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Abstract: The cochromatic number of a graph G, denoted by z(G), is
the fewest number of parts we need to partition V(G) so that each part
induces in G an empty or a complete graph. A graph G with 2(G) =n is
called critically n-cochromatic if z(G — v) = n — 1 for each vertex v of G,
and minimally n-cochromatic if 2(G — e) =n — 1 for each edge e of G.

We show that for a graph G, K; UK U---U K,_; UG is a critically
n-cochromatic graph if and only if G is Kn(n > 2). We consider gen-
eral minimally cochromatic graphs and obtain a result that a minimally
cochromatic graph is either a critically cochromatic graph or a critically
cochromatic graph plus some isolated vertices. We also prove that given a
graph G, then K{UK,U- - -UK,,_1UG (n = 2) is minimally n-cochromatic if
and only if G is K, or K,UK,, for p > 1. We close by giving some properties
of minimally n-cochromatic graphs.

Keywords: cochromatic number; critically cochromatic graphs; minimally
cochromatic graphs

1. INTRODUCTION

All graphs under consideration are simple, finite and undirected. For
undefined terms and concepts the reader is referred to [3]. The cochromatic
number of a graph was first proposed by Lesniak and Straight [4]. A
cocoloring of a graph G is a vertex partition of G in which each part induces
a complete or an empty graph. The cochromatic number of G, denoted by
2(G), is the minimum order of all cocolorings of G.

For any graph G with 2(G) > 2, it is known that 2(G)—1 < z(G -v) <
2(G) for each vertex v of G. A nontrivial graph G is critically cochromatic
if 2(G —v) = 2(G)—1 for each vertex v of G, and critically n-cochromatic if
it is critically cochromatic and 2(G) = n. Gimbel and Straight [2] showed
that the removal of any edge from G alters the cochromatic number by
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at most one. So we can say that a graph G is minimally cochromatic if
2(G — e) = z(G) — 1 for each edge e of G and comazimal if z(G — €) =
2(G) + 1 for each edge e of G. A graph G is minimally n-cochromatic
if G is minimally cochromatic and 2(G) = n. Gimbel and Straight [2]
proved that the graph K; U Ko U---U K, (n > 2) is both critically
and minimally n-cochromatic. They characterized comaximal graphs and
showed that minimally cochromatic graphs without isolated vertices are
critically cochromatic. Also, it was shown that if H is an induced subgraph
of G, then 2(H) < z(G). Broere and Burger [1] discussed some properties
of critically n-cochromatic graphs and constructed a family of critically
n-cochromatic graphs.

In the next section, we show that for a graph G, K;UK,U- - -UK,,_, UG,
n 2> 2, is a critically n-cochromatic graph if and only if G is K,,. In
section 3, we consider general minimally cochromatic graphs and show that
a minimally cochromatic graph is either a critically cochromatic graph or
a critically cochromatic graph plus some isolated vertices. In addition, we
prove that for a graph G, K1jU KU - - UK,,_; UG (n > 2) is minimally
n-cochromatic if and only if G is K, or K, U'K_p, p > 1. We conclude with
giving some properties of minimally n-cochromatic graphs.

2. CRITICALLY COCHROMATIC GRAPHS

Many examples of critically cochromatic graphs were given in [1,2]. The
path Pj is a critically cochromatic graph of order 3. There is no critically
cochromatic graph of order 4. It is straightforward to verify that the cycle
Cs is both a unique critically cochromatic graph of order 5 and a unique
3-cochromatic graph of order 5. K; U Ko U K3 is a critically cochromatic
graph of order 6. For critically 3-cochromatic graphs with six vertices, we
have the following property.

Theorem 2.1. Let G be a graph of order siz with 2(G) =3. Then G is a
critically 8-cochromatic graph if and only if Cs is not an induced subgraph
of G and K3 U Ko U K3 is a subgraph of G.

Proof. Suppose that G is a critically 3-cochromatic graph with six ver-
tices. If Cs is an induced subgraph of G, let v € V(G) and v & V(Cs).
Since G — v = Cs, z(Cs) = 3 contradicts that G is critically 3-cochromatic.
Hence G can not contain Cjs as its induced subgraph.

