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Abstract

Let K, be a complete graph with v vertices, and G=(V(G), E(G))
be a finite simple graph. A G-design G-GD\(v) is a pair (X, B),
where X is the vertex set of K, and B is a collection of subgraphs of
K,, called blocks, such that each block is isomorphic to G and any
two distinct vertices in K, are jointed in exactly A blocks of B. In
this paper, the existence of graph designs G-GD, (v), A > 1, for eight
graphs G with six vertices and eight edges is completely solved.
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1 Introduction

A group-divisible design GDD(2, K, v;r1{m1},---,rs{m;}), where K C N,
8
Y rim; = v, and for any k € K,k > 2, is a triple (X, G, B) such that

=1

1) X is a set of v points,

2) G is a partition of X into r; sets of m; points (called groups), i =
1,2,...,s,

3) B is a collection of subsets of X (called blocks), where |B| € K,

4) Every 2-set of X is contained in exactly one member of G| B.
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Usually, we write K-GDD(m7* ---mj*) and k-GDD(m7'---m3*) in-
stead of GDD(2,K,v;r1{m1}, ---,7,{m;}) and {k}-GDD(m7*---mJ).
A k-GDD(m*) is called a transversal design and denoted by TD(k,m).

A GDD(2,K,v;v{1}) = (X, G, B) is often called pairwise balanced de-
sign and denoted by B(K,1;v] = (X, B).

Let K, be a complete graph with v vertices, and G=(V(G), E(G)) be
a finite simple graph. A G-design G-GD)(v) is a pair (X, B), where X is
the vertex set of K, and B is a collection of subgraphs of K, called blocks,
such that each block is isomorphic to G and any two distinct vertices in K,
are jointed in exactly A blocks of B. Obviously, the necessary conditions
for the existence of a G-GD)(v) are

v 2 |V(G)|, Ww(v—1)=0 mod 2|E(G)|, A(v—1)=0 modd, (%)
where d is the greatest common divisor of the degrees of the vertices in
V(G).

t

Let Ky, ng,-,n. be & complete multipartite graph with vertex set |J X;,

i=1

where these X; are disjoint and | X; |= n;, 1 < ¢ < t. For a given graph
G, a holey G-design, denoted by G-HD)(n}n}---n}), is a partition A of
edges of AKjy, n,,.-n,, Such that each member of A is isomorphic to G.
If ny = .-+ = n; = n, then the holey G-design may be denoted by G-
HD)(n'). For A = 1, the index 1 is often omitted. A G-HD,(1°w?) is
called an incomplete G-design, denoted by G-IDy(v + w,w). Obviously,
a G-GD)(v) can be regarded as a G-HD)(1Y), a G-IDx(v + 0,0) or a
G-IDx((v—-1)+1,1).

From (1), there are 22 graphs with six vertices and eight edges without
isolated vertex, which are shown in [3]. For A = 1, the existence of graph
designs for these graphs has been solved by us:

Lemma 1.18

(1) For graph G € {H;,D;,R;,Qi,M;,Cr,W3 : 1 <i<3,1<j<
2,1 < k < 6}, there ezists a G-GD(v) if and only if v=0,1 (mod 16) and
v 2 16 with possible exception v = 32 for graphs M; and Mo.

(2) For graphs G = Wy and W, there exists a G-GD(v) if and only if

=1 (mod 16) and v > 17.

In this paper, we shall focus on graph designs of the following eight

graphs for A > 1.
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For convenience, all graphs above are denoted by (a, b, ¢, d, e, f). Our main
conclusions will be:

Theorem 1.2 For graph G € {H;,D;,R; : 1 < i < 3,1 < j < 2}, the
necessary conditions for the existence of G-GDj(v) with A > 1 are also
sufficient with the ezceptions (G,v,\) € {(Ds,8,2), (Ds,6,16t+8) : t > 0}.

By (*), we need discuss the following » and A:
A=2,v=0,1(mod8); A=4,v=0,1(mod4); A=8, v=>6. (¥x)

The following lemmas are important for our constructing methods in
this paper.
Lemma 1.3 Let G be e simple graph, K be a set of positive integers, and
m,u,v, A, b be positive integers.

