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Abstract

Let G be a simple and connected graph of order p > 2. A proper
k-total-coloring of a graph G is a mapping f from V(G)|J E(G) into
{1,2,--- ,k} such that every two adjacent or incident elements of
V(G)J E(G) are assigned different colors. Let Cy(u) = f(u) U{f(uwv) |
uv € E(G)} be the neighbor color-set of u, if Cy{w) # Cy(v) for any
two vertices u and v of V(G), we say f a vertex-distinguishing proper
k-total-coloring of G, or a k-V DT -coloring of G for short. The min-’
imal number of all over k-V DT-colorings of G is denoted by xu:(G),
and it is called the V DTC chromatic number of G. For some special
families of the complete graph K, , complete bipartite graph K »,
path P,. and circle C,. etc., we get their V.DT'C chromatic numbers
and propose a conjecture in this article.

Keywords proper edge coloring, vertex-distinguishing, proper total
coloring, chromatic number
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1. INTRODUCTION

A proper edge-coloring of G is called vertex-distinguishing (see [1],[2],[4]
and (7)) if for any two distinct vertices u and v of G the set of colors as-
signed to the edges incident to u differs from the set of colors assigned to
the edges incident to v. The minimal number of colors required for a vertex-
distinguishing proper edge-coloring of G is called the vertex-distinguishing
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proper edge-coloring chromatic number of G (or observability), and is de-
noted by xL(G).

All the graph mentioned in this paper are simple and connected. Let
0(G) and A(G) denote the minimum and maximum degree of G respec-
tively. Let ng = n4(G) denote the number of vertices of degree d of G
with 8(G) < d < A(G). 1t is clear that (X-{&)) > n, for all d with
0(G) < d < A(G). The following conjecture is given in (4] .

Conjecture 1.1 Let G be a graph and let k be the minimum integer
such that (%) > ny for all d such that §(G) < d < A(G), Then x4(G) = k
ork+1.

In [9], the adjacent-vertex-distinguishing proper edge-coloring of G is
proposed. In [10],Hamed H. proved A + 300 is a bound on the adjacent ver-
tex distinguishing edge chromatic number.Let f be a proper edge-coloring
of G from E(G) into {1,2,---,k} and let C,(u) = {f(uv) | wv € E(G)} be
the incident color-set of u, 1f Cq(u) # Cq(v) for any two adjacent vertices
u and v of V(G), then the edge-coloring f is called an adjacent-vertex-
distinguishing proper k-edge-coloring of G, or a k-AV D E-coloring of G for
short. The minimal number of such k for all k-AV DE-colorings of G is
called the AVDEC chromatic number of G, and it is denoted by x/,(G).
The following conjecture is proposed by Zhang et al. in (9].

Conjecture 2. Let G be a connected graph of order not less than three,
and G be not the circle Cs of the length being 5, then A(G) < x5,(G) <
AG) + 2.

In [11}, D(B)-vertex-distinguishing proper edge-coloring is proposed.
Let G(V,E) be a connect graph with order at least 3, k, 3 are positive
integers and f is a mapping from E(G) to {1,2,--- ,k}. For any u € V(G),
the set {f(w)luv € E(G),v € V(G)} is denoted by C(u). If (1) for
any wv,vw € E(G),u # w, we have f(uv) # f(vw); (2) for any u,v €
V{(G),0 < d(u,v) < 8, we have C(u) # C(v), then f is called a k-D(8)-
vertex-distinguishing proper edge-coloring of graph G(k-D(8)-VDPEC of G
in brief) and the number x’g.4,¢(G) = min{k | G has a k-D(3)-VDPEC} is

called the k- D(3)-vertex-distinguishing edge-chromatic number of G, where
d(u,v) denotes the distance between © and v in G. The following conjec-
ture is proposed by Zhang et al. in [11].

Conjecture 3. For simple connected graph G with |V(G)| > 3. Sup-

pose n; denote the maximum number of vertices with degree i and the
distance of every such two vertices are no more than §. Let pg(G) =
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min{8|(}) > n;,8(G) < i < A(G)}. Then for § > 2, we have u,(G) <
X,ﬁ-vd(G) S l"‘/i (G) +1.