If G has no cycles it is a forest and has chromatic number at most two.
This contradicts z(G) = 3. Therefore, G has a cycle. We now claim that
G contains K3. Otherwise, the girth of G, that is the minimal length of a
cycle in G, is four or six. Since z(G) = 3, the girth of G is four. Suppose
v v2U3v4v; IS a 4-cycle of G and the remaining two vertices of G are vs
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and vg. Note that since G has no 3-cycle, if v, k = 5,6, is adjacent to
the vertices of {v1,v3}({vz,v4}), then vi is not adjacent to any vertex of
{v2,v4}({v1,v3}). If vs is not adjacent to any vertex of {v;, ve,vs, v4}, then
either {v1,vs,vs}, {ve,va,v6} or {v1,v3,v6}, {v2,vs,vs} is a 2-cocoloring
of G, contradicting that 2(G) = 3. So, without loss of generality suppose
that vs is adjacent to the vertices of {vg,v4}. Thus {v;,v3,v5} is an
independent set in G. If vsvg & E(G), then either {vy,v3,vs}, {vo,v4, v6}
or {v1,vs,vs,V6}, {v2,v4} is a 2-cocoloring of G, which is a contradiction.
So vsvs € E(G). Since G contains no 3-cycle, v; is adjacent to only one
vertex of {vs,v6}, ¢ = 1,2,3,4. Thus, if vsve € E(G), vsva € E(G),
then vovg € E(G), vavs & E(G). We have {vy,vs,vs}, {v2,v4,v6} is a 2-
cocoloring of G, a contradiction. If vs is adjacent to one vertex of {v2,v4},
say vg, then vove € E(G). Since Cs is not an induced subgraph of G, v4 and
ve are nonadjacent. It follows that {v1,v3,vs}, {v2,v4,v6} is a 2-cocoloring
of G, a contradiction. Therefore, K3 is contained in G.

Let vjvousv; be a 3-cycle of G and H = G — {vy,vs,v3}. If E(H) =0,
then V(H), {v1,v2, v3} is a 2-cocoloring of G, a contradiction. Hence, there
is at least one edge in H and this implies that K; U K, U K3 is a subgraph
of G.

Conversely, suppose that Cs is not an induced subgraph of G and K; U
Ko U K3 C G. We may suppose {vov3, v4vs,vsv6,v4v6} C E(G), where
V(G) = {v1,v2,v3,v4,vs,v6}. Since {ve,vs}, {va,vs,v6} is a 2-cocoloring
of G — vy, 2(G —v1) = 2. Similarly, 2(G — v) = 2(G — v3) = 2 since
. {v1,v3} ({v1,v2}), {v4,vs,v6} is a 2-cocoloring of G — vo(G — v3). Without
loss of generality, we choose any vertex from {va4,vs,vs} (say v4). Then,
2<2(G-v) 3. If 2(G—w) =3, G—v4 = Cs since Cs is a unique
3-cochromatic graph with five vertices. This contradicts that Cy is not an
induced subgraph of G. Hence, G is critically 3-cochromatic. W

It is obvious that if G is a critically cochromatic graph, then G is also
a critically cochromatic graph. However, if G; and Gj are all critically
cochromatic graphs, then G, U G» is not necessarily critically cochromatic.
Conversely, if G; U Gs is critically cochromatic, then both G; and G; are
not necessarily critically cochromatic. For example, K; U K is critically
cochromatic, but (K; U K3) U (K7 U K3) is not; (K U K3) U (K3 U Ky)
is critically cochromatic, but K3 U K4 is not. Note that the critically n-
cochromatic graph Ky UK,U---UK, (n > 2) contains exactly one isolated
vertex. In fact, as the next theorem indicates, critically cochromatic graphs
have at most one isolated vertex.

Remark 2.1. If G is a critically cochromatic graph, then G has no more
than one isolated vertez.

