$i\gamma(1)$ -perfect graphs with girth at least six *

Moo Young Sohn

Department of Applied Mathematics

Changwon National University, 641-773, Changwon, South Korea

Yuan Xudong †

Department of Mathematics Guangxi Normal University, 541004, Guilin, P.R.China

Abstract

Let k be a nonnegative integer, and let $\gamma(G)$, i(G) denote the domination number and the independent domination number of a graph G, respectively. The so-called $i\gamma(k)$ -perfect graphs consist of all such graphs G in which $i(H) - \gamma(H) \leq k$ hold for every induced subgraph H of G. This concept introduced by I. Zverovich in [5] generalizes the well-known domination perfect graphs. He conjectured that $i\gamma(k)$ -perfect graphs also have a finite forbidden induced subgraphs characterization as the case for domination perfect graphs. Recently, Dohmen, Rautenbach and Volkmann obtained such a characterization for all $i\gamma(1)$ -perfect forests. In this paper, we characterize the $i\gamma(1)$ -perfect graphs with girth at least six.

1 Introduction

All graphs considered in this paper are finite, undirected and without loops or multiple edges. If G is a graph, then V(G) and E(G) denote its vertex set and edge set, respectively. A set $D \subseteq V(G)$ is called a dominating set if every vertex of V(G) - D is adjacent to an element of D. The domination number $\gamma(G)$ is the minimum cardinality among all dominating sets of G. An independent set is a set of pairwise non-adjacent vertices of G. The independent domination number i(G) is the minimum cardinality among all independent dominating sets of G.

 $^{^{*}}$ This work was supported by Korea Research Foundation Grant(KRF-2003-002-C00038).

[†]He is partially supported by NNSF of China(Grant number: 10171022).

It is known that $\gamma(G) \leq i(G)$ (see [3]). Summer and Moore [4] define a graph G to be domination perfect if $\gamma(H) = i(H)$ for every induced subgraph H of G. Many papers have devoted to characterize such graphs. In 1995, I. Zverovich and V. Zverovich obtained a complete characterization of the domination perfect graphs by using the forbidden induced subgraphs. For detailed information the reader may refer to the paper [6].

I. Zverovich [5] generalized this concept by introducing the so-called $i\gamma(k)$ -perfect graphs for any nonnegative integer k. A graph G is said to be $i\gamma(k)$ -perfect if $i(H) - \gamma(H) \le k$ for every induced subgraph H of G. Note that an $i\gamma(0)$ -perfect graph is a domination perfect graph. He conjectured that for any positive integer k the $i\gamma(k)$ -perfect graphs can be characterized by a finite number of forbidden induced subgraphs, as in the case for domination perfect graphs. The first step toward this direction had been done by Dohmen, Rautenbach and Volkmann in [1], although they doubted the possibility of a complete characterization. In their paper, they presented a sufficient condition for a graph to be $i\gamma(1)$ -perfect, and they characterized all $i\gamma(1)$ -perfect forests. For this purpose, they defined four classes of graphs as follows.

Definition 1 For $1 \le i \le 4$, let H_i be the graphs as in Fig.1. \mathcal{H}_i are the graph classes by adding an arbitrary set of edges between pairs of vertices x, y such that x, y belong to different sets among the sets A, B, C, D.

Fig. 1.

Theorem 1 ([1], **Theorem 2.3**) If a graph G does not contain any graph in \mathcal{H}_i (i = 1, 2, 3, 4) as an induced subgraph, then G is $i\gamma(1)$ -perfect.

Theorem 2 ([1], Theorem 2.4) A forest T is $i\gamma(1)$ -perfect if and only if it does not contain one of the graphs H_1 , H_3 or H_4 as an induced subgraph.

In this paper, we consider graphs with girth at least six, where the girth of a graph G is the length of the shortest cycle if G contains a cycle, otherwise the girth of G is defined to be infinite. We will give a complete characterization for a graph with girth at least six to be $i\gamma(1)$ -perfect in similar way. In fact, the following result is proved.

Theorem 3 A graph G with girth at least six is $i\gamma(1)$ -perfect if and only if G does not contain one of $F_i(1 \le i \le 10)$ (see Fig. 2) as an induced subgraph.

