Graph designs for eight graphs with six vertices and eight edges (index >1) *

Landang Yuan[†]
College of Occupation Technology, Hebei Normal University,
Shijiazhuang 050031, P. R. China

Qingde Kang[‡]
Institute of Math., Hebei Normal University,
Shijiazhuang 050016, P. R. China

Abstract

Let K_v be a complete graph with v vertices, and G=(V(G), E(G)) be a finite simple graph. A G-design G- $GD_{\lambda}(v)$ is a pair (X, \mathcal{B}) , where X is the vertex set of K_v and \mathcal{B} is a collection of subgraphs of K_v , called blocks, such that each block is isomorphic to G and any two distinct vertices in K_v are jointed in exactly λ blocks of \mathcal{B} . In this paper, the existence of graph designs G- $GD_{\lambda}(v), \lambda > 1$, for eight graphs G with six vertices and eight edges is completely solved.

Key words: graph design, holey graph design, quasi-group.

1 Introduction

A group-divisible design $GDD(2, K, v; r_1\{m_1\}, \dots, r_s\{m_s\})$, where $K \subseteq N$, $\sum_{i=1}^{s} r_i m_i = v$, and for any $k \in K, k \ge 2$, is a triple $(X, \mathcal{G}, \mathcal{B})$ such that

- 1) X is a set of v points,
- 2) G is a partition of X into r_i sets of m_i points (called *groups*), $i = 1, 2, \dots, s$,
 - 3) B is a collection of subsets of X (called blocks), where $|B| \in K$,
 - 4) Every 2-set of X is contained in exactly one member of $\mathcal{G} \cup \mathcal{B}$.

^{*}Research supported by NSFC Grant 10671055 and NSFHB Grant A2007000230.

[†]E-mail: yld6@163.com

[‡]Corresponding author: qdkang@heinfo.net.

Usually, we write K- $GDD(m_1^{r_1} \cdots m_s^{r_s})$ and k- $GDD(m_1^{r_1} \cdots m_s^{r_s})$ instead of $GDD(2, K, v; r_1\{m_1\}, \cdots, r_s\{m_s\})$ and $\{k\}$ - $GDD(m_1^{r_1} \cdots m_s^{r_s})$. A k- $GDD(m^k)$ is called a transversal design and denoted by TD(k, m).

A $GDD(2, K, v; v\{1\}) = (X, \mathcal{G}, \mathcal{B})$ is often called pairwise balanced design and denoted by $B[K, 1; v] = (X, \mathcal{B})$.

Let K_v be a complete graph with v vertices, and G=(V(G), E(G)) be a finite simple graph. A G-design G- $GD_{\lambda}(v)$ is a pair (X, \mathcal{B}) , where X is the vertex set of K_v and \mathcal{B} is a collection of subgraphs of K_v , called blocks, such that each block is isomorphic to G and any two distinct vertices in K_v are jointed in exactly λ blocks of \mathcal{B} . Obviously, the necessary conditions for the existence of a G- $GD_{\lambda}(v)$ are

 $v \ge |V(G)|, \ \lambda v(v-1) \equiv 0 \mod 2|E(G)|, \ \lambda(v-1) \equiv 0 \mod d,$ (*) where d is the greatest common divisor of the degrees of the vertices in V(G).

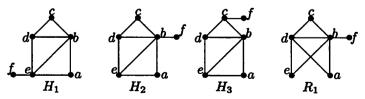
Let K_{n_1,n_2,\cdots,n_t} be a complete multipartite graph with vertex set $\bigcup_{i=1}^t X_i$, where these X_i are disjoint and $|X_i| = n_i$, $1 \le i \le t$. For a given graph G, a holey G-design, denoted by G-HD $_{\lambda}(n_1^1 n_2^1 \cdots n_t^1)$, is a partition \mathcal{A} of edges of $\lambda K_{n_1,n_2,\cdots,n_t}$, such that each member of \mathcal{A} is isomorphic to G. If $n_1 = \cdots = n_t = n$, then the holey G-design may be denoted by G-HD $_{\lambda}(n^t)$. For $\lambda = 1$, the index 1 is often omitted. A G-HD $_{\lambda}(1^v w^1)$ is called an incomplete G-design, denoted by G-ID $_{\lambda}(v+w,w)$. Obviously, a G-GD $_{\lambda}(v)$ can be regarded as a G-HD $_{\lambda}(1^v)$, a G-ID $_{\lambda}(v+0,0)$ or a G-ID $_{\lambda}((v-1)+1,1)$.