Definition 1. A proper k-total-coloring of G is a mapping f from
V(G) U E(G) to {1,2,--- ,k} such that any two adjacent or incident ele-
ments of V(G) U E(G) are assigned different. colors. Let Cy(u) = f(u) U
{f(uv)|uv € E(G)} be the neighbor color set of u, if Cy(u) # Cy(v) for any
two adjacent vertices v and v of V(G), we say that f is a adjacent-vertex-
distinguishing proper k-total-coloring of G, or a k-AVDTC of G for short.
The minimal number such that G has k-AVDTC is denoted by x.:(G), and
it is called adjacent-vertex-distinguishing total chromatic number of G.

Conjecture 418, Let G be a connected graph of order n (> 2), then
Xat(G) < A(G) +3.

We have proved that the Conjecture 4 is true for some particular fami-
lies of cycles, complete graphs, complete bipartite graphs, fans, wheels and
trees in [7] and obtained their adjacent-vertex-distinguishing total chro-
matic numbers.

It’s interesting that x,(Cs) = x,,(Cs) = 5 and x:(Cs) = 4. In Defini-
tion 1, we get rid of the restrictive condition “adjacent”, so a new definition
is provided in the following Definition 2.

Definition 2. In the definition 1, if Cy(u) # Cy(v) for any two dis-
tinct vertices u and v of V(G), then f is called a k&-VDTC of G. We call
that Cy(u) = C \ Cy(u) is the complement color set of u (notice that
Cy(u) # Cy(v) if and only if Cp(u) # C;(v)). The minimal number
such that G has a k-VDTC is denoted by x.:(G), and it is called vertex-
distinguishing total chromatic number of G.

Let G and H are two disjoint simple graphs, the join graph GV H of both
G and H has V(GVH) = V(G)UV(H) and E(GVH) = E(G)VE(H)U{uv |
v € V(Q),ve V(H)}.

In this article, we will determine the vertex-distinguishing total chro-
matic numbers for complete graph K,, complete bipartite graph K, .,
wheel W,,, fan F,,, double star S,,, the join graph P, V P, the join graph
P, v C,, the join graph C,, vV C,, the connected graph with A(G) = 2 and
the 2-order n-sperate tree. The other terminologies and marks refer to [5]
and [6).

2. MAIN RESULTS
We will use a number k7(G) = min{n|(,},) > nq,8(G) < d < A(G)} in
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the following discussion. A particular instance, however, is that Xot(Ky) =
Xas(K=) according to Theorem 2.2 in [8], so we have the result below.

THEOREM 1 Let K, be a complete graph of order n (> 3), then
Xvt(Kn) = n+1 for n = 0 (mod 2); and xue(K,) = n+2 forn = 1 (mod 2).

THEOREM 2 Let K, be a star of order n + 1( n > 2), then
Xvt(K1,n) =4 when n = 2; and xyt(K1,,) =n+ 1 when n > 3.

Proof. When n = 2, kr(K)2) = 3, 50 xut(K1,2) > 4. It is easy to find
a 4-V DT C-coloring of Kj,2. The detail of the proof is omitted here.

When n > 3, kr(K)1,n) = n+1, so it is natural that xy. (K1) > n+1.
A (n+1)-VDTC-coloring f can be given as this: Let vy denote the center
of K1,» and let vy, vs,- - , v, denote n vertices of degree one of K; ,. We
set f(vg) =0; f(vi) =iforl <i<m; flvoy;) =i+1lforl <i<n-1;and
f(voun) = 1. It is obviously that f is a (n + 1)-V DT C-coloring of K ,,
the proof is completed. B

THEOREM 3 For m > n > 2, then Xy (Km,) =m+2.

Proof. Since kr(Km,n) = m+2form >n > 2, 50 xpt(Kinn) >
m + 2. Now, we prove that K,,, has a (m + 2)-VDTC-coloring. Let
V(Kmmn) = {u1,u2, -+ ,Um;v1,v2, -+ ,vn} be the vertex set of G and
E(Kmas) = {uiv; | 1 <i < m;1 < j < n} be the edge set of G, we
directly make a coloring f as this: f(u;) =ifor 1 <i<m; f(v;)=m+2
for1 <j < mn and f(uiv;) =i+ jmod (m+1)for 1 <i < m and
1<j<n

It is not difficult to verify that f is a (m + 2)-V DT C-coloring of K, n,
the proof has been finished. ®

THEOREM 4 For n > 2, then xu:(K, ) = 4 when n = 2; and
Xvt(Knn) =n+3 whenn > 3.