Fig. 2.

We will prove Theorem 3 in the next section. Before that, we give some notations and state an useful lemma proved by Dohmen, Rautenbach and Volkmann. The set N(x) is the neighborhood of the vertex x, $N[x] := N(x) \cup \{x\}$ and d(x) = |N(x)| is the degree of x. For $X \subseteq V(G)$ let $N(X) := \bigcup_{x \in X} N(x)$ and $N[X] := \bigcup_{x \in X} N[x]$. For $x \in X \subset V(G)$, the private neighborhood P(x, X) of x with respect to X is defined as $P(x, X) := N[x] \setminus N[X \setminus \{x\}]$. The subgraph of G induced by G[X]. A set of edges is called independent if any two edges in this set share no common end. A graph that is not $i\gamma(k)$ -perfect is said to be $i\gamma(k)$ -imperfect, and a minimal $i\gamma(k)$ -imperfect graph is an $i\gamma(k)$ -imperfect graph in which all proper induced subgraphs are $i\gamma(k)$ -perfect.

Lemma 1 ([1], Lemma 2.1) For any nonnegative integer k, let G be a minimal $i\gamma(k)$ -imperfect graph and D a dominating set of G with $|D| = \gamma(G)$. Then, (i) G[D] contains no isolated vertex; (ii) For every $x \in D$ the private neighborhood P(x, D) satisfies $\gamma(G[P(x, D)]) \geq 2$. Especially, P(x, D) contains two non-adjacent vertices.

2 Proof of theorem 3

It is straightforward to verify that for each $1 \le i \le 10$, F_i is a minimal $i\gamma(1)$ -imperfect graph with girth at least six, which implies the 'only if' part.

In the below, we assume that G is a graph with girth at least six and G does not contain one of F_i $(1 \le i \le 10)$ as an induced subgraph. We come to show that G is $i\gamma(1)$ -perfect. By our assumption, we can obtain two simple facts.

- Fact 1. For any two adjacent vertices x, y of G, at least one of x, y has degree at most three.
- Fact 2. For a vertex $x \in V(G)$, N(x) is independent. If $d(x) \geq 5$, then at most one vertex in N(x) has degree at least three.

Since the girth of G is at least six, N(x) is independent. If G contains two adjacent vertices with degree at least four, then G contains an induced subgraph F_1 ; if G has a vertex x with degree at least five and N(x) contains two vertices with degree at least three, then G contains an induced subgraph F_2 . That implies Fact 1 and Fact 2.

For our purpose, we may assume that G is minimal $i\gamma(1)$ -imperfect. Then, $i(G) \geq \gamma(G) + 2$. We proceed to deduce a contradiction. Let D be a dominating set of G with $|D| = \gamma(G)$. By lemma 1, G[D] contains no isolated vertex, and for each vertex $x \in D$ the private neighborhood P(x,D) contains at least two vertices. If G[D] has a path $P = x_1x_2x_3x_4$, then both x_2, x_3 have degree at least four, contradicting to Fact 1. Thus, each path of G[D] contains at most three vertices. So, each component of G[D] is isomorphic to K_2 or $K_{1,k}(k \geq 2)$. Moreover, if there is one component which is isomorphic to $K_{1,k}(k \geq 3)$, then G contains a vertex with degree five and its neighborhood contains two vertices whose degrees are at least three, contradicting to Fact 2. Hence, each component of G[D] is isomorphic to K_2 or $K_{1,2}$.

In the following, let t denote the number of the components of G[D], and let $C \subset V(G) - D$ denote the set of the vertices which are adjacent to at least two vertices of D, and $P = V(G) - (D \cup C)$.

Definition 2 For $1 \le i \le 5$, let J_i be the graph as in Fig. 3.

Fig.3

For a component T of G[D], we call the subgraph induced by $T \cup (N(T) \cap P)$ as a **branch** of G. By Fact 1 and Fact 2, each branch of G is isomorphic to a graph J_i for some $1 \le i \le 5$. If a branch G is isomorphic to G for some G is isomorphic to G for some G is isomorphic to G has G branches, which are pairwise disjoint. We denote by G the set of the branches of G.