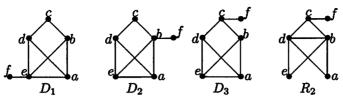
From [1], there are 22 graphs with six vertices and eight edges without isolated vertex, which are shown in [3]. For $\lambda = 1$, the existence of graph designs for these graphs has been solved by us:

Lemma 1.1^[3]

- (1) For graph $G \in \{H_i, D_i, R_j, Q_i, M_j, C_k, W_3 : 1 \le i \le 3, 1 \le j \le 2, 1 \le k \le 6\}$, there exists a G-GD(v) if and only if $v \equiv 0, 1 \pmod{16}$ and $v \ge 16$ with possible exception v = 32 for graphs M_1 and M_2 .
- (2) For graphs $G = W_1$ and W_2 , there exists a G-GD(v) if and only if $v \equiv 1 \pmod{16}$ and $v \geq 17$.

In this paper, we shall focus on graph designs of the following eight graphs for $\lambda > 1$.





For convenience, all graphs above are denoted by (a,b,c,d,e,f). Our main conclusions will be:

Theorem 1.2 For graph $G \in \{H_i, D_i, R_j : 1 \le i \le 3, 1 \le j \le 2\}$, the necessary conditions for the existence of G- $GD_{\lambda}(v)$ with $\lambda > 1$ are also sufficient with the exceptions $(G, v, \lambda) \in \{(D_3, 8, 2), (D_3, 6, 16t + 8) : t \ge 0\}$.

By (*), we need discuss the following v and λ :

 $\lambda = 2, \ v \equiv 0,1 \pmod{8}; \quad \lambda = 4, \ v \equiv 0,1 \pmod{4}; \quad \lambda = 8, \ v \ge 6. \quad (**)$

The following lemmas are important for our constructing methods in this paper.

Lemma 1.3 Let G be a simple graph, K be a set of positive integers, and m, u, v, λ, μ be positive integers.

- (1) If there exist a K-GDD(a^ub^v) and a G-HD $_{\lambda}(m^k)$ for any $k \in K$, then there exists a G-HD $_{\lambda}((ma)^u(mb)^v)$.
- (2) If there exists a G- $HD_{\lambda}(m^h)$, then there exists a G- $HD_{\lambda\mu}(m^h)$. **Proof.** Obviously, the conclusions hold.

Lemma 1.4^[4] Let G be a simple graph, and h, m, n, λ be positive integers, $w \geq 0$.

- (1) If there exist a G- $HD_{\lambda}(m^h)$, a G- $ID_{\lambda}(m+w,w)$ and a G- $GD_{\lambda}(m+w)$ (or G- $GD_{\lambda}(w)$), then there exists a G- $GD_{\lambda}(mh+w)$.
- (2) If there exist a G- $HD_{\lambda}(m^h n^1)$, a G- $ID_{\lambda}(m+w,w)$ and a G- $GD_{\lambda}(n+w)$, then there exists a G- $GD_{\lambda}(mh+n+w)$.

2 Main structures

The following lemma is the modified version of Theorem 2.2.7 in [3], where G is a graph with six vertices and eight edges.

Lemma 2.1 Let m be a positive integer, q = 3, 4, 5, w = 0, 1 and i = 1, 2. If there exist a $G-HD_2(m^q)$ and a $G-GD_2(im + w)$, then there exists a $G-GD_2(v)$ for $v \equiv 0, 1 \pmod{m}$ and $v \geq m$.

Lemma 2.2 Let $q \in \{3,4,5\}$, $m \in \{1,2,5\}$, w = 2,3,6,7. If there exist a $G\text{-}HD_{\lambda}(8^q)$, a $G\text{-}ID_{\lambda}(8+w,w)$, a $G\text{-}ID_{\lambda}(16+w,w)$ and a $G\text{-}GD_{\lambda}(8m+w)$, then there exists a $G\text{-}GD_{\lambda}(v)$ for $v \equiv 2,3,6,7 \pmod 8$ and $v \ge 10$. **Proof.** Let v = 8n + w, w = 2,3,6,7.

(1) For $n \equiv 1, 3 \mod 6$, there exists a B[3, 1; n] by [2], which implies the existence of a 3- $GDD(1^n)$. And, by Lemma 1.3(1) and Lemma 1.4(1).

the existence of $G-HD_{\lambda}(8^3)$, $G-ID_{\lambda}(8+w,w)$ and $G-GD_{\lambda}(8+w)$ implies the existence of $G-GD_{\lambda}(v)$.