Proof. Since kr(Ksz2) = 4 for n = 2, it is easy to get a 4-VDTC-
coloring of K32 such that xu:(K2,2) = 4. From kr(K,,) = n+ 3 when
n > 3, so there exists that xu:(K, ) = n+ 3. Next we only prove that
Xvt(Knn) < n+ 3. Using labelling directly, a (n + 3)-V DTC-coloring f of
K, », is as follows.

Let V(Kn,n) = {’U.l,‘ll,g, U3V, V2,00 svn}a E(Kn,n) = {uivj I 1=
1,2,---,n;5 = 1,2,--- ,n} and let C = {1,2,--- ,n+1,0,n + 3}. We
set that f(u;) = i and f(v;) = n+3for 1 < i < n; and f(uv;) =
i+j (mod(n+2) for 1 <i,j < n From Definition 2, there are
the color complement sets C(u1) = C \ Cs(u;) = {0,n + 3}; C(u:) =
C\Cy(u;) = {i —1,n+ 3} with 2 < i < n; C(v;) = C\ Cy(v) = {1,0};
and C(v;) = C \ Cy(v;) = {j — 1,7} with 2 < j < n. It shows that f is
really a (n + 3)-V.DTC-coloring of K, n, as desired. &
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THEOREM 5 Let W, be a wheel of order n + 1, then x,(W;) =5
when n = 3 and x,:(W,,) =n+ 1 when n > 4.

Proof. When n = 3, W,, = K}, from the Theorem 1 the result is right.
From kr(W,,) = n+ 1 when n > 4, s0 xut(W,) > n + 1. Now, we come to
prove x,:(W,) < n+ 1 by giving a (n + 1)-VDTC-coloring of W,,.

When n=4, it is easy to get a 5-V DT C-coloring of W,.

When n > 5, let the vertex set V(W,) = {vo,v1,v2, -+ ,v,} and the
edge set

E(VV,,) = {’l)[)vi | 1<i< n} U{viw.}.] | 1<i<n—- 1} U{vnvl}.

We build a coloring f as this: f(v) =n+1; f(v;)) =iforl <i<my
flwv)=i-1lfor2<i<n-1; flyvip) =i+2for1 <i<n-1;
and f(vov1) = n, f(Vn-1v) = 1, f(vyv1) = 2. Tt is obviously that f is a
(n + 1)-V DT C-coloring of W,,, so the result has been proved. =

THEOREM 6 Let F,, be a fan of order n+ 1, then x,;(F,,) = 5 when
n=3and xu(Fn)=n+1whenn > 4.

Proof. For the fan Fy, so F5» = K3, it is proved in Theorem 1. When
n = 3, kp(F3) = 5, and it is obviously to get a 5-V DTC-coloring of Fj.
When n > 4, there is kr(F,,) = n+1. Now it only needs to delete the color
of the edge v,v; and the edge v, v; of W, in the proof of Theorem 5, and
then we get a (n + 1)-V.DTC-coloring of F,,. R

For a graph G = (V, E), if V(G) = {uo,u1, -+ ,un;v0,v1,-** , v, } and
E(G) = {uoui,1 < i < n}U{vovi,1 < i < n}U{uovo}, we call G as a

regular double star of order 2(n + 1), especially denote it by Sa,,.

THEOREM 7 Let S, be a regular double star on 2(n + 1) vertices,
then th(S2n) =n+3.

Proof. When n = 1, it is obvious. There is xy:(S2) > n + 3 from
kr(S2n) = n+ 3. When n > 2, we give a (n + 3)-V DT C-coloring f of S2,
to verify xu¢(San) < n+3. The detail is such as: f(up) =n+1, f(un-1) =
n+2, f(un) = n+3 and f(u;) =i+2for1 <i < n-2; f(vo) = n+3, f(v;) =
i+lforl <i < n;and f(upvo) = n+2, f(uou;) = f(vovs) =iforl <i<n.
Hence, f obviously is a (n+ 3)-V DT'C-coloring of S,,,. The proof has been
finished. ®

THEOREM 8 For n > 3, then xv:(Pn V P,) = k(P V P,).

