z€ V1.

The partition-sequence yields ig(D) = IV(D)|_|V°“2|_2|V°I+3'°+3.

Let thesets Y, Ry, Ry, Z,Q, Q1,Q@2, Vi, Y1,Ys and t be defined as in The-
orem 2.5. Now Corollary 2.6 g) and iv) and condition iv)* of Lemma 3.1
hold, and this lemma with p; = 1 yields

¢ < 3+ 4iy(D) — 3k — 6 = 4i (D) — 3k — 3,

a contradiction.
Case 3. It remains to treat the case that D has the partition-sequence
1,1,...,1,|Veo1|,2¢4(D) + 1. If |Ve—1]| — 3k = 2m for an m € Z, then
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we deduce that there are vertices € Vi and y € V. such that d*(z) >
3ig(D) +m —1 or d™(x) > 3ig(D) +m — 1 and d¥(y) < 2iy(D) +m — 2
or d™(y) < 2ig(D) + m — 2, a contradiction. Hence, we may assume that
|Ve—1| — 3k = 2p + 1 with p € Z, d*(z) = d~(z) = 3iy(D) — 1 + p for all
z€VIUVaU...UV._s and dt(y) =d~(y) = 2iy(D)+p—1forally € V..
This leads to

(ld*(z) —d~ ()| >0 for avertex z€V(D)) = z€ V1. (3)

The given partition-sequence implies that i,(D) = V(D) -|Ve- " UVel +3k+d
Let the sets Y, Z, Ry, R3,Q, Q1,Q2, Vi, Vj, Yl, Y; and t be deﬁned as in The-
orem 2.5.

Subcase 3.1. Let t > 1.

Subcase 3.1.1. Suppose that Q; = 0.

First, let ¢ # ¢, and thus j = ¢. Since |Y| > |Z|+k+1 > |Z]| + 2, we
conclude that i = ¢ — 1. Note that |V,| is odd. If |V._,| is even, and thus
k is odd, then this implies that |V;| = |V¢| = |Ve-1| + s = |Vi| + s for an
integer s > 1. As in Case 1 of the proof of Theorem 2.5, we see that

V(D)| - |V;| - 2Vil + 3k + 3
2 (4)
[V(D)| = [Veer| = 2IVi| + 5+ 3k + 3
s .

ig(D) >

To present no contradiction it follows that s = 1, and thus |V;| = |V._i| =
2i4(D). Furthermore, equality holds in the inequality (4). This is possible,
only if [Y2| = 0 and ii) and iv) of Corollary 2.6 hold. Using ii), we see that
Y = V._1, and iv) means that d=(q2) = d*(q2) + k + 1 for all g2 € Q-.
According to (3), this yields @ C V,_;, a contradiction to Y = V,._,.

If |[Vc—1| is odd, and thus k is even, then |V;| = |V.—1| + s for an
integer s > 2 would lead to a contradiction as above. Hence, we conclude
that |V._i| = |V¢| = 2¢4(D) + 1, and without loss of generality, we may
suppose that i = ¢. If |Yz] > 2, then Theorem 2.5 yields a contradiction.
If |Y2| = 1, then Theorem 2.5 and Corollary 2.6 iv) imply that d~(g2) =
d*(gz) + k for all g2 € Q2, and thus Lemma 3.1 leads to the contradiction
¢ < 4iy(D) -3k —2. If |Y2| = 0, then, from the fact that ¢ > 1, we conclude
that |Z| < |Y|—k—1<|Vj] —k—2. If 6* and A* are defined as in Case 1
of the proof of Theorem 2.5, then, as there, we observe that
WD) 2 A sp VOUMIEEL
[V(D)| = [Ve-1| = 2|Ve[+ 3k +5

2 k]

Y

v

a contradiction.
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Subcase 3.1.2. Let Q2 = @. If we reverse each arc of D, we arrive at a
contradiction by using Subcase 3.1.1.

Subcase 3.1.3. Assume that @ # 0 and Q2 # 0. To get no contradiction
it follows that ¢ = 1 and a)-g) of Corollary 2.6 holds, and thus Lemma. 3.1
yields the contradiction ¢ < 4i,(D) — 3k — 2.

Subcase 3.2. Let t = 0 and thus |Y| = |V,| and |V;| = |Y2| = 0.