If G has only one branch, then G consists exactly of this branch, and we can easily choose an independent dominating set of G with $\gamma(G) + 1$ vertices, a contradiction. Hence, $t \geq 2$. Moreover, for any two distinct branches B_1, B_2 of G, there is at least one edge joining them. For otherwise, G has an induced subgraph F_3 , a contradiction.

Note that, by Fact 1 and Fact 2, for a branch B of type J_1 , each vertex $x \in V(B) \cap D$ has no neighbor in C; for a branch B of type $J_i (i \geq 3)$, the vertex $x \in V(B) \cap D$ whose private neighborhood P(x, D) contains exactly two vertices also has no neighbor in C; for a branch of type J_2 , at most one vertex of $V(B) \cap D$ may have neighbors in C. For convenience, we introduce more notation.

For a branch B of type J_1 , the vertex of $V(B) \cap D$ whose degree is 4 is called w-vertex, and the other two vertices in $V(B) \cap D$ are called u_1 -vertex and u_2 -vertex of B, respectively. Correspondingly, we call the neighborhood of the w-vertex in P as the W-part, the neighborhood of the u_i -vertex in P the U_i -part (i=1,2) of B, respectively. For a branch B of type $J_i (i \geq 3)$, the vertex in $V(B) \cap D$ whose degree is at least 4 and its neighborhood in P are called w-vertex and W-part of B, respectively. Another vertex in $V(B) \cap D$ and its neighborhood in P are called w-vertex and W-part of B, respectively. For a branch B of type J_2 , if $V(B) \cap D$ contain a vertex whose degree is at least 4, then we call this vertex and its private neighborhood in P as w-vertex and W-part, another vertex in $V(B) \cap D$ and its neighborhood in P as w-vertex and W-part of B, respectively. Otherwise, each vertex in $V(B) \cap D$ is called w-vertex, its private neighborhood in P is called W-part of B. We remark that the W-part of any branch and the U_i -part (i=1,2) of any branch of type J_1 contains exactly two vertices.

Assertion 1 For a branch B of type $J_i(i \ge 2)$ of G, each vertex $x \in V(G) - V(B)$ is adjacent to at most one vertex of B.

Proof It is clear by noting that each path in B contains at most four vertices and that G has girth at least six.

Assertion 2 For any two distinct branches B_1, B_2 of G, let X_1 be the W-part of B_1 and X_2 the W-part of B_2 , then there is at most one edge joining X_1 and X_2 .

Proof Let x_1, x_2 be w-vertices of B_1, B_2 which correspond to X_1, X_2 , respectively. If there are at least two edges joining X_1 and X_2 , then the girth condition implies that there are exactly two independent edges joining X_1, X_2 . Suppose that $z_1 \in X_1, z_2 \in X_2$ and z_1, z_2 are not adjacent. Let $D' = (D - \{x_1, x_2\}) \cup \{z_1, z_2\}$. Then, D' is a dominating set of G such that

 $|D'| = \gamma(G)$. Note that G[D'] contains isolated vertices z_1, z_2 , contradicting lemma 1.

Remark We can similarly deduce that, there is at most one edge joining the U_i -part (i = 1, 2) of a branch of type J_1 and the W-part of another branch, and for two distinct branches B_1, B_2 of type J_1 there is at most one edge joining the U_i -part (i = 1, 2) X_1 of B_1 and the U_i -part (i = 1, 2) X_2 of B_2 .

Let B be a branch of type $J_i (i \ge 2)$ of G, and X the W-part of B which corresponds to $x \in V(B) \cap D$, and y another vertex of $V(B) \cap D$. For any $B' \in \mathcal{B} - \{B\}$, we say that B' has the property (Q) with respect to (B,X), if it satisfies one of the following conditions (I) - (III).

- (I) If B' is of type J_2 and both vertices in $V(B') \cap D$ have degree 3, then there is one edge joining V(B') and X.
- (II) If B' is of type J_1 , then either there is one edge joining the W-part of B' and X, or there is one edge joining X and each U_i -part (i = 1, 2) of B'.
- (III) If B' is of type $J_i(i \geq 2)$ such that one vertex of $V(B') \cap D$ has degree at least 4, then let x', y' be a w-vertex and an u-vertex of B', respectively. Either (1) there is one edge joining the W-part of B' and X; or (2) there is one edge joining the U-part of B' and X when d(y') = 4 and $N(y) \cap N(y') \neq \emptyset$; or (3) there are two edges joining $N(y') \{x'\}$ and X when either d(y') = 4 and $N(y) \cap N(y') = \emptyset$ hold, or d(y') = 5 and $N(y) \cap N(y') \neq \emptyset$ hold.