- (2) For $n \equiv 0, 2 \mod 6$, there exists a B[3,1;n+1] by [2], which implies the existence of a 3- $GDD(2^{\frac{n}{2}})$. By Lemma 1.3(1), there exists a $G-HD_{\lambda}(16^{\frac{n}{2}})$ from the known $G-HD_{\lambda}(8^3)$. Furthermore, by Lemma 1.4(1), there exists a $G-GD_{\lambda}(v)$ from the known $G-ID_{\lambda}(16+w,w)$ and $G-GD_{\lambda}(16+w)$.
- (3) For $n \equiv 3+r \mod 6$, r=1,2, there exists an RB[3,1;n-r] by [2]. Letting n-r=6t+3, the number of the parallel classes of RB[3,1;n-r] is 3t+1. In order to guarantee $3t+1 \ge r$, it is necessary that " $t \ge 0$ if r=1" or " $t \ge 1$ if r=2". Furthermore, a $\{3,4\}$ - $GDD(1^{n-r}r^1)$ can be obtained from RB[3,1;n-r]. And, by Lemma 1.3(1), there exists a $G-HD_{\lambda}(8^{n-r}(8r)^1)$ by adding the known $G-HD_{\lambda}(8^3)$, $G-HD_{\lambda}(8^4)$. Thus, by Lemma 1.4(2), a $G-GD_{\lambda}(v)$ can be obtained from $G-ID_{\lambda}(8+w,w)$ and $G-GD_{\lambda}(8r+w)$. As for "r=2 and t=0", i.e., $G-GD_{\lambda}(5\times 8+w)$, which can be obtained from $G-HD_{\lambda}(8^5)$, $G-ID_{\lambda}(8+w,w)$ and $G-GD_{\lambda}(8+w)$.

Lemma 2.3 If there exist a G- $HD_2(8^{2t+1})$ for $t \ge 1$, a G- $ID_2(8+16,16)$, a G- $GD_2(9)$ and a G- $GD_2(16)$, then there exists a G- $GD_2(v)$ for $v \equiv 8,9 \pmod{16}$ and $v \ge 9$.

Proof. Let v=8(2t+1)+w, and $t \ge 1$ (if w=0) or $t \ge 0$ (if w=1).

For w = 0 and t = 1, a G- $GD_2(24)$ exists from the known G- $ID_2(8 + 16, 16)$ and G- $GD_2(16)$.

For w = 0 and $t \ge 2$, by Lemma 1.4(1), the conclusion follows from the designs $G-HD_2(8^{2t-1})$ for $t \ge 2$ and $G-ID_2(8+16,16)$ and $G-GD_2(16)$.

For w = 1 and $t \ge 0$, by Lemma 1.4(1), the conclusion follows from the designs $G-HD_2(8^{2t+1})$ for $t \ge 1$ and $G-GD_2(9)$.

Lemma 2.4^[5] Let positive integer w < 8, q=3,4,5 and $t \in \{1,2,6,8\}$. If there exist a $G-HD_{\lambda}(8^q)$, a $G-ID_{\lambda}(8+w,w)$ and a $G-GD_{\lambda}(8t+w)$, then there exists a $G-GD_{\lambda}(v)$ for $v \equiv w \pmod 8$ and $v \ge 8+w$.

3 Construction of HD

3.1 Using sharply 2-transitive group

Let H be a transformation group acting on n-set N. For any two ordered 2-subsets (x,y) and (x',y') from N, if there exists unique $\xi \in H$ satisfying $(\xi x, \xi y) = (x', y')$, then H is called a sharply 2-transitive group on N.

Lemma 3.1^[3] Let F_q be a finite field, where q is a prime power. Then, for the multiplication of transformations, all linear transformations on F_q

$$f_{c,d}: x \longmapsto cx + d \ \forall x \in F_a$$

form a sharply 2-transitive group on F_q : $L_q = \{f_{c,d} : c \in F_q^*, d \in F_q\}$.

Lemma 3.2^[5] Let G be a graph with 2e edges. If

(1) there exists a mapping f (i.e. vertex labeling) from its vertex set V(G) to the set Z_{2e} such that the induced mapping on its edge set (i.e. edge labeling)

 $\begin{array}{ccc} f^*: & (x,y)\longmapsto |f(x)-f(y)| & \forall x\neq y\in V(G)\\ satisfies & \{f^*(x,y): x\neq y\in V(G)\} = \{1,1,2,2,\cdot\cdot\cdot,e-1,e-1\}\bigcup\{0,e\}, \end{array}$

- (2) G is q-colorable (the coloring set is Q),
- (3) there exists a sharply 2-transitive group on Q,

then there exists a $G-HD_2((2e)^q)$, where q is a prime power.

Lemma 3.3 For graph $G \in \{H_i, D_i, R_j : 1 \le i \le 3, 1 \le j \le 2\}$, there exists a G- $HD_2(8^q)$ for q = 3, 4, 5.

Proof. Let $X=Z_8\times Z_q$, and L_q be the sharply 2-transitive group on a q-set. For the following blocks B and C, (B,C) mod (Z_8,L_q) form the block set of G- $HD_2(8^q)$.

```
H_1: B = (1, 3, 6, 2, 0, 0), C = (2, 0, 1, 2, 1, 0);
H_2: B = (1, 3, 6, 2, 0, 3), C = (2, 0, 1, 2, 1, 1);
H_3: B = (1, 3, 6, 2, 0, 6), C = (2, 0, 1, 2, 1, 0);
D_1: B = (1, 3, 6, 2, 0, 0), C = (2, 0, 1, 0, 1, 0);
D_2: B = (1, 3, 6, 2, 0, 3), C = (2, 0, 1, 0, 1, 1);
D_3: B = (1, 3, 6, 2, 0, 6), C = (2, 0, 1, 0, 1, 0);
R_1: B = (1, 3, 6, 2, 0, 3), C = (2, 0, 1, 0, 1, 1);
R_2: B = (1, 3, 6, 2, 0, 6), C = (2, 0, 1, 0, 1, 0).
```