Subcase 3.2.1. Suppose that Q1 = 0. If d=(g2) > d¥(ge) + k + 1
for all ¢ € @2, then with Lemma 3.1 we arrive at the contradiction
¢ < 4iy(D) — 3k — 2. Hence, observing Case 1 of the proof of The-
orem 2.5, we conclude that there is a vertex ¢ € Q N V,-; such that
d~(q) > d*(g) + k+ 2. Let 6* and A* be defined as in the proof of
Theorem 2.5. Similarly as there, we deduce that A* > W and

thus ig(D) > 'V(D)l—lv°“2|'2lv"|+3k+4 . To present no contradiction, it must
be the case that |Z| = |Y| — k — 1 = 2ig(D) — k and

|Z| = 2y(D) -k = & =6(G)=min{d*(z),d"(z) |z € V(D)}
= 2i,(D)+p-1,

and thus p = 1—k and |V,-;| = k+3. Hence, D has the partition-sequence
L,1,...,1,k +3,2i,(D) + 1 and thus d*(z) = d~(z) = 3ig(D) — k for all
z€WVUVU...UV,_5 and d*(y) = d~(y) = 2i,(D) —k for all y € V.
Since |Y| = 2i,(D) + 1 =|Z| + k + 1, it follows that

Q2| = V(D) -1|Y]-12]|
= c—2+4k+3+2(D)+1— (2iy(D)+1) - (2iy(D) — k)
= 2iy(D) - k.

The facts that Y — Q5 and d*(y) = 2ig(D) —k for all y € Y = V, yield
that Z — Y.

Suppose now, that |Ve—1 N Q2| < k—'{—s If there is a vertex ¢ € Q2 such
that dB[Qz] (g2) > i4(D) — k, then this leads to the contradiction

d™(q) 2 |V]+dpip,(@) 2 2,(D) + 1 +iy(D) — k
= 3i,(D)+1-k.

Hence, we have dB[Qz](qz) < ig(D) — k — 1 for all g2 € Q2, and thus we
arrive at

|E(Q2)l = ) dpg,(92) < (2i4(D) — k)(ig(D) -k — 1)
92€Q2
22(D) — (3k + 2)ig(D) + k* + k.
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On the other hand we observe that

(2ig(D) — k — £53)(2i4(D) — k — 1) + 52(2(D) - k — E£2)
2

3k2 -3
—

|E(Q2)]

v

= 2i2(D) — (2k + 1)iy(D) +
Combining these two results we conclude

%i(D)? — (2K + 1)iy(D) + =3

8

< 2ig(D)? ~ (3k +2)ig(D) + k2 + k
5k? + 8k + 3
) < Sk +8k+3
® i5(D) s —g—

a contradiction to ig(D) > k+2 and k > 1.

If |Vee1 N Z| < "—'Z'ﬁ, then analogously we arrive at a contradictiion
(replacing @2 by Z and dB[Qz](qz) by dBIZI (z) for a vertex z € Z).

Subcase 3.2.2. Assume that Q, = . Caused by symmetry this leads to
a contradiction analogously as in Subcase 3.2.1.

Subcase 3.2.3. Finally, let Q; # @ and Q; # 0. Ifig(D) > ¢;(D)+1, then
Theorem 2.5 yields that iy(D) > ]V(D)l—lvc_12[-2|v6|+3k+s’ a contradiction.
Hence let i4(D) = #(D). It follows that there is a vertex z € V._; such
that {d*(z),d" (z)} = {Zal2-%k=2 5y(D)-3k-2} ,ng thus

Tig(D) -3k —2 _
TS

Hence, we may assume that D has the partition-sequence 1,1,...,1,i,(D)+
1,2i4(D) + 1. Observing the proof of Theorem 2.5, we recognize that the
case |Y| > |Z| + k+ 1 also yields a contradiction. Consequently it remains
to consider the case that |Z| = |Y| — £ —1 = 2{,(D) — k. This implies that

(Ql = [V(D)|-|Y|-12| = ¢c—2+iy(D)+1—(2iy(D) — k) = 3i,(D) -2k —2.

Without loss of generality, we assume that |@Q;| > |Q2| and thus |Q;]| >

%Q_)z-?ﬁ. If there is a vertex £ € Q2 — V.1, we arrive at the contradic-
tion

3ig(D)=1+p = |Vec1| -3k = 2p+1 = iy(D)+1—3k.

ig(D) -3k Kk _ . k
T +2-—3zg(D)+p+2.

