1

A sequence of symbols a,a3...

On square-free edge colorings of graphs

J. Barat*
Technical University of Denmark, Department of Mathematics,
B.303. 2800 Lyngby, Denmark
e-mail: barat@math.u-szeged.hu
and
P.P. Varjat
Analysis and Stochastics Research Group of the Hungarian
Academy of Sciences, Bolyai institute, University of Szeged,
Aradi vértanik tere 1. Szeged, 6720 Hungary

Abstract

An edge coloring of a graph is called square-free, if the sequence
of colors on certain walks is not a square, that is not of the form
Z1,...3Tm,ZT1,...,Tm, for any m € N. Recently, various classes of
walks have been suggested to be considered in the above definition.
We construct graphs, for which the minimum number of colors needed
for a square-free coloring is different if the considered set of walks
vary, solving a problem posed by Bresar and Klavzar. We also prove
the following: if an edge coloring of G is not square-free (even in
the most general sense), then the length of the shortest square walk
is at most 8/E(G)|*>. Hence, the necessary number of colors for a
square-free coloring is algorithmically computable.
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is called square-free, if it does not contain
a square, that is a subsequence of consecutive terms of the form XX =
Z1y-.yTonyL1,---,Tm, for any m € N. Square-free sequences were first
studied by Thue [5]. He proved that there exists an infinite square-free



sequence consisting of only three symbols. This topic has a vast literature,
for more information and references see [4].

Recently, several graph theoretic generalizations of the square-free con-
cept have been suggested in (1] and [2]. We use the following notions: let
W = vy, e, v1,€1,...,ex-1,U be a walk, where vp,vy,..., v, are vertices
and eg, ey, ...,ex_1 are edges of a given graph. For simplicity, we only list
the edges sometimes. If vg = vy, the walk is closed, otherwise open. A walk
W is called edge-simple if e; # e;, when i # j. A walk is called admissible,
if its edge sequence is not a square, when we use the same symbol for the
identical items in the sequence.

Definition 1.1. Let 7;(G) be the minimum number of colors needed to
color the edges of a graph G such that the sequence of colors is not a square
on

(2 =1) any path,

(7 = 2) any open edge-simple walk,

(¢ = 3) any open walk,

(i = 4) any admissible walk.

The walks appearing in the various conditions are called examined walks.
An edge coloring satisfying the ith condition is called a proper m; coloring.
A sequence of edges of a walk, whose corresponding color sequence form
a square, is called a square walk. Observe that even if the coloring is
proper, the graph may contain square walks, but these walks should not be
examined.

Consider a walk ej,ez...,eq,€1,€2,...,e,. The sequence of colors on
the edges of this walk is always a square, thus we must exclude this case.
In this sense, 74 coloring is the most general possible notion.

Figure 1: The walk ejkg is examined for ¢ = 1, but not ejkh; the walk jeik
is examined for i = 2; the walk eijefg is examined for ¢ = 3, but not ejkh.

Now Thue’s theorem on square-free sequences is equivalent to w1 (P) =
3, where P is a one-way-infinite ray.

The parameter 7; was first studied by Alon et al. [1], and it was called
the Thue number of G. Two adjacent edges form an examined walk of
length two, so they must get different colors to avoid squares. Thus m;
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colorings are also classical edge colorings, and A < ;. On the other hand
m < O(A?) was proved in [1] using the probabilistic method. The lower
bound is valid also for 7, 73 and m4. The proof of the upper bound can only
be transferred to 2, but not to w3 and m4. It is not known whether these
latter parameters can be bounded by any function of A. The parameter
w3 was introduced by Bresar and Klavzar in [2], where it is also mentioned
that 72 had been suggested by Grytczuk and w4 by Currie.

Coloring the edges of a graph with distinct colors yields a proper 7y, 2,
w3 and 74 coloring, so the parameters are well defined. This is not trivial
for w3, see [2] for a proof. Clearly m1(G) < m2(G) < 73(G) < m4(G) for any
graph G. The first aim of this paper is to show that the four parameters
are different in general, answering a question of BreSar and Klavzar.

2 Distinguishing the parameters

We construct examples to show that the different indices of # denote dif-
ferent parameters. It confirms the interest to study anyone of them on its
own.

We first show that there exists a graph G, for which m1(G) # 72(G).
Let G be the graph in Figure 2. We prove that 71(G) = 4, and there is
essentially only one way to use four colors. Consider the triangle (e, f, g).
These edges must get distinct colors, 1,3,4 say, as in the figure. Then the
edges d and h are adjacent to colors 3 and 4, so they receive colors 1 and 2.
By symmetry, we may assume that h is colored 1 and d is colored 2. Now
the edge i can not get color 3(4) since the sequence fehi(fghi) should not
be a square walk. Hence 7 receives color 2. The edge b(j) is not colored 1,
as dhib(dhij) should not be a square walk. Since the edges c, ¢, b and j get
different colors, ¢ receives color 1. Also by symmetry, we may assume that
b gets color 4 and j receives color 3. Now a(k) can not get color 2, since the
path fgdcba(fedcjk) should not be a square walk. Also a can not receive
color 3 and k color 4 simultaneously. So a or k gets color 1. If we set the
color of a to be 1, then k receives color 4. The other case is identical. The
reader can verify that this is indeed a m; coloring.