3.2 Using idempotent symmetric quasi-group

Let I_n be a *n*-set and \circ be a binary operation on I_n such that the equations $a \circ x = b$ and $y \circ a = b$ are uniquely solvable for every pair of elements $a, b \in I_n$, then (I_n, \circ) is called as a *quasi-group* of order n. A quasi-group is said to be *idempotent* (*symmetric*) if the identity $x \circ x = x$ ($x \circ y = y \circ x$) holds for all $x \in I_n$ ($x, y \in I_n$). It is well known that there exists an idempotent symmetric quasi-group of order v if and only if v is odd.

Lemma 3.4^[4] Let (I_n, \circ) be an idempotent symmetric quasi-group, where $I_n = \{1, 2, \dots, n\}$ and G be a simple graph with e edges. A collection $\mathcal{A} = \{A_{ij} : i, j \in I_n, i < j\}$ can be taken as a base of a G-HD (e^n) if and only if the following conditions hold, where $i, j \in I_n$ and i < j:

- (1) For any given block A in A, the differences $d(i, i \circ j)$ and $-d(i \circ j, j)$ both appear or not in A;
 - $(2) \{d: \exists d(i,j)\} \bigcup \{d: \exists d(i,i\circ j)\} \bigcup \{d: \exists d(i\circ j,j)\} = Z_e.$

Lemma 3.5 A D_3 - $HD_2(8^{2t+1})$ exists for $t \ge 1$.

Proof. Let (I_{2t+1}, \circ) be an idempotent symmetric quasi-group, where $I_{2t+1} = \{1, 2, \dots, 2t+1\}$ $(t \ge 1)$. Define: $A_{i,j} = (3_{i \circ j}, 2_i, 4_j, 0_i, 0_j, 5_{i \circ j})$,

```
then A = \{A_{i,j} \mod (8,-): 1 \le i < j \le 2t+1\} form a D_3-HD(8^{2t+1}). So, a D_3-HD_2(8^{2t+1}) exists for t \ge 1 by Lemma 1.3.
```

```
In this paper, for a block B = (b_1, b_2, \dots, b_6), b_k \in Z_n, 1 \le k \le 6, s \ge 0, denote: B + s = (b_1 + s, b_2 + s, \dots, b_6 + s) \mod n, 5^s(b_1, b_2, \dots, b_6) = (5^sb_1, 5^sb_2, \dots, 5^sb_6) \mod n, B \times m means m times of the block B for m > 0, (x, i) + (y, j) = (x + y, i + j) \mod (n, t), x, y \in Z_n, i, j \in Z_t.
```

4 $\lambda = 2$

In this section, by (**), the scope of order v for the existence of G- $GD_2(v)$ is $v \equiv 0, 1 \pmod{8}$. By the known holey designs and recursive constructions in §2 and §3, it is enough to construct a few GDs and IDs with index 2 for some small orders.

Lemma 4.1 For graph $G \in \{H_i, D_j, R_j : 1 \le i \le 3, 1 \le j \le 2\}$, there exists a G- $GD_2(v)$ for $v \in \{8, 9, 16, 17\}$. **Proof.**

```
\underline{v=8}\ X=Z_7\bigcup\{\infty\},\ \mathrm{mod}\ 7.
```

 $H_1: (\infty, 1, 6, 2, 0, 3), H_2: (\infty, 1, 6, 2, 0, 5), H_3: (\infty, 1, 6, 2, 0, 3),$

 $D_1:(2,6,\infty,0,1,4),\ D_2:(1,0,\infty,6,2,4),\ R_1:(5,1,3,0,\infty,2),$

 $R_2:(5,1,3,0,\infty,2).$

 $\underline{v=9} X=Z_9$, mod 9.

 $H_1: (7,4,0,1,3,5), H_2: (7,4,0,1,3,2), H_3: (7,4,0,1,3,2),$

 $D_1:(2,7,3,0,1,8),\ D_2:(2,7,3,0,1,5),\ R_1:(8,4,1,0,2,7),$

 $R_2:(8,4,1,0,2,7).$

 $\underline{v = 16,17}$ The designs can be obtained by Lemma 1.1 and Lemma 1.3(2).

Lemma 4.2 There exists a D_3 - $GD_2(v)$ for $v \in \{9, 16\}$.

Proof. $\underline{v} = 9 : (2,7,3,0,1,5) \mod 9.$

v = 16: by Lemma 1.1 and Lemma 1.3(2).

Lemma 4.3 There exists a D_3 - $ID_2(8+16,16)$.