Proof. It is easy to prove the result when 2 < n < 8 Forn > 9,
we set a path P, = ujus---u, and another path P, = v vs---v,, and
then make a proper total coloring f as this: (1) f(w) =i (1 < ¢ € n);
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(2) viug, uaug, -+ ,upn—_1uy, are colored in turn by colors n + 4,n + 5; (3)
Fuvy) = i+ (mod (n+3)), (1 < i,j < n); (4) f(vr) = 0; (5) the edges
Ug,v3,- - ,Up, are assigned alternately with colors n + 5 and n + 4; and
(6) f(vwit1) =1, (1 <i<n-1). Theset C = {1,2,---,n,n+1,n+
2,0,n+4,n + 5} just collects all of the colors used above. About the color
complement set C(u) of every vertex u of P, V P,, we have

(a1) C(ur) = {0,n +2,n + 4};

(a2) C(uy) = {n = 1,n = 2,n+ 4}(n = 0 (mod 2)) or C(u,) = {n —
L,n-2,n+5}n =1 (mod 2));

(a3) C(wi) = {i—2,i -1}, 2<i<n-1;

(b1) C(v;) = {n+2,n,n+5} and C(v,) = {n — 2,n,n +4};

(b2) When n = 0 (mod 2), there are C(v;) = {i — 2,n +4} for 2 < i <
n—-1andi=0 (mod2),and C(v;) ={i —2,n+5} for 3<i<n-2and
i =1 (mod 2); and

(b3) When n = 1 (mod 2), there are C(v;) = {i —2,n+4} for 2<i <
n-2andi=0(mod?2),and C(v;) = {i -2,n+5} for3<i<n-1and
i =1 (mod 2).

Therefor, the coloring f is a (n + 5)-V DT C-coloring of P, VF,. 1

THEOREM 9 For n > 3, then xu (P, VCy) = ki (P, V Cy).

Proof. When 3 < n < 6, it is easy to prove the result. For n > 7, let
P, = ujus - - - u, be the path of length n, C,, = v1ve - - v,v1 be the circle
of length n and C = {1,2,--- ,n,n+ 1,1+ 2,0,n + 4,n + 5} be the color
set. We make a mapping f from V(P, vV C,) U E(P, V C,,) into C as this:
(1) f(w) =1 (1 < i < n); (2) Coloring the edges uiug, uous, -+ , Upn—1Un
by colors n+5,n+4 in turn; (3) Coloring the edges viva, vauz, -+ , Un_1U,
by colors 1,2,--- ,n — 1 in order; (4} f(v1) = 0; (5) f(vav1) =n+5(n =
1 (mod 2)), f(vy,v1) = n+ 4(n = 0 (mod 2)); (6) Coloring the vertices
V2,3, -+ , Uy by colors n+5,n +4 in turn; (7) f(u;v;) =i+ 7 (mod (n +
3) (1<i,j<n).

We work out of all complement color sets on V(P,, V C,) as follows.

(al) C(uy) = {n +2,0,n +4};

(a2) C(uy) = {n - 2,n - 1,n+5}(n
2,n—1,n+4}(n = 0 (mod 2));

(a3) C(wi) ={i - 2,i—-1}, (2<i<n-1)

(b1) C(vy) = {n+2,n+ 5} and C(v,) = {n — 2,n};

(b2) When n = 1 (mod 2), there are C(v;) = {i —2,n+4}(2<i<n—
1( = 0 (mod 2))) and C(v;) = {i = 2,n+5}3 < i < n—2(i =1 (mod 2)));

(b3) When n = 0 (mod 2), there are C(v;) = {i-2,n+4}(2<i<n-—
2(i = 0 (mod 2))) and C(v;) = {i—2,n+4}(3 < i < n—1(n =1 (mod 2))).

Hence, it is easy to see that f is a (n + 5)- VDTC-colormg of P, Vv C,.
‘We have completed the proof. &

1 (mod 2)) or C(u,) = {n -
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THEOREM 10 For n > 3,there is that x,;(Cn V Cp) = kt(C, V C).