Assertion 3 For each vertex x of D, $d(x) \leq 4$.

Proof Clearly, for a branch B of type J_1 , each vertex of $V(B) \cap D$ has degree at most 4. We assume that the assertion is not true, let B_0 be a branch of type $J_i (i \geq 2)$ of G such that $V(B_0) \cap D$ contains a vertex with degree at least 5. Let x_0, y_0, X_0 be a w-vertex, an u-vertex, a W-part of B_0 , respectively. $Y_0 = N(y_0) - \{x_0\}$. Then, $d(y_0) \geq 5$. We distinguish two cases to deduce a contradiction.

(1) $d(y_0) \ge 6$. Then, Y_0 contains at least five vertices.

We will show that any branch $B' \in \mathcal{B} - \{B_0\}$ has the property (Q) with respect to (B_0, X_0) .

First let B' be a branch of type J_2 and both vertices in $V(B') \cap D$ have degree 3. Assume that there is no edge joining X_0 and V(B'), we check the edges between Y_0 and V(B'). By assertion 1, there are at most four edges joining Y_0 and V(B'). If there are at most three edges joining them, then Y_0 has two vertices which are not adjacent to any vertices of B', and thus G contains an induced subgraph F_3 , a contradiction. If there are four edges joining them, then Y_0 has one vertex which has no neighbor in B'. By choosing two more vertices from Y_0 such that their neighbors in B' belong to different W-parts of B', we obtain an induced subgraph F_4 of G, a contradiction. Hence, there must be one edge joining X_0 and V(B').

Next let B' be a branch of type $J_i(i \geq 2)$ and one vertex of $V(B') \cap D$ has degree at least 4. Let x', y' be a w-vertex and an u-vertex of B', respectively. Clearly, $N(y_0) \cap N(y')$ contains at most one vertex. If B' does not have (Q) with respect to (B_0, X_0) , by deleting $N(X_0) \cap V(B')$ from B', then for each case we can obtain an induced subgraph of B' that is isomorphic to J_2 and that there is no edge joining $X_0 \cup \{x_0, y_0\}$ and this subgraph. Thus, we can similarly deduce that G contains an induced subgraph F_3 or F_4 , a contradiction.

Finally let that B' is a branch of type J_1 . If B' does not have (Q) with respect to (B_0, X_0) , by deleting $N(X_0) \cap V(B')$, then we can also obtain an induced subgraph that is isomorphic to J_2 and that there is no edge joining $X_0 \cup \{x_0, y_0\}$ and this subgraph. Thus, G contains an induced subgraph F_3 or F_4 , a contradiction.

Summarizing above, we have that any branch $B' \in \mathcal{B} - \{B_0\}$ has (Q) with respect to (B_0, X_0) .

Now we choose an independent set D_1 in G. For the branch B_0 we put the vertices of X_0 and y_0 into D_1 . For any branch B' of type J_2 that both vertices in $V(B') \cap D$ have degree 3, let $x \in V(B') \cap D$ correspond to one W-part of B' which joins one edge to X_0 , then we put another vertex y of $V(B') \cap D$ in D_1 . For any branch of type $J_i (i \geq 2)$ that one vertex in $V(B') \cap D$ has degree at least 4, if there is one edge joining its W-part and X_0 , then we put its u-vertex in D_1 ; otherwise, we put its u-vertex in u-vertex in u-vertex of this branch in u-part and u-vertex, we put its u-vertex in u-vertex of this branch in u-vertex, we put its u-vertex in u-vertex of this branch in u-vertex of type u-vertex in u-vertex of this branch in u-vertex of type u-vertex in u-vertex of this branch in u-vertex of type u-vertex in u-vertex in u-vertex in u-vertex of this branch in u-vertex of type u-vertex in u-vertex in