Proof. Take point set $Z_8 \times Z_3$. Denote the element (x, i) of the set $Z_8 \times Z_3$ by x_i . $(4_0, 0_2, 5_0, 0_1, 6_0, 6_2) \mod (8, -)$;

```
 \begin{array}{lll} (4_0,0_2,3_0,0_1,1_0,4_1)+s_0 & \text{mod } (8,-), \ 0\leq s\leq 6; \\ (1_0,2_2,4_0,2_1,2_0,0_0), \ (2_0,3_2,5_0,3_1,3_0,1_0), \ (3_0,4_2,6_0,4_1,4_0,2_0), \\ (4_0,5_2,7_0,5_1,5_0,3_0), \ (5_0,6_2,0_0,6_1,6_0,4_0), \ (6_0,7_2,1_0,7_1,7_0,0_2), \\ (7_0,0_2,2_0,0_1,0_0,3_1), \ (5_0,0_2,0_0,0_1,6_0,3_0), \ (6_0,1_2,1_0,1_1,7_0,0_1), \\ (7_0,2_2,2_0,2_1,0_0,0_1), \ (0_0,3_2,3_0,3_1,1_0,0_1), \ (1_0,4_2,4_0,4_1,2_0,5_2), \\ (2_0,5_2,5_0,5_1,3_0,1_0), \ (3_0,6_2,6_0,6_1,4_0,2_0), \ (4_0,7_2,7_0,7_1,5_0,2_0), \end{array}
```

 $(4_0,1_2,3_0,1_1,2_0,1_0), (5_0,2_2,4_0,2_1,3_0,1_0), (6_0,3_2,5_0,3_1,4_0,2_0),$

$$(7_0, 4_2, 6_0, 4_1, 5_0, 3_0), (0_0, 5_2, 7_0, 5_1, 6_0, 3_0), (1_0, 6_2, 0_0, 6_1, 7_0, 5_0), (2_0, 7_2, 1_0, 7_1, 0_0, 6_0), (3_0, 7_2, 2_0, 7_1, 0_0, 0_2), (0_0, 1_2, 3_0, 1_1, 1_0, 0_2).$$

Lemma 4.4 There exists no D_3 - $GD_2(8)$.

Proof. Suppose there exists a D_3 - $GD_2(8) = (X, \mathcal{B})$, where |X|=8, $|\mathcal{B}|=7$. For each $x \in X$, let x be at a position of d_i -degree in the ith block ($d_i = 0$ means that x doesn't appear in the ith block), then $\sum_{i=1}^{7} d_i = 14$. Let $a = |\{d_i : d_i = 3, 1 \le i \le 7\}|, b = |\{d_i : d_i = 1, 1 \le i \le 7\}|,$ then 3a + b = 14, which implies x must appear at pendant vertex at least twice. So, x running over X, the pendants will be occupied $2 \times 8 = 16$ times, which is impossible for the degree-type 1^13^5 of D_3 .

Theorem A For graph $G \in \{H_i, D_i, R_j : 1 \le i \le 3, 1 \le j \le 2\}$, there exists a G- $GD_2(v) \iff v \equiv 0, 1 \pmod{8}$ and $v \ge 8$, except for D_3 - $GD_2(8)$. **Proof.** From the following table, the existence of G- $GD_2(v)$ for $v \equiv 0, 1 \pmod{8}$ can be obtained with the exception D_3 - $GD_2(8)$, where $1 \le i \le 3$ and $1 \le j \le 2$.

Graph G	$H_i, D_j, R_j,$	D_3
G - $GD_2(v)$	v = 8, 9, 16, 17	$v=9,16,v\neq 8$
	(Lemma 4.1)	(Lemma 4.2,4.4)
G - $ID_2(-,-)$		(8+16,16) (Lemma 4.3)
$G ext{-}HD_2(-)$	$(8^q): q=3,4,5$	$(8^{2t+1}): t \ge 1$
	(Lemma 3.3)	(Lemma 3.5)
Conclusion	by Lemma 2.1	by Lemma 2.3

5 $\lambda = 4$

In this section, by (**), the scope of order v for the existence of G- $GD_4(v)$ is $v \equiv 0, 1 \pmod{4}$ and $v \geq 8$. By the known G-designs, holey designs and recursive constructions in $\S 2 - \S 4$, it is enough to construct a few GDs and IDs with index 4 for some small orders.

The proofs of the following three lemmas appear in Appendix I, which is published in our website: http://qdkang.hebtu.edu.cn (online).

Lemma 5.1 For graph $G \in \{H_1, H_3, D_1, D_3, R_1, R_2\}$, there exists a G- $ID_2(8+w,w)$. Further there exists a G- $ID_4(8+w,w)$ for w=4,5, too. **Lemma 5.2** For graph $G \in \{H_2, D_2\}$, there exists a G- $ID_4(8+w,w)$ for w=4,5.

Lemma 5.3 For graph $G \in \{H_i, D_i, R_j : 1 \le i \le 3, 1 \le j \le 2\}$, there exist G- $GD_4(v)$ for $v \in \{12, 13, 20, 21, 52, 53, 68, 69\}$ and D_3 - $GD_4(8)$.