Proof. Let G be a critically cochromatic graph with z(G) = n. Assume
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that G has two isolated vertices, say u and v. Since G is critically cochro-
matic, 2(G — u) =n — 1. Let Xj, Xs, ..., Xn—1 be an (n — 1)-cocoloring
of G — u such that v € X;. Since v is an isolated vertex of G —u, X, is an
independent set in G — u. Hence, X; U {u}, Xo, ..., Xp—1 is an (n - 1)-
cocoloring of G. This contradicts that 2(G) =n. R

Lemma 2.1 (Broere and Burger [1]). Km, UKp, U --U K, with 1 <
my <mg <...<m, and n > 2 is critically n-cochromatic if and only if
m; =1 fori=12,...,n.

Theorem 2.2. Let G be a graph. Then K1UKsU.- UK, UG (n 2> 2)
is a critically n-cochromatic graph if and only if G is K.

Proof. By Lemma 2.1 we only need to show the necessity. Let K =
KoUK3zU---UK,_;. Suppose K; U K UG is critically n-cochromatic.
Then z(KUG) =n — 1. Let X3, Xo, ..., Xn—1 be any (n — 1)-cocoloring
of KUG. If some X;, 1 < j < n -1, induces an empty graph, then X,
von Xjo1y X5 U {v}, Xj41, ..., Xn—1 would be an (n — 1)-cocoloring of
KUK UG, where V(K;) = {v}. This contradicts that z(K;UKUG) =n.
Therefore, each X; (1 < ¢ < n — 1) induces a complete graph with at
least two vertices. This implies that each X; induces a complete graph in
some K; (2 < j <n—1)or G. Hence, each X; contains only vertices of
some K; or G. Without loss of generality suppose that X; contains only
vertices of K;,71=2,3,...,n—1. Thus, X; contains only vertices of G and
X; = V(G). It follows that G is a complete graph K,,, m > 2. By Lemma
2l,m=n. N

3. MINIMALLY COCHROMATIC GRAPHS

Lemma 3.1 (Gimbel and Straight [2]). If G is a minimally cochromatic
graph containing no isolated vertices, then G is critically cochromatic.

For general minimally cochromatic graphs, we have the following result.

Theorem 3.1. If G is a minimally cochromatic graph, then either G is a
critically cochromatic graph or G = G1UK, (p > 1), where G, is critically
cochromatic.

Proof. Let G be a minimally n-cochromatic graph and p the number of
isolated vertices in G. Then G = Fp U Gy, where G; contains no isolated
vertices. We examine the following three cases.

Case 1. p=0.

By Lemma 3.1 we see that G is critically cochromatic.
Case 2. p=1.
Case 2.1. z(G;) =n.
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For each edge e of G, since G; — e is an induced subgraph of (G —
e)U K, z2(G1 —e) < z2((G1 — e) U K1) = 2(G — e) = n — 1. It follows that
G, is minimally cochromatic. Thus, G; is critically cochromatic since G,
contains no isolated vertices.

Case 2.2. 2(G)=n-—1.

Since G; contains no isolated vertices, the degree of any vertex of G
is at least one. Select a vertex v from G; and suppose that vw € E(G)).
Note that G; — v is an induced subgraph of G; — vw. Hence, 2(G —v) =
2((G1 —v) UK)) < 2((Gy —vw) U K;) = 2(G — vw) = n — 1. This implies
that G is critically cochromatic.

Case 3. p>2.
Case 3.1. 2(G;) =n.

Similar to the proof of Case 2.1, we have G| is critically cochromatic.
Case 3.2. 2(G))=n-1.

Let X;, Xs, ..., X,—1 be any (n — 1)-cocoloring of G;. Then each X;
(1 £i< n—1) induces a complete graph with at least two vertices in G;.
Otherwise, if some X; (1 < j < n—1) induces an empty graph in Gy, then
X1, 0 Xjo1, X;UV(KD), Xjq1, .. oy Xn—1 would be an (n — 1)-cocoloring
of G, a contradiction. Note that G = K, UG, = K,_1 U K, UG;. Let
V(K,) = {v}. We assert that 2(K; U G,) = n. Clearly, 2(K1UG;) < n.
Suppose that 2(K; UG;) < n—1. Let V3, Ys, ..., Y,y be an (n — 1)-
cocoloring of K; U G;. Without loss of generality say that v € Y. Thus
Y) induces an empty graph in K; U G;. If Y] contains the vertices of Gy,
then Y1\{v}, Y2, ..., Yo_1 is an (n — 1)-cocoloring of G;, where Y;\{v}
induces an empty graph, a contradiction. Hence, Y7 does not contain any
vertex of G1. Thus, 2(G;) < n — 2. However, this is impossible since
2(G1) = n— 1. So we have z(K; U G1) = n. For each edge e of Gy,
Z(Ki UG, —¢e) £ z(FpU G; —e) = n— 1. This implies that K; U Gy
is minimally cochromatic. From Case 2.2 we conclude that K; U G, is
critically cochromatic. Thus G = Ky UG}, where ' = p—1 > 1 and
G| = K, U G, which is critically cochromatic. #

