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Abstract. A weighted graph is one in which every edge e is
assigned a nonnegative number w(e), called the weight of e.
The weight of a cycle is defined as the sum of the weights of
its edges. The weighted degree of a vertex is the sum of the
weights of the edges incident with it. In this paper, motivated
by a recent result of Fujisawa, we prove that a 2-connected
weighted graph G contains either a Hamilton cycle or a cycle of
weight at least 2m/3 if it satisfies the following conditions: (1)
The weighted degree sum of every three pairwise nonadjacent
vertices is at least m; (2) In each induced claw and each
induced modified claw of G, all edges have the same weight.
This extends a theorem of Zhang, Broersma and Li.

1 Terminology and notation

We use Bondy and Murty (3] for terminology and notation not defined here
and consider finite simple graphs only.

Let G = (V, E) be a simple graph. G is called a weighted graph if each
edge e is assigned a nonnegative number w(e), called the weight of e. For
a subgraph H of G, V(H) and E(H) denote the sets of vertices and edges
of H, respectively. The weight of H is defined by

wH)= Y wle).

e€E(H)

For a vertex v € V, Ny(v) denotes the set, and dy(v) the number, of
vertices in H that are adjacent to v. We define the weighted degree of v in
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H by
dhw)= Y w(vh).

h€NH(v)

When no confusion occurs, we will denote Ng(v), dg(v) and dg(v) by N(v),
d(v) and d*(v), respectively.

An unweighted graph can be regarded as a weighted graph in which
each edge e is assigned weight w(e) = 1. Thus, in an unweighted graph,
d¥(v) = d(v) for every vertex v, and the weight of a subgraph is simply the
number of edges of it.

An (z,y)-path is a path connecting the two vertices z and y. The
distance between two vertices z and y, denoted by d(z,y), is the length
of a shortest (z,y)-path. If u and v are two vertices on a path P, P[u,v)
denotes the segment of P from u to v.

The number of vertices in a maximum independent set of G is denoted
by a(G). If G is noncomplete, then for a positive integer £ < a(G) we
denote by ox(G) the minimum value of the degree sum of any k pairwise
nonadjacent vertices, and by ¢}’(G) the minimum value of the weighted
degree sum of any k pairwise nonadjacent vertices. If G is complete, then
both 0x(G) and o}’ (G) are defined as oo.

We call the graph K3 a claw, and the graph obtained by joining a
pendant edge to some vertex of a triangle a modified claw.

2 Results

There have been many results on the existence of long cycles in graphs.
The following theorem is well-known.

Theorem A (Pésa [7]). Let G be a 2-connected graph such that o2(G) >
8. Then G contains either a Hamilton cycle or a cycle of length at least s.

This result was generalized by the following two theorems along different
lines.

Theorem B (Fan [4]). Let G be a 2-connected graph such that max{d(z),
d(y)|d(z,y) = 2} = ¢/2. Then G contains either a Hamilton cycle or a
cycle of length at least c.

Theorem C (Fournier & Fraisse [5]). Let G be a k-connected graph
where 2 < k < a(G), such that ox41(G) > m. Then G contains either a
Hamilton cycle or a cycle of length at least 2m/(k + 1).

Bondy et al. 2] gave a weighted generalization of Theorem A as follows.
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Theorem 1 (Bondy et al. [2]). Let G be 2-connected weighted graph
such that o¥(G) > s. Then G contains either a Hamilton cycle or a cycle
of weight at least s.

In [9], it was showed that if one wants to give a generalization of The-
orem B to weighted graphs some extra conditions cannot be avoided. By
adding two extra conditions, the authors gave a weighted generalization of
Theorem B.

Theorem 2 (Zhang et al. [9]). Let G be a 2-connected weighted graph
which satisfies the following conditions:

(1) maz{d”(z),d” (v)|d(z,y) = 2} > 8/2;

(2) w(zz) = w(yz) for every vertex z € N(z) N N(y) with d(z,y) = 2;

(3) In every triangle T of G, either all edges of T' have different weights or
all edges of T have the same weight.

Then G contains either a Hamilton cycle or a cycle of weight at least s.

Motivated by this result, Zhang et al. [8] gave a weighted generalization
of Theorem C in the case k = 2.