Theorem B For graph $G \in \{H_i, D_i, R_j : 1 \le i \le 3, 1 \le j \le 2\}$, there exists a G- $GD_4(v) \iff v \equiv 0, 1 \pmod{4}$ and $v \ge 8$.

Proof. From the following table, the existence of G- $GD_4(v)$ for $v \equiv 4,5 \pmod{8}$ can be obtained, where $1 \le i \le 3$, $1 \le j \le 2$ and w = 4,5.

Graph G	H_i, D_i, R_j
G - $GD_4(8m+w)$	m=1,2,6,8
	(Lemma 5.3)
$G\text{-}ID_4(8r+w,w)$	r = 1 (Lemma 5.1,5.2)
$G-HD_2(-) \Longrightarrow G-HD_4(-)$	$(8^q): q=3,4,5$
	(Lemma 3.3)
Conclusion	by Lemma 2.4

Furthermore, by Theorem A, the existence spectrum for G- $GD_4(v)$ will be $v \equiv 0, 1 \pmod{4}$ and $v \geq 8$, where the unique exception in Theorem A: D_3 - $GD_2(8)$ does not exist, but D_3 - $GD_4(8)$ exists (see Lemma 5.3).

6 $\lambda = 8$

Lemma 6.0 Let G be a simple graph, $p, q, r, \alpha, \beta, a, \lambda$ be positive integers, and $a \geq b \geq 0, a \neq 2, 6$. If there exist a G- $HD_{\lambda}(p^1q^1r^1\alpha^1)$ and a G- $HD_{\lambda}(p^1q^1r^1\beta^1)$, then there exists a G- $HD_{\lambda}((ap)^1(aq)^1(ar)^1((a-b)\alpha+b\beta)^1)$.

Proof. It is well known to exist a 4- $GDD(a^4)$ for $a \neq 2, 6$. Weight the elements of the 4- $GDD(a^4)$ as follows: Weight every element of three groups among the 4- $GDD(a^4)$ by p, q and r, respectively. For the rest group of the 4- $GDD(a^4)$, each of b elements is weighed by β , other elements are weighed by α . Then there exists a G- $HD_{\lambda}((ap)^1(aq)^1(ar)^1((a-b)\alpha+b\beta)^1)$ from the known HDs.

By (**), the scope of order v for the existence of G- $GD_8(v)$ is any $v \ge 6$.

6.1 Graphs $H_i, D_i, R_i, 1 \le i \le 3, 1 \le j \le 2$

Theorem 6.1 If there exist a G- $GD_8(u)$ for $u \equiv 0, 1 \pmod{4}$ and $u \geq 8$, a G- $HD_8(2^31^1)$, a G- $HD_8(2^4)$, a G- $HD_8(2^33^1)$ and a G- $GD_8(m)$ for $m \in \{6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 31, 35, 38, 46, 47, 50, 54\}$, then there exists a G- $GD_8(v)$ for $v \equiv 2, 3 \pmod{4}$ and $v \geq 6$.

Proof. Let v = 16t + s, where $s \in \{4i + 2, 4i + 3 : i \in \mathbb{Z}_4\}$ and $t \ge 0$ (if $s \ge 6$) or $t \ge 1$ (if s < 6). First, taking p = q = r = 2 and suitable α, β, a, b ,

and using Lemma 6.0, we have the following table, $v = 6a + (a - b)\alpha + b\beta$.

α	β	a	b	t	known HD8	obtained HD_8	υ
1	3	2t	t+1	$t \neq 1,3$	2 ³ 1 ¹ , 2 ³ 3 ¹	$(4t)^3(4t+2)^1$	16t + 2
1	3	2t	t+3	$t \ge 4$	$2^{3}1^{1}, 2^{3}3^{1}$	$(4t)^3(4t+6)^1$	16t + 6
2	3	2t + 1	2	$t \ge 1$	24, 2331	$(4t+2)^3(4t+4)^1$	16t + 10
1	2	2t + 2	2t	$t \neq 0, 2$	$2^{3}1^{1}, 2^{4}$	$(4t+4)^3(4t+2)^1$	16t + 14
1	3	2t+1	t-2	$t \geq 2$	$2^31^1, 2^33^1$	$(4t+2)^3(4t-3)^1$	16t + 3
1	3	2t + 1	t	$t \ge 0$	$2^{3}1^{1}, 2^{3}3^{1}$	$(4t+2)^3(4t+1)^1$	16t + 7
1	3	2t + 1	t+2	$t \ge 1$	$2^{3}1^{1}, 2^{3}3^{1}$	$(4t+2)^3(4t+5)^1$	16t + 11
1	3	2t + 3	t-3	$t \ge 3$	2 ³ 1 ¹ , 2 ³ 3 ¹	$(4t+6)^3(4t-3)^1$	16t + 15