A graph was given in [2] which is critically cochromatic but not mini-
mally cochromatic. The following Lemma is similar to proposition 3 in [2].

Lemma 3.2. Let G be a minimally n-cochromatic graph and uv any edge
of G. Then there is an n-cocoloring of G which contains {u,v} as a cocolor
class.

Proof. Since G is minimally n-cochromatic, 2(G — uv) = n — 1. Let V5,
Vs, ..., V4 be an (n — 1)-cocoloring of G — uv. We assert that u,v € V; for
some i, 2 < i < n. Otherwise, let v € V; and v € V}, j # ¢, then V3, Vj,
.+ Vp is also an (n — 1)-cocoloring of G, a contradiction. Let Vi = {u,v}.
Then Wy, ..., Vi1, Vi — {u,v}, Vit1, ..., Vi is an n-cocoloring of G. W
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From the proof of Lemma 3.2 we see that V; is an independent set
inG—uv. Let H = GUE, p=21 ThenVp, ..., Vi, Vi UV(-I?;),
Vit1, ..., Vo is an (n — 1)-cocoloring of (G — uv) U Kp. Thus 2((G -
uv) UK,) = z(H — uv) < n— 1. Since G is an induced subgraph of H,
n = z(G) < z(H). This implies that H is also minimally n-cochromatic.
Therefore, we conclude that if G is minimally cochromatic, then GU K,
(p = 1) is also minimally cochromatic. Thus, for any (fixed) integer p,
p > 3, there is a minimally cochromatic graph of order p. Next, we will
show that K;UKsU-.-UK,_1 UG is minimally n-cochromatic if and only
if Gis Knor KqUK, forp> 1.

Lemma 3.3. If G is a complete or an empty graph, then z(K; U K3 U
- UKpqUG)=n-—1.

Proof. Let K = KoUK3U---UK,_;. It is obvious that V(K3), V(K3),
..y V(Kn-1), V(G) is an (n—1)-cocoloring of KUG. Then 2(KUG) < n—1.
On the other hand, n — 1 = 2(K; UK) < 2(K UG) since K; U K is an
induced subgraph of K UG. Hence 2(KUG)=n-1. B

Theorem 3.2. Let G be a graph. Then K{UKsU---UK, :_I__UG (n>2)
is minsmally n-cochromatic if and only if G is Ky, or Ko, UK, forp > 1.

Proof. The sufficiency is obvious. So we prove only the necessity.

Suppose that Ky UK U --- U K,,—1 UG is minimally n-cochromatic.
For n = 2, the proof is easy, so we suppose that n > 3 and let K =
KyUK3U---UK,._.,. We distinguish the following two cases.

Case 1. z(KUG)=n-1.

Similar to the proof of Theorem 2.2, we can see that G is a complete
graph K;. Since n = 2(K1UKUG) < x(K1UKUG) = x(G) =t, we
have ¢ > n. Suppose that ¢ > n + 1. Note that for each edge uv of K,
K, UK U (K; — u) is an induced subgraph of K; U K U (K, — uv). Hence,
Z(K] UKUKt—uv) > Z(K1UKU(Kt —u)) = Z(K1UKUKt._1) 2
2(K; U K U K,;) = n. This contradicts that K; U K U K; is minimally
n-cochromatic. Thus G = K,.

Case 2. z(KUG)=n.