Theorem 3 (Zhang et al. [8]). Let G be a 2-connected weighted graph
which satisfies the following conditions:

(1) o%(G) 2 m;

(2) w(zz) = w(yz) for every vertex z € N(z) N N(y) with d(z,y) =2;

(3) In every triangle T of G, either all edges of T have different weights or
all edges of T have the same weight.

Then G contains either a Hamilton cycle or a cycle of weight at least 2m/3.

Theorem B was further extended by the following result.

Theorem D (Bedrossian et al. [1]). Let G be a 2-connected graph. If
max{d(z),d(y)} > ¢/2 for each pair of nonadjacent vertices x end y, which
are vertices of an induced claw or an induced modified claw of G, then G
contains either a Hamilton cycle or a cycle of length at least c.

Fujisawa [6] gave a weighted generalization of Theorem D. The result
also generalizes Theorem 2.

Theorem 4 (Fujisawa [6]). Let G be a 2-connected weighted graph which
satisfies the following conditions:

(1) For each induced claw and each induced modified claw of G, all its
nonadjacent pair of vertices x and y satisfy maz{d”(z),d"(y)} = s/2;

(2) For each induced claw and each induced modified clew of G, all of its
edges have the same weight.

Then G contains either a Hamilton cycle or a cycle of weight at least s.
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It is clear that Condition (2) of Theorem 4 is weaker than Conditions (2)
and (3) of Theorem 3. Our main result in this paper is a further weighted
generalization of Theorem C in the case k¥ = 2. It turns out that Conditions
(2) and (3) of Theorem 3 can be replaced by Condition (2) of Theorem 4.

Theorem 5. Let G be a 2-connected weighted graph which satisfies the
following conditions:

(1) 0(G) > m;

(2) For each induced claw and each induced modified claw of G, all of its
edges have the same weight.

Then G contains either a Hamilton cycle or a cycle of weight at least 2m /3.

We postpone the proof of Theorem 5 to the next section.

3 Proof of Theorem 5

In the proof of Theorem 5, we call a path P a heaviest longest path if P
has the following properties
e P is a longest path of G, and
e w(P) is maximum among all longest paths in G.

To prove Theorem 5, we need the following lemmas. The proof of
Lemma 1 is implicit in [2].

Lemma 1 (Bondy et al. [2]). Let G be a non-hamiltonian 2-connected
weighted graph and P = vivz---vp be a heaviest longest path in G. Then
there is a cycle C in G with w(C) > d¥(v1) + d¥(vp).

Lemma 2 (Fujisawa [6]). Let G be a weighted graph satisfying Condition
(2) of Theorem 5. If T1yz2 is an induced path with w(z1y) # w(z2y) in G,
then each vertez x € N(y)\{z1,z2} is adjacent to both z, and 2.

Lemma 3 (Fujisawa [6]). Let G be a weighted graph satisfying Con-
dition (2) of Theorem 5. Suppose T yz2 is an induced path such that
w = w(z,y) end we = w(T2y) with wy # w2, and yz,2; is a path such
that {z1, 22} N {z1,22} = @ and 222 ¢ E(G). Then

(2) {z121,2122,2211} C E(G), and yz2 ¢ E(G). Moreover, all edges in
the subgraph induced by {z:,y, x2, 21,22}, other than z,y, have the same
weight w,.

(i) Let Y be the component of G — {x2,21,22} withy € V(Y). For each
vertez v € V(Y)\{z1,y}, v is adjacent to all of z1, z2, y and z3. Further-
more, w(vzy) = w(vze) = w(vy) = w(vzz) = wa.

Proof of Theorem 5. Let G be a 2-connected weighted graph satisfying
the conditions of Theorem 5. Suppose that G does not contain a Hamilton
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cycle. Then it suffices to prove that G contains a cycle of weight at least
2m/3.

Choose a path P = v1v3 - - ¥p in G such that
(a) P is a heaviest longest path in G;
(b) d*(v1) +d*¥(v,) is as large as possible, subject to (a).
From the choice of P, we can immediately see that N(v;) UN(vp) C V(P).
And it is not difficult to prove that there exists no cycle of length p.