(1) If there exist a K-GDD(a*b") and a G-HDy(m*) for any k € K,
then there exists ¢ G-HD)((ma)*(mb)?).

(2) If there exists a G-HDx(m?), then there ezists a G-HD),(m").
Proof. Obviously, the conclusions hold.

Lemma 1.4 Let G be a simple graph, and h,m,n, X be positive integers,
w2 0.

(1) If there ezist a G-HDx(m"), a G-IDy\(m+w, w) end a G-GDx(m+
w) (or G-GDy(w)), then there exists a G-GD)(mh + w).

(2) If there ezist a G-HDy(m"n!), a G-ID)(m+w,w) and a G-GDj(n+
w), then there exists a G-GDy(mh +n + w).

2 Main structures

The following lemma is the modified version of Theorem 2.2.7 in [3], where
G is a graph with six vertices and eight edges.
Lemma 2.1 Let m be a positive integer, ¢ = 3,4,5, w=0,1 and i =1,2.
If there exist a G-HDy(m9) and a G-GDy(im + w), then there exists a
G-GDs(v) for v=10,1 (mod m) and v > m.
Lemma 2.2 Let g € {3,4,5}, m € {1,2,5}, w=2,3,6,7. If there exist a
G-HD\\(87), a G-ID)(8+ w,w), a G-ID)(16 + w,w) and ¢ G-GDx(8m +
w), then there exists a G-GD)(v) for v=2,3,6,7 (mod 8) and v > 10.
Proof. Let v=8n+w, w=2,3,6,7.

(1) For n = 1,3 mod 6, there exists a B[3,1;n] by [2], which implies
the existence of a 3-GDD(1™). And, by Lemma 1.3(1) and Lemma 1.4(1),
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the existence of G-HD)(8%), G-ID)(8 + w,w) and G-GD(8 + w) implies
the existence of G-GD)(v).

(2) For n = 0,2 mod 6, there exists a B[3,1;n + 1] by [2], which
implies the existence of a 3-GDD(2%). By Lemma 1.3(1), there exists
a G-HD)(16%) from the known G-HD,(8%). Furthermore, by Lemma
1.4(1), there exists a G-GD)(v) from the known G-ID(16 + w,w) and
G-GD)(16 + w).

(3) For n =3+ r mod 6, r=1,2, there exists an RB[3,1;n — r] by [2].
Letting n — r = 6¢ + 3, the number of the parallel classes of RB[3,1;n —r]
is 3t + 1. In order to guarantee 3t + 1 > r, it is necessary that “¢t > 0
if r=1"or ¢ 2 1if r = 2". Furthermore, a {3,4}-GDD(1"~"r!) can
be obtained from RB[3,1;n —r]. And, by Lemma 1.3(1), there exists a
G-HD)(8"~"(8r)!) by adding the known G-HD)(83%),G-HDx(8%). Thus,
by Lemma 1.4(2), a G-GD,(v) can be obtained from G-ID) (8 + w,w) and
G-GD)\(8r +w). As for “r=2 and t =0", i.e., G-GD(5 x 8 + w), which
can be obtained from G-HD,(8%), G-ID(8 + w,w) and G-GD(8 + w).®

Lemma 2.3 If there ezist a G-HD,(8%11) fort > 1, a G-ID»(8+ 16, 16),
a G-GD2(9) and a G-GD»(16), then there ezists a G-GDz(v) for v =
8,9 (mod 16) and v > 9.
Proof. Let v=8(2t+1)+w,andt>1 (ifw=0)ort >0 (if w=1).

For w = 0 and ¢t = 1, a G-GD»(24) exists from the known G-ID,(8 +
16,16) and G-GD,(16).

For w =0 and ¢ > 2, by Lemma 1.4(1), the conclusion follows from the
designs G-HD,(8%?) for t > 2 and G-ID(8 + 16, 16) and G-GD,(16).