 $A=(V(G)-D_1)\cup N(D_1)$. For clarity, we denote by t_1 the number of the branches of type J_1 and $t_2=t-t_1$. Then, $\gamma(G)=3t_1+2t_2$ and $|D_1|=3+(t_2-1)+2(t_1-t')+t'=2t_1+t_2-t'+2$. By direct checking, we can deduce that $|A|=2t'+(t_1-t')+(t_2-1)=t_1+t_2+t'-1$. Let D_2 be an independent dominating set of G[A]. Then, $D_1\cup D_2$ is an independent dominating set of G. Clearly, $|D_2|\leq |A|$, and thus $|D_1|+|D_2|\leq 3t_1+2t_2+1=\gamma(G)+1$, a contradiction.

(2) $d(y_0) = 5$. Then, Y_0 contains exactly four vertices.

If all branches in $\mathcal{B}-\{B_0\}$ has (Q) with respect to (B_0,X_0) , then we can similarly choose an independent dominating set of G with at most $\gamma(G)+1$ vertices, a contradiction. Let B_1 be the branch which does not have (Q) with respect to (B_0,X_0) .

If B_1 is a branch of type $J_i (i \geq 2)$ that one vertex in $V(B') \cap D$ has degree at least 4, then there is no edge joining its W-part and X_0 . Let x_1, y_1 be a w-vertex and an u-vertex of B_1 , respectively. We distinguish three subcases to deduce a contradiction.

- (a) If $d(y_1) = 4$ and $N(y_1) \cap N(y_0) \neq \emptyset$, by girth condition of G, then there is no edge joining the U-part of B_1 and Y_0 . If there is no edge joining U-part of B_1 and X_0 , then G has an induced subgraph F_3 , a contradiction. If $d(y_1) = 5$ and $N(y_1) \cap N(y_0) \neq \emptyset$, then we can similarly deduce that G has an induced subgraph F_3 , a contradiction.
- (b) Assume that $d(y_1) = 4$ and $N(y_1) \cap N(y_0) = \emptyset$. If there is exactly one edge joining X_0 and $N(y_1) \{x_1\}$, by checking the edges joining Y_0 and B_1 , we can obtain an induced subgraph F_3 or F_4 or F_6 in G, a contradiction. If there is no edge joining $N(y_1) \{x_1\}$ and X_0 , we can deduce that G has an induced subgraph F_3 or F_4 , a contradiction.
- (c) For remaining case, as there are at most two edges joining $N(y_1) \{x_1\}$ and X_0 , we can similarly deduce that G has an induced subgraph F_3 or F_4 or F_6 , a contradiction.

If B_1 is a branch of type J_1 , then we can similarly deduce that B_1 has (Q) with respect to (B_0, X_0) , a contradiction.

Thus, B_1 is a branch of type J_2 that both vertices in $V(B') \cap D$ have degree 3. Moreover, if there are at most three edge joining Y_0 and B_1 , then G contains an induced subgraph F_3 or F_4 , a contradiction. Hence, there are four edges joining Y_0 and B_1 .

Now we check the edge joining B_1 and the branches in $\mathcal{B} - \{B_0, B_1\}$. We can similarly show that, if $B' \in \mathcal{B} - \{B_0, B_1\}$ is type of J_1 , then either there is one edge joining its W-part and B_1 or there is one edge joining each U_i -part (i=1,2) of B' and B_1 ; if $B' \in \mathcal{B} - \{B_0, B_1\}$ is type of $J_i (i \geq 2)$, then either there is one edge joining one W-part of B' and B_1 , or there are at least $|N(y') - \{x'\}| - 1$ edges joining $N(y') - \{x'\}$ and B_1 , where x', y' are a w-vertex and an u-vertex of B', respectively. Thus, we can similarly extend $(V(B_1) - D) \cup \{x_0\}$ to an independent dominating set of G with at most $\gamma(G) + 1$ vertices, a contradiction. This prove assertion 3.

By assertion 3, G contains only the branches of types J_1, J_2, J_3 .

Assertion 4 Each vertex in C is adjacent to exactly two vertices in D.