Since K; UK UG is minimally n-cochromatic, z2(KjUKUG—e) =n—1
for each edge e of K UG. Notice, K1 U(K UG —e) contains KUG — e
as an induced subgraph. Hence, 2(KUG —¢) < 2(Kj UKUG —¢) =
n — 1. It follows that K U G is a minimally n-cochromatic graph. By
Lemma 3.2, there is an n-cocoloring of K U G which contains V(K3) as
a cocolor class. Let X, X3, ..., X, be such an n-cocoloring of K U G,
where X, = V(K2) = {u,v}. Thus, X, Xo, ..., Xn_1 is a cocoloring
of K3U:.--UK,_; UG. Without loss of generality suppose that X, X,
..., X) contain the vertices of G, ! <n—1. Ifeach class X;, 1 < i < |,
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induces an empty graph, then x(G) < ! £ n — 1. This contradicts that
n=z(KiUKUQG) < x(K1U K UG) = x(G). Without loss of generality
suppose that X; induces a complete graph with at least two vertices in G,
and hence contains no vertices of K, j = 3,4,...,n—1. By the pigeonhole
principle, there exists some X; (2 < j < n — 1), say X,—_1, which contains
at least two vertices of K,,_1. So X,,—1 induces a complete graph in K,_,

and hence contains no vertices of K3, K4, ..., K,—2 and G. Similarly, we
may suppose that X; induces a complete graphin K;,i=n-1,n-2,...,3,
and hence contains no vertices of K; and G, j =3,4,...,n—1,j# i It

follows that I < 2. Note that X;, X2 N V(G) is also a cocoloring of G, so
z(G) < 2.

Claim 1. z(G)=2.
Proof. If 2(G) =1, then G is either empty or complete. By Lemma 3.3,
2(KUG) =n -1, a contradiction. H

Claim 2. There is a 2-cocoloring of G such that one cocolor class induces
a complete graph and the other induces an empty graph in G.

Proof. Let Hy, H; be any 2-cocoloring of G. Since 3 < n < x(G),
either H; or H; induces a complete graph with at least two vertices in G.
Without loss of generality suppose that H; induces a complete graph with
at least two vertices in G. If H also induces a complete graph with at
least two vertices in G, then G contains no isolated vertices, and hence
K UG contains no isolated vertices. By Lemma 3.1, K UG is critically n-
cochromatic. Let V(K3) = {u,v}. Hence, for u € V(K3), 2(KUG = u) =
2(KftUKsU--- UK, U G) =n-1. Let X;, Xg, ..., Xn—1 be an
(n — 1)-cocoloring of K UG — u. Since n < x(G), there exists some X;
(1 £i<n-1),say X,_, which induces a complete graph with at least
two vertices in G, and hence contains no vertices of K, K3, ..., Kn_1.
By the pigeonhole principle, there exists some X; (1 < j < n — 2), say
Xn—-2, containing two or more vertices of K,.;. Therefore, X, _s induces
a complete graph with at least two vertices in K, _;, and hence contains

no vertices of K;, K3, ..., K,—2 and G. By the similar manner, we may
suppose that X; induces a complete graph with at least two vertices in
Ki+1, ¢ = 2,3,...,n — 2, and hence contains no vertices of K; and G,

Jj=13,...,n~1, 7 # ¢+ 1. This implies that v € X,. Note that since
2(G) =2, X, N V(G), Xnp-1 is a 2-cocoloring of G, where X; NV(G) # 0
induces an empty graphin G. R

By Claim 2 we choose a 2-cocoloring Hy, Hj of G, where H} induces

a complete graph K, and Hj induces an empty graph K, (p > 1) in

G, such that H} has as many vertices as possible. We denote te by [(Km,

K| the set of edges with one end in K, and the other in K,. Then
E(G) = E(Km) U [Km, K.
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Claim 3. x(G) =m =n.
Proof. Let V(Km) = {u1,u2,.-.,um}, V(Kp) = {w1,w2,...,wp}. Color
K, with m colors. For each w;, 1 <7 < p, there is a vertex uj, 1 < j < m,
such that w;u; € E(G). For otherwise, if wiu; € E(G) for any vertex u;,
j=1,2,...,m, then let H| = V(K,,) U {w;}, Hy = V(K,) \ {w;}. Thus

1, Hy is also a 2-cocoloring of G, and H] has more vertices than H}. This
contradicts our choice of H}, Hj. Therefore, color w; with the same color
as uj. Thus G is m-colorable. Since K, C G, x(G) = m.