Hence, let Q2 € V._;. Now we conclude for an arbitrary vertex z € Q2
that

d™(z) 2 Y] +|Q1 = Veur| 2 Y] + Q1| = [Ve-i1] + Q2| = 4ig(D) — 2k — 2.

d™(z) 2 |@i] + Y| 2 34,(D) +
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Since 4ig(D) — 2k — 2 > 3ig(D) — 1 +p = 3ig(D) — 1 + 2B)=3k _ g(yy 4
ig(D) with y € Y arbitrary if and only if ig(D) > k+2, it rema,ms to treat
the case that i,(D) = k+2, D has the partition-sequence 1,1,1,1,1,1,k +
3,2k +5,|Y|=2k+5=|Z|+k+1,|Q| =k +4, d"’(z):d‘(:r) =2k+6
forallz € VUV U...UViy5 and d¥(2) =d~(2) = k+4 for all 2z € Viyr.
Because of |Q] = k + 4, thereisa vertex v e QN (VU VL U... U Viys).
If v € Q2 and |Q;| 2 2, then it follows that d=(v) > |Y| + |Q1] > 2k + 7,
a contradiction. If |@;| = 1, then we arrive at a contradiction to our
assumption |Q1]| > |Q2|. Hence, let v € Qy, Q1] =k + 3and || =1. It
follows that Q2 U (@1 — {v}) = Vite, (@1 — {v}) = v, Q2 - Z — @ and
D[Z] is a tournament. Since

2 +14k+24 = (k+4)(2k+6) =) d*(2)
z€Z

ZI1Qil + d(Z,Y) + Y dby5(2)
z2€Z

2
L WAARLB oy

we deduce that d(Z,Y) = -’ﬁi';—ki-l-g On the other hand, we observe that

2k +5)(k + 4)

Y d @ =Yl +d(2,Y)

yeyY
= (2k+5)(k+4)—(2k+5)+d(Z,Y),

and thus d(Z,Y) = 2k + 5, a contradiction to & > 1.
This completes the proof of this theorem. ]

Combining the Theorems 3.2 and 3.3, we observe that g(3,k) < 4i —
3k — 1, when ¢ > k + 2. The following example yields the estimation
g(i, k) > 4i — 4k, when i > k + 2.

Example 3.4 Ifk > 1 and i > k + 2 are integers and ¢ = 47 — 4k — 1,
we define the c-partite tournament G; . with the partite sets V; = {v;} for
1<j<4i—4k -2 and Vai_ax—1 = {¥1, 92, ..., Y2i—r+2} as follows.

The partite sets V1, Va, ..., Vaj_ok—1 induce an (i — k — 1)-regular tour-
nament A and the partite sets Voj_ok, Voi—ok+1,- .-, Vai—ar—2 induce an
(i — k — 1)-regular tournament B. In addition, let A — B — (Vgi—qx-1 —
{y2i—k+1,V2i-k+2}) = A = {Y2i~k41,Y2i-k+2} — B. It is straightforward
to verify that Gix is a (4i — 4k — 1)-partite tournament with ig(Gix) = i
and pc(Gi) > k. If we remove the vertices yai—r+1 and Yoi—r42, then for
each integer i > k + 2 we get a (4i — 4k — 1)-partite tournament D; ;. with
ig(Dix) =i and pe(D; k) > k (see Figure 1 for D3 ).
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Figure 1: The 7-partite tournament D3 ; without
any Hamiltonian path

Note that for all multipartite tournaments G;; with i > 3 it follows that
4(Gi,1) = 0. This demonstrates that the existence of a Hamiltonian path
does not depend on the local irregularity. There are local regular c-partite
tournaments with ¢ arbitrary large that do not contain any Hamiltonian
path.

Combining Example 3.4 together with the Theorems 3.2 and 3.3, we
arrive at the following main result of this paper.

Theorem 3.5 Letk > 1 and i > k+2 be integers. If g(i, k) is the minimal
value such that all c-partite tournaments D with iy(D) < i and ¢ > g(i, k)
have a path covering number pe(D) < k, then it follows that

4i — 4k < g(4,k) < 4i — 3k — 1.
In the case that k = 1, this yields g(i,1) = 4¢ — 4, when i > 3.

Hence, for the case k = 1, Problem 1.5 is completely solved. If & > 1
and ¢ < k + 2, then it is still an open problem to find the values or bounds
for g(i, k).

Observing the global irregularity of a multipartite tournament the upper
bound for g(i, k) directly implies the following corollary.

Corollary 3.6 If D is a c-partite tournament such that
c+3k+1
4 b
then pc(D) < k. Moreover, for k = 1 and iy(D) > 3 the upper bound of
ig(D) is optimal.

k+2<iy (D)<
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