Proof. When n = 3, there is C3 V C3 = Kg, and then x.,:.(Ks) = 7.
When n = 4, it is similar to get the result. For n > 5, let ujus - - - u,u; and
vV - - - v, v; denote two cycles respectively, and let C = {1,2,--- ,n,n +
1,74+ 2,0,n + 4,n + 5} be the color set we will use. A mapping f from
V(C,V CrLYUE(C, V(C,) into C is given as this: (1) f(u;) =i (1 <i < n);
(2) Coloring the edges ujus, ugus, -+ , Up—1Un, Uyu; by colors n + 5,n+4
in turn; (3) f(unu1) = 0; (4) Coloring the edges vivo, v2v3, - ,Un—1Vn
by colors 1,2,.-- ,n — 1 in order; (5) f(v1) = 5; (6) Coloring the vertices
v2,v3,- - ,¥, by colors n + 5,7 + 4 in turn; (7) f(v,v) = n+5(n =
1 (mod 2)), f(vav1) = n+4(n = 0 (mod 2)); (8) f(u;v;) =i+j (mod (n+
3)) (1 £14,j < n). We can compute the complement color sets as follows.

(a1) C(w1) = {n+2,n +4};

(a2) C(uy) = {n—2,n+5}(n = 1 (mod 2)), C(u,) = {n-2,n+4}(n =
0 (mod 2));

(a3) C(us) = {i-2,i -1}, 2<i<n-1)

(b1) C(v1) = {n+2,n+ 5} and C(v,) = {n — 2,0};

(b2) When n = 1 (mod 2), there are C(v;) = {i —2,n+4}(2<i<n-—
1(i = 0 (mod 2))) and C(v;) = {i-2,n+5}(3 < i < n—2(: = 1 (mod 2)));
and

(b3) When n = 0 (mod 2), there are C(v;) = {i —2,n+4}(2<i<n-—
2(i = 0 (mod 2))) and C(v;) = {i—-2,n+4}(3 < i < n—1(n =1 (mod 2))).

Thus, the coloring f is a (n + 5)-VDTC of C,, VC,,. 1

3. VERTEX DISTINGUISHING TOTAL
CHROMATIC NUMBERS OF PATH AND CYCLE

The combinations of choosing three distinct numbers from {1,2,--- ,n}
form a subset, denoted by A3, and it is called the combination of three
numbers, or 3-combination for short. Every element of A3 is written as
the form of (a,bd,¢) where 1 < a < b < ¢ < n. We are able to arrange
the elements of A3 by a certain defined order which will be introduced as
follows.

For any two elements (¢1,t2,t3) and (I1,l2,l3) of A2, if to = Iy and
ts = l3 then we say that they are in the same team. Let (¢),%2,%3) and
(l1,12,13) be in the same team, we arrange (t;,%2,%3) before (l1,lz,13) if
and only if ¢; > ;. If (t1,%s,¢3) and (ly,ls,13) are not in the same team
and t3 # I3, then we arrange (t,%2,t3) before (l1,l2,1l3) if and only if
ts < ls; If (t1,t2,%3) and (l1,lo,13) are not in the same team and ¢3 = I3,
then we arrange (t,,%2,t3) before (ly,l2,13) if and only if ¢tz < l. Such
arrangement given above is called the coloring order of A3. Let {1, t2,3) be
before (I4,12,13), we say that (¢, ¢2,t3) is adjacent to ({1, l2,!3) if there is no
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another (si, sz, s3) such that (¢1,2,13) is before sy, s2,53) and (s1,82,53)
is before (l],lg, l3)

For example, we arrange the elements of A3 according to the definition
of the coloring order, the result is as: 123, 124, 234, 134, 125, 235, 135, 345,
245, 145, 126, 236, 136, 346, 246, 146, 456, 356, 256, 156.

LEMMA 1 For a 3-combination A3 in the coloring order, it may
change appropriately the order of numbers in every (a,b,c) of A3 such
that the new 3-combination sequence has the three properties below.

(1) If (tl,tz,tg) is adjacent to (l],lg, l3), then t3 = Iy;

(2) If (¢1,t2,t3) is adjacent to (Iy,02,13), then t5 # ly; and

(3) Let (a@1,a2,a3) be the first term and (b;,bs,b3) be the last one in
the new 3-combination sequence, then a; = 1 and b3 = 1.