Now we show that m = n. Since x(G) > n, m > n. Suppose that

m 2> n+ 1. For each edge e of G, K1 UK U(G - e) contains KjUKUK,, as
an induced subgraph. Hence, n = 2(KjUKUK,) < z2(KjUKU(G —e¢)) =
2(K1 U K UG —e). This contradicts that Ky U K U G is minimally n-
cochromatic. Thus, m=n. W

Claim 4. [K,,K,]=0.

Proof. Suppose that e € [K,, Kp]. Note that K; UK U K, is an induced
subgraph of K UK U (G —¢). Hence,n = 2(K1jUKUK,) < z(K;UK U
(G —e)), a contradiction. W

By Claim 3 and 4, we have G = K, UK,,p>1. B

In [1], some properties of critically n-cochromatic graphs were discussed.
We next obtain the analogous properties of minimally n-cochromatic graphs.

Lemma 3.4 (Broere and Burger [1]). Let G be a graph with z(G) = n and
2(GUK,) =n. Then x(GU K,) = x(G) =n.

Theorem 3.3. Let G be a minimally n-cochromatic graph. Then GUK,, 41
is a minimally (n + 1)-cochromatic graph if and only if x(G) =n.

Proof. Suppose that GU K, 4; is minimally (n + 1)-cochromatic. Hence,
z((GU Kp41) —uwv) = 2(G U (Kp41 — wv)) = n for each edge uv of
Kpt1. Since GU (Kp41 — ) is an induced subgraph of GU (K41 — uv),
2(GU (Kn41 —u)) = 2(GU K;) £ 2((GU Kp41) — wv) = n. This implies
that z(GU K,,) = n. By Lemma 3.4, x(G) =n.

Now, we show that the converse statement holds. Since any n-cocoloring
of G can be extended to an (n + 1)-cocoloring of GU K41, 2(GU Ky 41) <
n+ 1. If 2(GU Kpy1) < n, then let 1), Yo, ..., Y, be an n-cocoloring of
G U K, +1. By the pigeonhole principle, there exists some ¥;, 1 < j < m,
which contains at least two vertices of K1, and hence contains no vertices
of G. Therefore z(G) < n—1, a contradiction. Thus 2(GU Kp41) =n+1.
We consider two cases to show that G U K41 is minimally cochromatic.

Ife € E(G), then 2((GUK4+1)—e) = 2((G—e)UKp41) < 2(G—e)+1 =
n. If e € E(Kpt1), then 2((GU Kpy1) —€) = 2(GU (Kp41 —e)) <
X(GU (Kn41 — €)) = max{x(G), x(Kn+1 — €)} = n. Thus, GU Kp4, is
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minimally (n + 1)-cochromatic. W

Theorem 3.4. If GU K, 41 is minimally (n + 1)-cochromatic, then G is
minimally n-cochromatic.

Proof. First, we prove that z(G) = n. If z(G) = k < n, then 2(GU
Kpi1) € k+1 < n+1, a contradiction. Therefore 2(G) = n. If 2(G) > n+1,
then for each edge e of K41, 2(GUKp41—€) = 2(GU(K,+1—€)) 2 2(G) >
n + 1 since G is an induced subgraph of G U K, +; — e. This contradicts
that GU K, 41 is minimally cochromatic. Thus, z(G) = n.

We now prove that G is minimally cochromatic. Since G U K4, is
minimally (n+1)-cochromatic, z((G—e)UKp11) = 2(GUK 41 —e) =n for
each edge e of G. Let X1, Xo, ..., X, be an n-cocoloring of (G—e)UK 4.
By the pigeonhole principle, there exists some X;, 1 < ¢ < n, which contains
at least two vertices of K, 11, and hence contains no vertices of G—e. Hence,
2(G — e) < n — 1. This implies that G is minimally n-cochromatic. W
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