Here, the conditions for t guarantee the existence of $4\text{-}GDD(a^4)$ and $a \ge b \ge 0$. As well, the numbers listed in the last column are just all orders v = 16t + s above. By Lemma 1.4(2), in order to obtain these $G\text{-}GD_8(v)$ for $v = w^3n^1$, it is enough to exist $G\text{-}GD_8(w)$ and $G\text{-}GD_8(n)$ for $m, n \equiv 0, 1, 2 \pmod{4}$. From the known conditions, there exists a $G\text{-}GD_8(u)$ for any $u \equiv 0, 1 \pmod{4}$, $u \ge 8$. Therefore, the following recursions are obtained:

$$G\text{-}GD_8(4t+2) \Longrightarrow \begin{cases} G\text{-}GD_8(16t+2) \text{ for } t \neq 1,3 \\ G\text{-}GD_8(16(t-1)+6) \text{ for } t \geq 5 \\ G\text{-}GD_8(16t+10) \text{ for } t \geq 1 \\ G\text{-}GD_8(16t+14) \text{ for } t \neq 0,2 \\ G\text{-}GD_8(16t+3) \text{ for } t \geq 3 \\ G\text{-}GD_8(16t+7) \text{ for } t \geq 2 \\ G\text{-}GD_8(16t+11) \text{ for } t \geq 1 \\ G\text{-}GD_8(16t+11) \text{ for } t \geq 4 \end{cases}$$

where some conditions for t are reduced since $u \ge 8$ in G- $GD_8(u)$. It is easy to see that, in order to obtain all G- $GD_8(v)$ for the orders $v \equiv 2, 3 \pmod{4}$, we need to construct the following G- $GD_8(v)$:

v=18, 50; 6, 22, 38, 54; 10; 14, 46; 19, 35; 7, 23; 11; 15, 31, 47. This completes the proof.

The proofs of the following two lemmas appear in Appendix I, which is published in our website: http://qdkang.hebtu.edu.cn (online).

Lemma 6.2 For graph $G \in \{H_i, D_j, R_j : 1 \le i \le 3, 1 \le j \le 2\}$, there exist a G-HD₈(2³1¹), a G-HD₈(2³3¹) and a G-HD₈(2⁴).

Lemma 6.3 For graph $G \in \{H_i, D_j, R_j : 1 \le i \le 3, 1 \le j \le 2\}$, there exists a G- $GD_8(v)$ for $v \in \{6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 31, 35, 38, 46, 47, 50, 54\}.$

6.2 Graph D_3

Lemma 6.4 There exists a D_3 - $ID_8(8t+w,w)$ for t=1,2 and w=2,3,6,7. **Proof.** We will give a detailed proof in Appendix I, which is published in our website: http://qdkang.hebtu.edu.cn (online).

Lemma 6.5 There exists a D_3 -G $D_8(v)$ for v=7, 10, 11, 14, 15, 18, 19, 22, 23. Proof. $X = Z_{v-1} \bigcup \{x\}$ for even v, mod (v-1); $X = Z_v$ for odd v, mod v. v=7 (3, 2, 5, 0, 1, 4), (5, 3, 4, 0, 2, 1) × 2. v=10 (4, 2, 5, 0, 1, 3), (4, 2, 5, 0, 1, x) × 2, (1, 3, 5, 0, x, 2) × 2. v=11 (6, 3, 5, 0, 2, 4), (6, 3, 5, 0, 2, 8), (4, 5, 8, 0, 1, 7), (6, 3, 5, 0, 2, 1) × 2. v=14 (5, 4, 8, 0, 2, 11), (5, 4, 8, 0, 2, x), (0, 1, 5, 4, x, 2), (7, 3, 6, 0, 2, x) × 4. v=15 (7, 3, 6, 0, 2, 13), (7, 3, 6, 0, 2, 4), (7, 3, 6, 0, 2, 9), (7, 3, 6, 0, 2, 10), (7, 3, 6, 0, 2, 12), (7, 3, 6, 0, 2, 5), (7, 3, 6, 0, 2, 1). v=18 (x, 4, 9, 3, 0, 2), (x, 2, 9, 1, 0, 16), (6, 3, 8, 0, 2, 1)×5, (6, 3, 8, 0, 2, 18) × 2. v=19 (9, 4, 13, 3, 0, 6), (9, 2, 11, 1, 0, 4), (6, 3, 8, 0, 2, 1) × 5, (6, 3, 8, 0, 2, 18) × 2. v=22 (4, 8, 6, 0, 2, 12), (4, 8, 6, 0, 2, 10), (6, 8, 4, 0, 2, 10), (10, 2, 5, 0, 9, x) × 8.

Lemma 6.6 There exists no D_3 - $GD_{\lambda}(6)$ for $\lambda \equiv 8 \pmod{16}$.

v = 23 by D_3 - $ID_8(16 + 7, 7)$ and D_3 - $GD_8(7)$.