Proof. For A3, there are (1,3,2),(2,1,4),(4,2,3) and (3,4,1). When
n =5, we have (1,3,2), (2,1,4), (4,2,3), (3,4,1), (1,5,2), (2,3,5), (5,1,3),
(3,4,5), (5,2,4) and (4,5,1). Suppose that the lemma is right for A3 _, (k >
6). We prove the lemma by the mathematical induction.

For the set {1,2,--- , k}, after arranging the elements of A} by the col-
oring order, we delete the latter (k — 2) teams (the 3-combination in these
teams are exactly contained number k), then exactly get the result of ar-
ranging the elements in A}_; by the coloring order. According to induce
assumption, by modifying the numbers in each 3-combination appropri-
ately, the lemma is right. We will prove the lemma is also right by adding
the latter (k — 2) teams, and the algorithm of 3-combination by adding the
latter (k — 2) teams is given as follows.

(1] Adding the first three teams as the forms below.

(11 k, 2)a (27 3, k)’ (k’ L, 3)’ (3’ 4, k)» (kr 2, 4)’ (4a L, k)

[2] Assuming the teams 1,2,3,---,l — 1 have been already added (I <
k — 3) after appropriately changing the order of numbers in 3-combination
such that the teams 1,2, 3,--- ,{—1 have the three properties. Now we add
the lth team.

If the last 3-combination in which the order is already arranged as the
end number . When [ is even, then adding 3-combination of the lth team
as: (L,I+1,k), (k,{-1,01+1), (1 +1,1-2,k),(k,1=3,01+1), (I+1,]l-
4,k),---, (I+1,2,k), (k,1,1+1); When ! is odd, then adding 3-combination
of the lth team as: (I, +1,k) (k,1-1,1+1), (I +1,1-2,k),(k,1-3,1+
1), 0+1,1-4,k),---, (k,2,1+1), 1+1,1,k).

If the last 3-combination in which the order is already arranged as the
end number k. When [ is even, then adding 3-combination of the ! team
as: (k,l,1+1), (I+1,1-1,k), (k,1-2,1+1), ({+1,1-3,k), (k,l-4,l+
1)---, (k,2,l+1), ({+1,1,k); When { is odd, then adding 3-combination
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of the | team as: (k,l,l+1), I+ 1,1 -1,k), (k1 -2,1+1),(l+1,01-
3,k), (k,i—-4,1+1),---, 1+1,2,k), (k,1,1+1).

[3] At last, adding the (k — 2)th team. The way is as the same as (2].
It only needs to change the last 3-combination (k,1,k — 1) to (k,k—1,1)
or (k—1,1,k) to (k- 1,k,1).

We have finished the proof. B

It is easy to see that xp(P1) = 1, xvut(P2) = 3, xue(P3) = 4. According
to Lemma 1, we obtain the following result immediately.

THEOREM 11 For a path P, of order m (> 4), if (1»51) <m-2<
(g)’ then X‘U!(Pnz) =n.

LEMMA 2 Let A3(n > 5) be a 3-combination number set and a
positive integer m satisfy that (";') < m < (}), there always exits m
3-combinations in A3 such that they may be arranged in the same line. In
this line, there are three properties as follows.

(1) If (tl,tg,ta) is adjacent to (ll, l2, l3), then t3 = Iy;

(2) If (¢1,12,t3) is adjacent to (l1,l2,13), then ¢35 # lp; and

(3) Let (ay,az,a3) be the first term and (by, b, b3) be the last one in
the line, then a; = 1 and b3 = 1.

Proof. When n = 5, then 4 < m < 10, and we have the following
cases.

When m = 5, (1,3,2)(2,1,4)(4,2,3)(3,1,4)(4,5,1);

) (3,1.4)
When m = 6, (1,3,2)(2,1,4)(4,2,3)(3,4,1)(1,2,5)(5,4,1);
When m = 7, (1,3,2)(2,1,4)(4,2,3)(3,4,1)(1,5,2)(2,3,5) (5,4,1);
) (3:4,1)
) (3.4,1)

When m = 8, (1,3,2)(2,1,4)(4,2,3)(3,4,1)(1,5,2)(2,5,3)(3,1,5)(5,4,1);

When m =9, (1,3,2)(2,1,4)(4,2,3)(3,4,1)(1,5,2)(2,5,3)(3,1,5)
(5,3,4)(4,5,1);

When m = 10, (1,3,2)(2,1,4)(4,2,3)(3,4,1)(1,5,2)(2,3,5)(5,1,3)
(3,4,5)(5,2,4)(4,5,1).