It follows from Lemma 1 that there exists a cycle C of weight w(C) >
d*(v1) + d¥(vp). Without loss of generality, we assume d*(v;) < w(C)/2.

Claim 0. Let P, and P, be two heaviest longest paths such that P, has
v’ and v, as its end-vertices, and P; has v" and v, as its end-vertices. If
v'v" ¢ E(G), then w(C) > 2m/3.

Proof. Since P, and P, are heaviest longest paths, v'v, ¢ E(G) and v"v, ¢
E(G). Then ¢/, v” and v, are pairwise nonadjacent. By the choice of the
path P in (b), d”(v’) < d*(v;) < w(C)/2 and d*(v")+d" (vp,) < w(C). So
we have d¥(v') + d*“(v”) + d*(vp) < 3w(C)/2. It follows from Condition
(1) of the theorem that w(C) > 2m/3. O

Since G is 2-connected, v; is adjacent to at least one vertex on P other
than v,. Choose v, € N(v;) such that k is as large as possible. It is clear
that 3<k<p-1.

Since G — v, is connected, there must be a path @ such that
o () has end-vertices v, and v,, such that » < k& < s, and
e V(Q)NV(P) = {vy,vs}.

We assume that such a path Q was chosen so that
(%) s is as large as possible;

(%) r is as large as possible, subject to (2).

Case 1. vv; € E(G) for every i with r <i < k.
Claim 1.1. v,u; € E(G).

Proof. Since r < k, we have vjv,41 € E(G). If there exists a vertex u ¢
{vr,vs} on Q, then the path Q[u,vs]vrvr—1-- v1Vr41Vr42 - vp is longer
than P, a contradiction.

Case 1.1. s>k +1.
Claim 1.2. w(v10p41) = W(VrVr41)-

Proof. First, we consider the case r < k — 1. By the choices of v; and vy,
01, ¢ E(G) and ve41vs ¢ E(G). So {vr,vr41,v1,vs} induces a modified
claw. Then we get w(v1vr4+1) = W(VUrvr41)-

Now consider the case r = k — 1. We need prove w(vvg) = w(vg—1vk)-
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By the choices of v and v,, v1v541 ¢ E(G) and vg—1vs41 ¢ E(G). So,
if vkvs41 € E(G), then {vg,vk—1,v1,%s+1} induces a modified claw. Then
we get w(vvk) = w(vg—1vk).

By the choice of v, v1vs ¢ E(G). So, if vyvs ¢ E(G), then {vg_1, vk, 01,
v, } induces a modified claw. Then we get w(vivi) = w(vg—1vk).

Clearly we need only consider the case vxvs41 ¢ E(G) and wv, € E(G).
By the choice of vk, v1vk+1 ¢ E(G) and v1v, € E(G). So {vk, k+1,v1,Vs}
induces a claw or a modified claw, which implies that w(vivx) = w(vkvs);
On the other hand, by the choice of v,, vk-1vs41 ¢ E(G). So {vs, Vk—-1,Vk,
Vs+1} induces a modified claw, which implies that w(viv,;) = w(vk-1v%).
Thus we have w(vyvx) = w(ve—1vk). O

Claim 1.3. w(vs—1v5) = w(vevs).

Proof. By the choice of vk, v1V5—1 ¢ E(G) and vyv5 ¢ E(G). So, if vs_1v, €
E(G), then {v,,v5-1,vs,v1} induces a modified claw, which implies that
w(vs—195) = w(vrvs). By the choice of vy, v,v541 ¢ E(G). So, if vs—1v, ¢
E(G), then {vs,v5—1,Ys+1, v, } induces a claw or a modified claw. Thus we
have w(v,—1v,) = w(v,v;). O

It follows from Claims 1.2 and 1.3 that v,_1¥5_2 - Ur41V102 - - Up¥;
Us41 -+ Up is a heaviest longest path different from P and with v, as one
of its end-vertices. At the same time, by the choice of vk, viv5—1 ¢ E(G).
From Claim 0 we have w(C) > 2m/3.

Case 1.2. s=k+1.

From the choice of the path @ and the connectedness of G — vg4.1, there
exists a path R such that
o R has end-vertices v, and v; with k+2 <t < p, and
o V(R)NV(P) = {vg, v }.