Figure 2: m1(G) =4 < m2(G)
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On the other hand, consider the edge-sequence abcdefghij. This walk
is examined by 7. But in our essentially unique coloring, it receives the
color sequence 1412314123, which is a square. So 71(G) = 4 < m2(G). O

Secondly we separate 2 and 73. Let G be the graph in Figure 3. We
first show that m2(G) = 4, and there is essentially only one way to use four
colors. Consider the cut-edge b. We may assume that it has color 4. Both
endvertices of b have degree 4. So the three adjacent edges on both sides
must get colors 1,2,3 in some order. Since the right-hand side is symmetric,
we might pick any arrangement. We take the one in Figure 3. Now the
edge d can not get color 4, since then deba would be a square walk. So d
receives color 3. On the right-hand side, there are six uncolored edges. Two
of them are adjacent to the edge a. None of them can get color 4 yielding
a 1414 sequence, so they get 2 and 3. Similarly the other two claws receive
the colors 1,3 and 1,2. In our figure we depicted the only solution. If we
e.g. switch the colors 2 and 3, adjacent to a, then we get a sequence 1212.
The other cases give similar contradictions. This is now a 73 coloring of the
graph. Since the color 4 appears only once, on the cut-edge, any candidate
square walk uses the edges on one side only. Thus 72(G) = 4.

On the other hand, consider the edge sequence abcdebfg. This walk is
examined by m3. But in our unique coloring it receives the color sequence
14231423, which is a square. So m2(G) = 4 < 73(G).

Figure 3: m2(G) = 4 < m3(G)
Notice that the separation of 73 and 7,4 is immediate from the definition.

Since a cycle is only examined in the second case, e.g. w3(Cs) = 2 and
m4(Cy) = 3.

3 Trees

It was shown by Alon et al. [1], that for any tree T, m1(T) < 4(A(T) - 1).
We also know that m1(G) > A, so this upper bound has the right order of
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magnitude. We improve the trivial lower bound by a constant factor for
certain trees.

Lemma 3.1. Let T be a rooted tree such that the root u has d neighbours
u1,...,Ud, and each u; has d — 1 additional neighbors besides u. Then

m(T) > d+ 42,

Proof. The edges uuy,...,uuq are adjacent, thus they get different colors.
Set the color of uu; to be 7. Denote by C; the set of colors used for the
d — 1 edges adjacent to u; except uu;. Now any C; contains d — 1 different
colors, and i ¢ C;. Let I; denote the number of indices 1 < i < d such that
j €.

If j € Cj, then i ¢ Cj, for otherwise we get a path with color sequence
jiji. Therefore |C;\{1,...,d}| > ;. If I; > 451, then there are at least

% additional colors in Cj;, and we are done.

Assume now that I; < 451 for all 5. As ¢ |{1,...,d} NCi| =
Z:;'l=1 lj<d- dT‘l-, there is a C; such that |C; N {1,...,d}| < d—;—l, hence
IC:\{1,...,d}| > 451, and the proof is complete. O

4 Decidability

It is not a priori clear how to decide, whether a given edge coloring of a
graph is a proper 73 (74) coloring or not. Proposition 4.2 yields a theoretical
algorithm to check this. The following observation will be useful.

Lemma 4.1. Let an edge coloring of a graph be given such that any adjacent
edges receive different colors. Let WW' be a square walk with |W| = |W’|.
This walk is ezamined by 74 if and only if the first vertex of W and the
first vertex of W' are different.

Proof. If WW' is not examined by m4, then it is not admissible, and by
definition W = W’. In particular the first vertices are the same.

For the other direction, assume that W and W' start with the same
vertex. It is immediate, by induction on k, that the first k vertices of W
and W’ are the same, since the color of the next edge determines the next
vertex. Thus W = W’, the square walk is not admissible, thus it is indeed
not examined by 4. O

Proposition 4.2. If an edge coloring of G is not a proper m3 (m4) color-
ing, then there exists an ezamined square walk of length at most 8|E(G)|?
demonstrating this fact.

Proof. Assume that W is a square walk of minimal length examined by 73
(m4). Assume to the contrary that |[W| > 8|E(G)|?. By the Pigeonhole
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Open problems

We finish with a collection of open problems. The first one has already
been raised in [2).

Problem 1 Can 73 and 74 be bounded from above as a function of the
maximum degree of the graph?

Problem 2 What is the maximum difference between any of the parameters
w1, w2 and 73 for a fixed graph?

Problem 3 Is it possible to improve the quadratic bound in Proposition
4.2 to linear? ’
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