Proof. Let $\lambda = 16t + 8$, $t \ge 0$. Suppose there exists a D_3 - $GD_{\lambda}(6) = (X, \mathcal{B})$, where |X| = 6, and $|\mathcal{B}| = 15(2t + 1)$. It is easy to see that each $x \in X$ should appear in each block. The degree-type of D_3 is 3^51^1 . Let x be at a position of d_i -degree in the ith block, then $\sum_{i=1}^{15(2t+1)} d_i = 40(2t+1)$, where

position of d_i -degree in the *i*th block, then $\sum_{i=1}^{n} d_i = 40(2t+1)$, where $d_i \in \{1,3\}$. Let $a = |\{d_i : d_i = 3, 1 \le i \le 15(2t+1)\}|$, $b = |\{d_i : d_i = 1, 1 \le i \le 15(2t+1)\}|$, then we have

$$\left\{ \begin{array}{l} a+b=15(2t+1) \\ 3a+b=40(2t+1) \end{array} \right. \implies \ 2a=25(2t+1).$$

This is a contradictory equation.

Theorem C For graph $G \in \{H_i, D_i, R_j : 1 \le i \le 3, 1 \le j \le 2\}$, there exists a G- $GD_8(v)$ for $v \ge 6$, except for $(G, v) = (D_3, 6)$.

Proof. From the following three tables, the existence of G- $GD_8(v)$ for $v \equiv 2, 3 \pmod{4}$ can be gotten, with the exception D_3 - $GD_8(6)$, where $1 \le i \le 3$, $1 \le j \le 2$, w = 2, 3, 6, 7.

	H_i, D_j, R_j
G - $GD_8(4m+2)$	$m \in \{1, 2, 3, 4, 5, 9, 11, 12, 13\}$
$G\text{-}GD_8(4n+3)$	$n \in \{1, 2, 3, 4, 5, 7, 8, 11\}$ (Lemma 6.3)
$G ext{-}HD_8(-)$	$(2^33^1), (2^4), (2^31^1)$ (Lemma 6.2)
Conclusion	by Theorem 6.1

Graph G	D_3
$G ext{-}GD_8(v)$	v = 7, 10, 11, 14, 15, 18, 19, 22, 23 (Lemma 6.5)
$G-ID_8(8r+w,w)$	r = 1, 2 (Lemma 6.4)
Conclusion	by Lemma 2.2, 6.6

Furthermore, by Theorem B, the conclusion follows.

7 Designs for some small orders

Lemma 7.1 There exists a D_3 - $GD_{\lambda}(8) \iff \lambda > 2, 2|\lambda$.

Proof. The necessity follows from (*) in §1 and Lemma 4.4. On the other hand, we know that there exists a D_3 - $GD_4(8)$ by Lemma 5.3. Also, we have D_3 - $GD_6(8)$ on set $Z_7 \cup \{x\}$:

 $(4,6,x,0,2,3), (6,4,x,0,3,1), (6,2,1,0,5,3) \mod 7.$

Furthermore, for any $\lambda > 2$ and $2|\lambda$, denote $\lambda = 4 \cdot \frac{\lambda}{4}$ ($\lambda \equiv 0 \mod 4$) or $\lambda = 4 \cdot \frac{\lambda - 6}{4} + 6$ ($\lambda \equiv 2 \mod 4$). So, the conditions are sufficient.

Lemma 7.2 There exists a D_3 - $GD_{\lambda}(6) \iff 16|\lambda$.

Proof. The necessity follows from (*) in §1 and lemma 6.6. On the other hand, for $\lambda = 16t$, $t \ge 1$, we have the following constructions on $Z_5 \cup \{x\}$: D_3 - $GD_{16}(6): (2,3,x,0,1,4) \times 4, (4,1,x,0,2,3), (1,3,0,2,4,x) \mod 5$. So, the condition is sufficient.

8 Conclusion

Proof of Theorem 1.2:

Summarizing Lemma 1.1, Theorems A, B, C and Lemmas 7.1-7.2, we obtain the conclusions.

ACKNOWLEDGMENT:

We are grateful to the referees for valuable comments.

References

- [1] F. Harary, Graph Theory, 1968.7. Shanghai Sci. & Tech. Press, 1980.
- [2] C. J. Colbourn and J. H. Dinitz(eds.), The CRC Handbook of Combinatorial Designs, (CRC Press, Boca Raton, 1996).
- [3] Qingde Kang, Landang Yuan and Shuxia Liu, Graph designs for all graphs with six vertices and eight edges, Acta Mathematicae Applicatae Sinica, English Series, Vol. 21, No.3 (2005) 469-484.
- [4] Qingde Kang, Yanke Du and Zihong Tian, Decompositions of λK_v into some graph with six vertices and seven edges, Journal of Statistical Planning and Inference, 136(2006), 1394-1409.
- [5] Shuxia Liu, Landang Yuan and Qingde Kang, Decomposition of λK_v into 6-circuits with two chords, to appear in Journal of Mathematical Research and Exposition.