Choose R such that ¢ is as large as possible. Similar to the proof of
Claim 1.1, we have the following claim:

Claim 1.4. wv; € E(G). W]
Claim 1.5. w(v1vr41) = w(pVr41)-

Proof. Suppose r < k — 1. By the same proof as for Claim 1.2, we get
w(v1Vry1) = W(VRVr41)-

Suppose r = k — 1. By the choices of v, and vs, 11v: ¢ E(G) and
vg_10: ¢ E(G). So {vk,vk-1,v1, v} induces a modified claw, so we get
w(vvg) = w(ve—1vk)- (W]

Claim 1.6. w(vkve) = w(ve—1v:).
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Proof. Suppose vxvi—1 ¢ E(G). By the choice of v, vpve41 ¢ E(G), then
{vt, Ve—1,Ve+1,Vk} induces a claw or a modified claw. So we get w(vgve) =
‘lU(’Ut_l‘Ug).

Suppose vvi—1; € E(G). By the choice of v, vive—1 ¢ E(G) and
nv; ¢ E(G), then {vg,v4—1,v:,v1} induces a modified claw. So we get
w(vkve) = w(ve—1v:). |

Claim 1.7. w(v,vk41) = wW(vkVk+1)-

Proof. Suppose v,v, ¢ E(G). By the choice of v, v,vk12 ¢ E(G). So
{Vk+1, Uk, Vk+2, ¥y} induces a claw or a modified claw. Thus w(v,vk41) =
w(vkvk+1).

Suppose vrup € E(G). By the choices of v and v;, v1vk+1 ¢ E(G),
nv; ¢ E(G) and v,ve ¢ E(G). So {vk,Vk41,v:, v1} induces a claw or a
modified claw and {vk, v1, vy, v:} induces a modified claw. Thus w(v vg) =
w(vkvk41) and w(vivg) = w(vivy). So w(vv,) = w(vivg) = W(VkVk41)-
We conclude that w(v,vk41) = w(vivy). Otherwise, apply Lemma 3 (i) to
the subgraph induced by {v1,vr, vk+1,Vk,¥:}. Since there must be a vertex
vy € V(P[g42,vp])\{ve} such that ve1v¢ € E(G), we have vy is in the
component of G — {v, vk, v;}. Thus we have vy-v; € E(G), contradicting
the choice of vk. So we get w(vrvk41) = W(VeVit1)- a

It follows from Claims 1.5, 1.6 and 1.7 that v;—1v4—2 - - - Vg4 10pVUp—1 - - V1
Up41 - - Ukt Vg4l - - - Up is & heaviest longest path different from P and with
vp as one of its end-vertices. By the choice of v, viv—1 ¢ E(G). Then
from Claim 0, we have w(C) > 2m/3. This completes the proof of Case 1.

Case 2. vv; ¢ E(G) for some i withr <i <k.

Choose v; ¢ N(v) with r <! < k such that [ is as large as possible.
It is clear that 3 < I < k and v1v; € E(G) for every i with [ < i < k.
Let j be the smallest index such that j > I and v; ¢ N(v;) N N(v;). Since
V41 € N(v1) N N(v;), we have j > 1+ 2. Also, it is obvious that j < k+1.

If w(vivi41) = w(vvigl), then Yv—1 - - v1V41V142 - - Up is & heaviest
longest path different from P and with v, as one of its end-vertices. By
the choice of v;, viv; ¢ E(G). Then from Claim 0, we have w(C) > 2m/3.
From now on, we have the following assumption.

Assumption 1. w(v1v141) # w(vivis).

Claim 2.1. Ui+1Y5 ¢ E(G)

Proof. X vi41v; € E(G), then v; € N(v1) N N(v;) by Lemma 2, contradict-
ing the choice of v;. O

Claim 2.2. Vi41Y5-1 ¢ E(G) and Vi4-2V5 ¢ E(G)
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Proof. Suppose v141v;—1 € E(G). If j < k, then by the choice of v;,
we have vyv; ¢ E(G). Apply Lemma 3 (i) to the subgraph induced by
{v1,v141,v1,vj-1,v;}. Since v, is in the component of G — {v,vj-1,v;},
we have v,v; € E(G), contradicting the choice of vx. So v41vj-1 € E(G).
The case j = k+ 1 can be proved similarly.