For w = 1 and ¢ > 0, by Lemma 1.4(1), the conclusion follows from
the designs G-HD2(8%*!) for ¢ > 1 and G-GD2(9). |

Lemma 2.4 Let positive integer w < 8, ¢=3,4,5 and t € {1,2,6,8}. If
there exist a G-HD)(8%), a G-IDx(8 + w,w) end a G-GDx(8t + w), then
there ezxists a G-GDy\(v) for v=w (mod 8) and v > 8 + w.

3 Construction of HD

3.1 Using sharply 2-transitive group

Let H be a transformation group acting on n-set N. For any two ordered

2-subsets (z,y) and (z’,y’) from N, if there exists unique £ € H satisfying

(éz, &y)=(=',¥’), then H is called a sharply 2-transitive group on N.

Lemma 3.18! Let Fy be a finite field, where q i3 a prime power. Then, for

the multiplication of transformations, all linear transformations on F,
fea:z—rcx+d Vz e Fy

form a sharply 2-transitive group on Fy: Ly = {fca:c€ Fy, d € Fy}.
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Lemma 3.2 Let G be a graph with 2e edges. If

(1) there ezists a mapping f (i.e. vertez labeling) from its vertex set
V(G) to the set Zy, such that the induced mapping on its edge set (i.e.
edge labeling)

o (@y)— 1f(@) - f)l Vz#yeV(G)

satisfies {f*(z,y) : s £y € V(G)} = {1,1,2,2,-- ;e —1,e — 1} {0, ¢},

(2) G is g-colorable (the coloring set is Q),

(3) there exists a sharply 2-transitive group on Q,
then there ezists a G-HD»((2¢)?), where q is a prime power.
Lemma 3.8 For graph G € {H;,D;,R; : 1 < i £ 3,1 < j < 2}, there
ezists a G-HD»(87) for ¢ = 3,4,5.
Proof. Let X=Z3 x Z,, and Ly be the sharply 2-transitive group on a
g-set. For the following blocks B and C, (B,C) mod (Zg,L,) form the
block set of G-HD,(87).

Hy: B=(1,3,6,2,0,0), C = (2,0,1,2,1,0);
Hy: B=(1,3,6,2,0,3), C = (2,0,1,2,1,1);
Hy: B=(1,3,6,2,0,6), C = (2,0,1,2,1,0);
Di: B=(1,3,6,2,0,0), C = (2,0,1,0,1,0);
Da: B=(1,3,6,2,0,3), C = (2,0,1,0,1,1);
Ds: B=(1.3.6,2,0,6), C=(2,0,1,0,1,0);
Ry: B=(1,3,6,2,0,3), C =(2,0,1,0,1,1);
Ry: B=(1,3.6,2,0,6), C =(2,0,1,0,1,0). -

3.2 Using idempotent symmetric quasi-group

Let I,, be a n-set and o be a binary operation on I,, such that the equations
aoz = b and y o ¢ = b are uniquely solvable for every pair of elements
a, b € I, then (I,,0) is called as a quasi-group of order n. A quasi-group
is said to be idempotent (symmetric) if the identity zoz = z (zoy =yoz)
holds for all z € I, (z,y € I,). It is well known that there exists an
idempotent symmetric quasi-group of order v if and only if v is odd.
Lemma 3.4¥ Let (I,,,0) be an idempotent symmetric quasi-group, where
I, = {1,2,---,n} and G be a simple graph with e edges. A collection
A={A;j:1,j €I, i <j} can be taken as a base of a G-HD(e") if and
only if the following conditions hold, wherei,j € I, andi < j :

(1) For any given block A in A, the differences d(i,ioj) and —d(ioj, j)
both appear or not in A;

(2) {d:3d(3,5)} Hd : 2d(i,i0 )} UH{d : 3d(i 0 4, 5)} = Ze.
Lemma 3.5 A D3-HD,(8%11) exists for t > 1.
Proof. Let (I2;4+1,0) be an idempotent symmetric quasi-group, where
Iy = {1, 2,---,2t + 1} (t > 1). Define: A."j = (3,'05,2,',43',0,‘, 0j,5¢oj),
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then A={A;; mod (8,~): 1 <i < j < 2t+ 1} form a D3-HD(8%*!). So,
a D3-HDy(8%+1) exists for ¢ > 1 by Lemma 1.3. ]