Proof Let c be any vertex in C. Since each vertex in $N(c) \cap D$ has degree 4, by Fact 1, c has degree at most 3. If c has three neighbors y_1, y_2, y_3 in D, then c is not adjacent to any vertex in $V(G) - \{y_1, y_2, y_3\}$. For i = 1, 2, 3 let B_i be the branch of G containing y_i . Let $x_1, Y_1 =$ $\{z_1, z_2\}$ be a w-vertex and an U-part of B_1 , respectively. We first show that $\mathcal{B} = \{B_1, B_2, B_3\}$. For otherwise, let $B' \in \mathcal{B} - \{B_1, B_2, B_3\}$. First let B' be the type of J_2 . By assertion 2, there are at most two edges joining Y_1 and B'. If there is at most one edge joining Y_1 and B', then G a subgraph F_3 induced by $V(B') \cup \{y_2, y_3, c, y_1, x_1, z_1\}$, where z_1 is not adjacent to any vertex of B', a contradiction. If there are two edges joining Y_1 and B', then the two edges are incident to two vertices of V(B') from different parts, otherwise we can similar deduce a contradiction as in the proof of assertion 1. Thus, G contains a subgraph F_4 induced by $V(B') \cup$ $\{x_1, y_1, z_1, z_2c, y_2, y_3\}$, a contradiction. If B' is type of J_3 or J_1 , we can similarly deduce a contradiction. Hence, $\mathcal{B} = \{B_1, B_2, B_3\}$. Since there is no edge joining any two *U*-parts of B_1, B_2, B_3 , we have that either G has in independent dominating set with 7 vertices or G contains an induced subgraph F_7 , a contradiction. This prove assertion 4.

Assertion 5 G has no branch of type J_1 .

Proof By contradiction. For the purpose, we assume that G contains at least one branch of type J_1 . We distinguish two cases.

(1) G has at least two branches of type J_1 . We first check the edges joining among the U_i -parts of any two distinct branches of type J_1 . Let B_1, B_2 be any two branches of type J_1 . If there exist one U_i -part of B_1 and one U_i -part of B_2 such that no edge join them, by assertion 1 and remark, then G has an induced subgraph F_3 or F_4 , a contradiction. So, there is one edge joining each U_i of B_1 and each U_i -part of B_2 . Moreover, if the U_i -parts of B_1 has only two vertices s_1, s_2 which have neighbors in U_i -parts of B_2 , then their neighbors in U_i -parts of B_2 contain at least three vertices. For otherwise, G has a cycle of length 4, a contradiction. Thus, at least one of B_1, B_2 , saying B_2 , satisfies that its U_i -parts contains at least three vertices which have neighbors in U_i -parts of B_1 .

Let B_1, B_2 be two branches of type J_1 as above. We choose an independent set D' as follow. We put the w-vertex and all vertices of U_i -parts of B_1 in D', and put w-vertex of B_2 in D'. Note that $V(B_2) - N(D')$ contains at most one vertices. For any branch $B' \in \mathcal{B} - \{B_1, B_2\}$ of type J_1 , we put w-vertex of B' in D'. By above statement, V(B') - N(D') contains at most two vertices. For any branch B' of type J_2 that both two vertices in $V(B') \cap D$ have degree 3, it is easy to see that there is one edge joining V(B') and each U_i -part of B_1 . For a vertex $x \in V(B') \cap D$, if N(x) has no neighbor in the U_i -parts of B_1 , then we put x in D'. Otherwise we choose any one vertex of $V(B') \cap D$ and put it in D'. Clearly, V(B') - N(D')contains at most one vertex. For any branch B' of type $J_i(i=2,3)$ of G that one vertex of $V(B') \cap D$ has degree 4, let x', y' be the w-vertex and the u-vertex of B', respectively. It is easy to see that for each U_i -part of B either there is one edge joining the W-part of B' and this part, or there are at least two edges joining $N(y') - \{x'\}$ and this part. For the former case, we put u-vertex of B' in D', for latter case we put w-vertex of B' in D'. Note that V(B') - N(D') also contains at most one vertex.

Let A denote the subgraph induced by V(G) - N(D') and D'' be an independent dominating set of A. Then, $D' \cup D''$ is an independent dominating set of G. Clearly, $|D''| \leq |A|$. A simple count shows that $|D' \cup D''| \leq \gamma(G) + 1$, a contradiction.