Let r = m — ("gl)and n > 6. According to the method in the proof
of Lemma 1, we can arrange the 3-combinations of A2_, by the coloring
order (the number in each 3-combination also has order), the new sequence
obtained is denoted by R. The last 3-combination in this sequence is
(n-2,n-1,1) or (n—1,n—2,1). Now adding r 3-combinations involving
n to R in A3, then we get another sequence R, of (*3') + 3-combinations
such that R, possesses the three properties of lemma.

When r = 1, if the last term of R is (n — 2,n — 1,1), then we modify

R+ {(1,n ~ 1,n)} as: changing the order of numbers in the last term
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(n-2,n-1,1) of R as (n—2,1,n — 1), and changing the order of numbers
in (1,7 —-1,7n) to (n — 1,n,1); If the last term of R is (n — 1,n —2,1), then
we modify R+ {(1,n — 2,n)} as this: changing the order of numbers of the
last term (n — 1,7 —2,1) in R to (n — 1,1,n — 2), and changing the order
of numbers of (1,n — 2,7n) as (n — 2,n,1), the new sequence obtained has
the three properties of lemma.

When r = 2, we modify R + {(1,2,n),(1,n — 1,n)} as: the order of
numbers of the last term in R keeps in unchanged; the order of numbers
of the 3-combination involving (1,2, n) keeps in unchanged; and the order
of numbers of the 3-combination involving (1,n — 1,n) is changed into
(n,n — 1,1). Hence, the new sequence obtained has the three properties of
lemma.

When r = 3, we modify R+{(1,2,n),(2,3,n),(1,n—1,n)} as: changing
the order of numbers of (1,2,n) to (1,n,2), the order of numbers of (2, 3,n)
is unchanged, the order of numbers of (1,n — 1,7n) is changed into (n,n —
1,1), the new sequence obtained has the three properties of lemma.

When r = 4, we modify R + {(1,2,7),(2,3,n),(1,3,n),(1,n—1,n)} as
this: changing the order of numbers of (1,2,n), (2,3,n), (1,3,n), (1,n -
1,n) into (1,n,2),(2,3,n), (1,n — 2,n), (n,n — 1,1) respectively.

When = > 5, according to the order of 3-combination, and the order
of numbers in each 3-combination which are pointed in Lemma 1, adding
(r — 1) 3-combinations they contain n in A2 to the end of R gradually.

If the last number of the (r —1)th 3-combination is n, then adding again
the 3-combination (n,n —1,1) at last position. The new sequence obtained
has the three properties of lemma.

If the last number of the (r — 1)th 3-combination has been added s
(s # n), and the (r—1)th 3-combination belongs to the (s—1)th team which
contained n in A3 (note that the number of 3-combinations contained n in
A3 is total 2(n—1)(n—2), and there are n—2 teams, according to the order
given from Lemma 1, the last number of the jth team in 3-combination is n
or j+1), and it is not the last 3-combination of the (s —1)th team, then we
add (s,n,1) at last, so the new sequence formed has the three properties
of lemma.

If the last number of the (r — 1)th 3-combination which is added is
s(s # n), and when the r — 1 3-combination belongs to the (s — 1)th team
contained n in A3, and it is the last term of the (s — 1)th team, then we
delete the last the (r — 1)th 3-combination, and adding two 3-combinations
(n,2,n —1) and (n — 1,7n,1) again, the new sequence formed has the three
properties of lemma.

Through the discussion above, the Lemma is proved. ®

THEOREM 12 Let C,, be a cycle of order m. If (”gl) <m<(3)
for n > 4, then x4:(Cm) =5 when n = 3 and x4 (Cy) = n when n > 4.
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Proof. When m = 3,it is easy to prove that x,:(Cn) = 5. When
m > 4, the result follows Lemma 2. B

VERTEX DISTINGUISHING TOTAL CHROMATIC
NUMBERS OF 2-ORDER n-SEPARATE TREE

The m-order n-separate tree T, ,, is a typical model of mathematics in
many areas of the computing, social, natural, and information science etc.
Ton,n is described as follows.