In this paper, for a block B = (by,b2,-+,bg), bx € Z5, 1 < k<6, 8>0,
denote: B+ 8= (b + s,b2+ 8, --,bg + 8) mod n,
5a(bla b2’ . :b6) = (50611 5352,' ° 5ab6) mod n,
B x m means m times of the block B for m > 0,
(z,3) + (,7) = (= + 9, + j) mod (n,t), z,y € Zy,i,j € Z,.

4 A=2

In this section, by (), the scope of order v for the existence of G-GD(v)
isv = 0,1 (mod 8). By the known holey designs and recursive constructions
in §2 and §3, it is enough to construct a few GDs and IDs with index 2 for
some small orders.

Lemma 4.1 For graph G € {H;,D;,R; : 1 < i < 3,1 < j < 2}, there

exists a G-GD,(v) for v € {8,9,16,17}.

Proof.

v=8 X=27|J{cc}, mod 7.
H :(o,1,6,2,0,3), Hz: (00,1,6,2,0,5), Hj: (00,1,6,2,0,3),
D; : (2,6,00,0,1,4), D, :(1,0,00,6,2,4), Ry : (5,1,3,0,00,2),
Rz:(5,1,3,0,00,2).

v=9 X=29, mod 9.
Hy : (7,4,0,1,3,5), Hz:(7,4,0,1,3,2), Hs:(7,4,0,1,3,2),
D;:(2,7,3,0,1,8), D;:(2,7,3,0,1,5), R, :(8,4,1,0,2,7),
Rz:(8,4,1,0,2,7).

v = 16, 17 The designs can be obtained by Lemma 1.1 and Lemma 1.3(2).

u

Lemma 4.2 There exists a D3-GD(v) for v € {9,16}.
Proof. ¥=9:(2,7,3,0,1,5) mod 9.
v =16 : by Lemma 1.1 and Lemma 1.3(2). [ |

Lemma 4.3 There exists a D3-I1D,(8 + 16, 16).

Proof. Take point set Zg x Z3. Denote the element (x, ) of the set Zg x Z3

by Zi. (40’ 02, 59, 01, 60, 62) mod (81 "');
(40, 02, 3p, 01, 1o, 41) + 80 mod (8’ _): 0<s< 6;
(10)22’401 21y20)00)v (20,32,50’31)30$ 10)1 (30742:60a41140720)a
(40’52:70151750330)1 (50762a00:61760s40)’ (60a72) 1017la70102)1
(70,02120101700:31), (50’02’00)011 60$30)1 (609 12,10,1;, 70)01)’
(70a22a20a21700101)7 (00132:30131110301)’ (10942a40141y20’52)a
(20’52350’51,3&10)» (30362760a61»40’20)y (40)72)70$71!50,20)1
(40, 12,30, 11,20, 10), (50,22,40,21,30,10), (60,32, 50,31,40,20),
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(70142:60741,50’30)1 (00’52370151160330), (10’62700761:70,50):
(20, 72,10, 71, 00,60), (30,72,20,71,00,02), (0o,12,30,11,10,02). W

Lemma 4.4 There ezists no D3-GDy(8).
Proof. Suppose there exists a D3-GD3(8) = (X, B), where |X|=8, |B|=7.
For each z € X, let z be at a position of d;-degree in the ith block (d; =0

means that z doesn’t appear in the ith block), then E d; = 14. Let

a=|{d:di=31<i<7 b=di:d = 11<z<7}l,then
3a + b = 14, which implies z must appear at pendant vertex at least twice.
So, z running over X, the pendants will be occupied 2 x 8 = 16 times,
which is impossible for the degree-type 113° of D3. - [ |