Similar to the proof of above, we can prove that vi42v; ¢ E(G). O

From Claim 2.2, we know that [ +4 < j <k +1.
Case 2.1. j < k.
Claim 2.3. w(vi41vi42) = w(v1vi42) = w(vj—19;) = w(v1v;).

Proof. By Claims 2.1 and 2.2, we know that both {vy,vi41,v42,v;} and
{v1,vj-1,j, w41} induce modified claws. Thus w(vi41v142) = wW(Vivi42) =
w(vj—1v;) = w(v1v;). O

It follows from Claim 2.3 that each of vi41v1-- - v1VI42VI43 -+ - Up and
Vj—1Vj—2 -+ V1Vj Vj41 - - Up is & heaviest longest path with v, as one of its
end-vertices. By Claim 2.2 and Claim 0, we have w(C) > 2m/3.

Case 2.2, j=k+1.
Claim 2.4. w(v,v) = w(vvk) = w(vkve41)-

Proof. By the choices of vy and v, vivg+1 ¢ E(G) and vivy ¢ E(G).
So {vk,Vk+1,v,v1} induces a claw or a modified claw, thus w(viv) =
w(vvk) = w(vgVk+1)- O

Claim 2.5. For any vertex v € N(v;) N N(v)\{vi4+1,vx}, we have vvi €
E(G),vui41 € E(G) and vvgyy ¢ E(G).

Proof. From Assumption 1 and Claim 2.4, we know that w(vv41) =
w(vvx) and w(vivi41) = w(vivi) cannot hold at the same time. Sup-
pose w(vvi41) # w(vivg). Then applying Lemma 2 to the induced path
vivvi418nd v € N(v)\{vk, vi+1}, we get vvx € E(G) and vuyy € E(G).
Now if vug41 € E(G), then apply Lemma 3 (i) to the subgraph induced by
{vk, v1,V141,9,Vk+1}. Since vy is in the component of G — {vi41,v, Vk41},
we have vy € E(G), contradicting the choice of v;. So vvry1 € E(G).
The case w(v1v1+1) # w(vivx) can be proved similarly. (|

Claim 2.6. w(vyvg-1) = W(Vk-1Vk)-

Proof. By Claim 2.5, vk—1vk+1 ¢ E(G). So {Uk,Vk—1,%1,Vk41} induces a
modified claw, thus w(v1vk—1) = w(vk-1%). a
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Suppose v1v—1 € E(G). Then by Claim 2.5, we have vi_ux € E(G),
v € E(G) and vi—1vk+1 € E(G). So {vk,v1,Vi-1,Vk+1} induces a
modified claw, thus w(vivi—1) = w(vi-1vx). We claim that w(v,v-1) =
w(vi—1v). Otherwise, apply Lemma 3 (i7) to the subgraph induced by
{v1,v1—1,v1, Uk, Uk+1}. Since vi4q is in the component of G — {v1, vk, k41 },
we have vj;1vk41 € E(G), contradicting Claim 2.1. So we get w(vi—1v) =
w(vi-1vx). Therefore, from Claim 2.6 we know that vjvi4y - - - vg—10102 - - -
Ul-1VkUk41 * - - Up iS & heaviest longest path different from P and with v, as
one of its end-vertices. By the choice of v;, v;v; ¢ E(G). Then from Claim
0, we have w(C) > 2m/3.

Suppose v1vi—1 ¢ E(G), we have vj—1v141 ¢ E(G). Otherwise, {vi4+1,vi,
v1—1, v } induces a modified claw, contradicting the assumption w(vyvi41) #
w(vvi41). From Claim 2.2, we know that {v, vi—1, vk, vi4+1} induces a claw
or a modified claw. So w(v;—,v) = w(vvk). Therefore, from Claim 2.6, we
know that v;_1v_2---V1Vk—1 Uk—2 - VVkVk41 - -+ VUp iS & heaviest longest
path different from P and with v, as one of its end-vertices. Then from
Claim 0, we have w(C) > 2m/3.

The proof is complete.
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