(1) V(Tl,") = {‘U} U {Uiz I 1<4 < n} and E(Tl.n) = {vvil I 1<4 <
n});

@) V(Tow) = V(Ti) U {visia | 1 2 <} and

i1=1
n

E(Ty,n) = E(Th,n) U {viyvisi, | 1 <d2 <l
il—"-‘l

(m) Let M =4,,i3,+-+ ,%m-1, we have
n
V(Tmn) = V(Tn-1n) U {viyizinsim | 1 < 4 < n} and
M=1

n
E(T;’ly7l) = E(Z‘;n—l’n) U {v‘ili2"'im‘2im—lvili?"im— 1im I 1 S i"" S n}'
M

It is clearly that T}, = Il{l'n = Spy Ting = P+, the VDTC chro-
matic numbers about them have already been given (see Theorem 2 and
Theorem 10). For m = 2, we have that k;(T2,) =n+3for 1 <n <4 and
ki(Tzn) = n+ [§] for n > 5 where [z] denotes the minimum integer no
less than z.

THEOREM 13 For a 2-order n-separate tree 15 5, xvt(T2,n) = K¢(Ton).

Proof. When n = 1, it follows Theorem 11. When n = 2, 3, it is easy to
give a (n+3)-V DT C-coloring of T3 ,,, 50 we omit the detail of proof. When
n=4,let C={1,2,---,6,0}, we directly give a total coloring f of T3, as
this: f(v) =1; f(vv;) =i+1fori=1,2,3,4; f(v;) =i+2fori=1,23,4;
flviv;) =i+ 7+ 2 (mod 7) for i, = 1,2,3,4; f(vy;) = 7+ 4 (mod 7)
for j =1,2,3,4; f(ve;) =5+ 6 (mod 7) for j =1,2,3,4; f(vs;) =7 +1
for j = 1,2,3; f(vaa) = 15 f(va1) = 4; f(vaz2) = 5; fvaz) = 3; fvae) = 4.
Therefore f is a 7-V DT'C-coloring of T3 4.

Forn > 5,let C = {1,2,--- ,n+ [§] — 1,0} be the color set, we set
gas: g(v) =Liglvy) =i+1lforl <i<m;g(v;)) =i+2forl <i<m
and g(vivi;) = i+ j + 2 (mod (n + [§])) for 1 < 4,5 < n. According
to (""'2[%]) > n%(n > 5)(the equality holds if and only if n = 6) and
n+ [%] colors on the edges v;v;; (1 < i,j < n), appropriately coloring v;;
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such that Cgy(vs,j,) # Cy(viyj,) when v;5, # vi,5,. And there are that
C (v,)—{z} 1 <i<n)and Cy(v) = {n+[3]}. Thus, gisa (n+[%])
VDTC-coloring of Tp,,. B

A BOUND ON THE VERTEX DISTINGUISHING
TOTAL CHROMATIC NUMBER

LEMMA3 For simple graph G without isolated edges and with at
most one isolated vertex,we have

X+(G) < [V(G)| + 1.
THEOREM 14 For simple graph G,we have
xt(G) < [V(G)] +2.

Proof When |V(G)| = 1,it is obviously true.

When |V(G)| = 2,let w & V(G),let G* denote G V {w}.It follows from
definition3 that G* is a connected graph with |[V(G*)| > 3.And it follows
from lemma3 that

xXs(G) S |V(GM)+1=|V(G)| +2.

Let f* be a |[V(G*)|+1-vertex distinguishing edge coloring of G*.Let f(v) =
[*(wv),v € V(G); f(uw) = f*(uwv),uv € E(G).Then f is a (|V(G)| + 2)-
vertex distinguishing total coloring of G.It follows that x ,.(G) < |V(G)|+2.

CONJECTURE AND OPEN PROBLEMS

Conjecture. Let G be a connected graph of order n (> 2), then
kr(G) < xut(G) < kr(G) + 1.

Open Problems.

(1)What type of G does have xy:(G) = kr(G) +1?

(2) Let Cyy(n) = {G | [V(G)| =1, xut(G) = k1(G)} and C}{ (n) = {G |
[V(G)| = n, xut(G) = kr(G) + 1}. Whether is it true for

)l _
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