Theorem A For graph G € {H;,D;,R;j : 1 <i <3, 1< j <2}, there
exists a G-GDy(v) <= v =0, 1 (mod 8) and v > 8, except - for D3—GD2(8)
Proof. From the following table, the existence of G-GDq(v) for v =
0,1 (mod 8) can be obtained with the exception D3-GD>(8), where 1 <
i<3and 1<j<2

Graph G Hi, Dj, Rj, D3
G-GDz(v) v=_8,9,16,17 v=9,16,v# 8
(Lemma 4.1) (Lemma 4.2,4.4)
G-I1D;(—,-) (8+16,16) (Lemma 4.3)
G-HD:(—) | 89 :q=3,4,5 @ :t>1
(Lemma 3.3) (Lemma 3.5)
Conclusion by Lemma 2.1 by Lemma 2.3
[ ]
5 A=4

In this section, by (), the scope of order v for the existence of G-GD4(v)
is v=0,1 (mod 4) and v > 8. By the known G-designs, holey designs and
recursive constructions in §2 — §4, it is enough to construct a few GDs and
IDs with index 4 for some small orders.

The proofs of the following three lemmas appear in Appendix I, which
is published in our website: http://qdkang.hebtu.edu.cn (online).

Lemma 5.1 For graph G € {H1,Hs, D1, D3, Ry, Ry}, there exists a G-
ID2(8 + w,w). Further there exists a G-IDy(8 + w,w) for w = 4,5, too.
Lemma 5.2 For graph G € {Hj, D,}, there exists a G-ID4(8 + w,w) for
w=4,5.

Lemma 5.3 For graph G € {H;,D;, R; :

1< i< 2}: there
ezist G-GDy4(v) for v € {12,13,20,21, 52, 53, 68, 6!

<3,1%<
9} and D3-GDy(8).

3,1
a
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Theorem B For graph G € {H;,D;,R; : 1 <1 < 3,1 < j < 2}, there
exists a G-GDy(v) < v=0,1 (mod 4) and v > 8.

Proof. From the following table, the existence of G-GDy(v) for v =
4,5 (mod 8) can be obtained, where 1 <1<3, 1<j<2and w=4,5.

Graph G H.' N D,', Rj
G-GD4(8m + w) m=1,2,6,8
(Lemma 5.3)
G-1D4s(8r +w,w) r =1 (Lemma 5.1,5.2)
G-HDz(—) = G-HD4(-) (89):¢=3,4,5
(Lemma 3.3)
Conclusion by Lemma 2.4

Furthermore, by Theorem A, the existence spectrum for G-GD4(v) will be
v = 0,1 (mod 4) and v > 8, where the unique exception in Theorem A:
D3-GD3(8) does not exist, but D3-GDy(8) exists (see Lemma 5.3). [ ]

6 A=38

Lemma 6.0 Let G be a simple graph, p,q,7,, 8,a,) be positive integers,
and a > b > 0,a # 2,6. If there exist a G-HD)(p'q'r'a') and a G-
HDIA(plqlrlﬂl), then there erists a G-HD)((ap)!(aq)(ar)*((a — b +
b))

Proof. It is well known to exist a 4GDD(a?) for a # 2,6. Weight the ele-
ments of the 4-GDD(a?) as follows: Weight every element of three groups
among the 4GDD(a?) by p,q and r, respectively. For the rest group of the
4-GDD(a*), each of b elements is weighed by 3, other elements are weighed
by a. Then there exists a G-HDj((ap)'(ag)'(ar)*((a — b)a + b3)!) from
the known HDs. [ ]

By (*), the scope of order v for the existence of G-GDg(v) is any v > 6.

6.1 Graphs Hi,Dj,Rj, 15%S3, 1Sj$2

Theorem 6.1 If there exist a G-GDg(u) for u =0,1 (mod 4) and u > 8,
a G-HDg(231'), a G-HDg(2%), a G-HDg(2%3') and a G-GDg(m) form €
{6,7,10,11,14,15,18,19, 22,23, 31, 35, 38, 46, 47,50,54}, then there ezists
a G-GDg(v) for v=2,3 (mod 4) and v > 6.

Proof. Let v =16t + s, where s € {4i +2,4i+3:i € Z;} and t > 0 (if
8>6)ort > 1 (if s < 6). First, taking p = ¢ = r = 2 and suitable o, 5, a, b,
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and using Lemma 6.0, we have the following table, v = 6a + (e — b)a + b8.

a | p a b i known HDs obtained HDg v

1[3 2t t4+1 | t#£1,3 [ 2%17,2%37 (4t)%(4t + 2)T 16¢ 4 2
1]3 2t t+3 | t>4 2°1°,2°3% (4t)° (4t + 6)° 16t + 6
2 13 ]2+1 2 t>1 24,2°3! (4t +2)°(dt+4)" | 16t +10
1[2] 242 2¢ t#0,2 2°1%, 2% (4t +4)°(4t+2)" | 16t + 14
1 [3]2t4+1]¢t—-2] ¢t>2 2°1%,2°3% (4t +2)°(4t—-3)" | 16t+3
1 [3]2t+1 t t>0 2°1%,2°3 (4t +2)5(4t+1)' | 16t+7
1 3 [2t+1|¢t+2] ¢>1 2°1%,2°37 (4t +2)°(4t +5)" | 16t + 11
1|3 ]|2+3]|¢t-3 t>3 2°1%,2°3% (4t 4 6)°(4t — 3)* | 16t + 15

Here, the conditions for ¢ guarantee the existence of 4-GDD(a*) and a >
b > 0. As well, the numbers listed in the last column are just all orders
v = 16t + s above. By Lemma 1.4(2), in order to obtain these G-GDg(v)
for v = w3nl, it is enough to exist G-GDg(w) and G-GDg(n) for m,n =
0,1,2 (mod 4). From the known conditions, there exists a G-GDg(u) for
any v = 0,1 (mod 4), v > 8. Therefore, the following recursions are

obtained:
([ G-GDg(16t +2) for t # 1,3

G-GDs(16(t — 1) +6) for t > 5
G-GDg(16t +10) fort > 1
G-GDg(16t + 14) for t # 0,2
G-GDg(16t + 3) for t > 3 ’
G-GDg(16t+7) fort > 2
G-GDg(16t + 11) for £t > 1

| G-GDg(16(t — 1) +15) for t > 4

where some conditions for ¢ are reduced since u > 8 in G-GDg(u). It is easy
to see that, in order to obtain all G-GDg(v) for the orders v = 2,3 (mod 4),
we need to construct the following G-GDg(v):

v=18, 50; 6, 22, 38, 54; 10; 14, 46; 19, 35; 7, 23; 11; 15, 31, 47.
This completes the proof. n

G-GDg(4t +2) = ¢

The proofs of the following two lemmas appear in Appendix I, which is
published in our website: http://qdkang.hebtu.edu.cn (online).
Lemma 6.2 For graph G € {H;,D;,R; : 1 <i <3, 1< j <2}, there
exist a G-HDg(2%1'), a G-HDg(2%3') and a G-HDg(24).
Lemma 6.3 For graph G € {H;,D;,R; : 1 <i<3, 1< j <2}, there
exists a G-GDg(v) forv € {6,7,10,11,14,15,18, 19, 22, 23, 31, 35, 38, 46, 47,
50, 54}.

6.2 Graph D;

Lemma 6.4 There ezists a D3-IDg(8t + w,w) for t=1,2 and w=2,3,6,7.
Proof. We will give a detailed proof in Appendix I, which is published in
our website: http://qdkang.hebtu.edu.cn (online). [ |
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Lemma 6.5 There exists a D3-GDg(v) for v=7,10,11, 14,15, 18,19, 22, 23.
Proof. X=2Z,_, | J{z} for even v, mod (v — 1); X=2, for odd v, mod v.
v="7 (3,2,5,0,1,4),(5,3,4,0,2,1) x 2.
v=10(4,2,5,0,1,3),(4,2,5,0,1,z) x 2, (1,3,5,0,2,2) x 2.
v=11 (6,3,5,0,2,4),(6,3,5,0,2,8), (4,5,8,0,1,7), (6,3,5,0,2,1) x 2.
v=14(54,8,0,2,11),(5,4,8,0,2,2),(0,1,5,4, z,2), (7,3,6,0,2,z) x 4.
v=15(7,3,6,0,2,13),(7,3,6,0,2,4),(7,3,6,0,2,9),(7,3,6,0, 2, 10),
(7,3,6,0,2,12),(7,3,6,0,2,5),(7,3,6,0,2,1).
v=18(z,4,9,3,0,2), (z,2,9,1,0,16), (6,3,8,0,2,1)x5, (6,3,8,0,2, ) x2.
v=19 (9,4,13,3,0,6), (9,2,11,1,0,4),(6,3,8,0,2,1) x 5,
(6,3,8,0,2,18) x 2.
v=22 (4,8,6,0,2,12),(4,8,6,0,2,10), (6,8,4,0,2,10), (10,2,5,0,9, z) x 8.
v =23 by D3-I D3(16 +17, 7) and D3-GD3(7). |

Lemma 6.6 There ezists no D3-GDx(6) for A = 8 (mod 16).

Proof. Let A = 1648, t > 0. Suppose there exists a D3-GDy(6)=(X, B),

where |X| = 6, and |B| = 15(2t + 1). It is easy to see that each z € X

should appear in each block. The degree-type of Dj is 3511. Let = be at a
15(2¢+1)

position of d;-degree in the ith block, then Y~ d; = 40(2t + 1), where

di € {1,3}). Let a=|{d; : di = 3,1 < i < 15(2¢ + 1)}, b=|{d; : d&; =1,
1 <4 <15(2t + 1)}{, then we have

a+b=15(2t+1)
3a+b=40(2t+1)
This is a contradictory equation. [ ]

= 2a=25(2t+1).

Theorem C For graph G € {H;,D;,R; : 1 < i < 3,1 < j < 2}, there
exists a G-GDg(v) for v > 6, except for (G,v) = (D3, 6).

Proof. From the following three tables, the existence of G-GDg(v) for
v = 2,3 (mod 4) can be gotten, with the exception D3-GDjs(6), where
1<i<3,1<j<2 w=23,6,T.

Graph G Hi, Dj, Rj
G-GDg(4m + 2) m € {1,2,3,4,5,9,11,12,13}
G-GDg(4n+3) | n€{1,2,3,4,5,7,8,11} (Lemma 6.3)
G-HDs(—) (2°3%), (2%), (2°1") (Lemma 6.2)
Conclusion by Theorem 6.1
Graph G Dy
G-GDs(v) v =17,10,11,14,15,18,19,22,23 (Lemma 6.5)
G-IDg(8r + w,w) r=1,2 (Lemma 6.4)
Conclusion by Lemma 2.2, 6.6
Furthermore, by Theorem B, the conclusion follows. [ ]
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7 Designs for some small orders

Lemma 7.1 There exists a D3-GD)\(8) <= \ > 2, 2|A.
Proof. The necessity follows from (*) in §1 and Lemma 4.4. On the other
hand, we know that there exists a D3-GDy4(8) by Lemma 5.3. Also, we
have D3-GDg(8) on set Z7 U {z} :

(4,6,7,0,2,3), (6,4,z,0,3,1), (6,2,1,0,5,3) mod 7.
Furthermore, for any A > 2 and 2|\, denote A = 4.2 (A = 0 mod 4) or
A=4. % + 6 (A =2 mod 4). So, the conditions are sufficient. [ ]

Lemma 7.2 There ezists a D3-GD)(6) <> 16|\.

Proof. The necessity follows from (*) in §1 and lemma 6.6. On the other
hand, for A = 16¢, ¢ > 1, we have the following constructions on Zs U {z}:
D3-GDy6(6) : (2,3,2,0,1,4) x 4, (4,1,2,0,2,3), (1,3,0,2,4,z) mod 5.
So, the condition is sufficient. a

8 Conclusion

Proof of Theorem 1.2:
Summarizing Lemma 1.1, Theorems A, B, C and Lemmas 7.1-7.2, we obtain
the conclusions. [ ]
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