(2) G has only one branch B of type J_1 . Note that, if there is a branch of type J_2 or J_3 such that both two vertices of one W-part of this branch have neighbors in U_i -parts of B, then we can similarly obtain an independent

dominating set of G with at most $\gamma(G) + 1$ vertices, a contradiction. Thus, for any branch of type J_2 or J_3 , any W-part has at most one vertex which has neighbors in U_i -parts of B. Now we claim that for any branch B' of type J_2 or J_3 , there is one W-part of B' such that one vertex of this part has two neighbors in U_i -parts of B.

For that B' is type of J_2 such that both two vertices in $V(B') \cap D$ has degree 3, if claim is not true, by noting that G has no induced subgraph F_5 , then there are two independent edges joining two W-parts of B' and two U_i -parts of B, and one more edge joining V(B') and W-part of B. Let X be the W-part of B' such that both two vertices have neighbors in B, and $y_1 \in V(B) \cap D$ correspond to the U_i -part which has no neighbors of X. We choose W-part of B and the U_i -part of B which has a neighbor of X and y_1 and put them in D'. Then, we can similarly extend D' to an independent dominating set with at most $\gamma(G)+1$ vertices, a contradiction. For B' is type of $J_i(i \geq 2)$ such that one vertex of $V(B') \cap D$ has degree A, let A', A' be a A'-vertex and an A'-vertex of A'. If claim is not true, then there are two edges joining A'-part of A'-part o

Hence, the claim is true. If G contains only two branches, then it is easy to see that G has an independent dominating set with 6 vertices, a contradiction. Otherwise, let B_1, B_2 be any two branches in $\mathcal{B} - \{B\}$. By claim, for $i = 1, 2, V(B_i)$ has one W-part which contains a vertex s_i which has one neighbor in each U_i -part of B. If each vertex of U_i -parts of Bis adjacent to s_1 or s_2 , by choosing w-vertex of B and the W-part of B_i containing s_i for i = 1, 2, then G has a dominating set D' with $\gamma(G)$ vertices such that G[D'] contains isolated vertices. By lemma 1, a contradiction. Thus, s_1, s_2 share exactly one common neighbor in the U_i -parts of B. Let U_1 -part of B contain the common neighbor a of s_1, s_2 . Then, their neighbors in U_2 -part of B are distinct. Now for any branch $B' \in \mathcal{B} - \{B, B_1, B_2\}$, let s' be the vertex in one W-part of B' which has one neighbor in each U_{i} -part of B. If s' is adjacent to a, then s' will share two common neighbors with s_1 or s_2 , and thus G has a cycle of length 4, a contradiction. Thus, s' must be adjacent to the vertex $a' \in U_1 - \{a\}$. By putting the w-vertex of B and a', s_1, s_2 in D', we can similarly extend D' to an independent

dominating set of G with at most $\gamma(G) + 1$ vertices, a contradiction. This prove assertion 5.

Assertion 6 $C = \emptyset$

Proof Otherwise, let $c \in C$ and B_1, B_2 be two branches of type J_2 of G such that $y_1 \in N(c) \cap V(B_1) \cap D$, $y_2 \in N(c) \cap V(B_2) \cap D$. Let x_1, x_2, X_1, X_2 be the w-vertices and W-parts of B_1 , B_2 , respectively. Since there is no edge joining U-part of B_1 and U-part of B_2 , either B_1 has (Q) with respect to (B_2, X_2) , or B_2 has (Q) with respect to (B_1, X_1) . Suppose that B_1 has (Q) with respect to (B_2, X_2) . If any branch $B' \in \mathcal{B} - \{B_1, B_2\}$ has (Q) with respect to (B_2, X_2) , then G has an independent dominating set with at most $\gamma(G) + 1$ vertices, a contradiction. Thus, there exists one branch $B_3 \in \mathcal{B} - \{B_1, B_2\}$ which does not have (Q) with respect to (B_2, X_2) .

We first assume that B_3 has one W-part X_3 such that there is one edge joining X_3 and U-part of B_2 and one edge joining $s \in X_3$ and c. Note that the union of $\{y_1, c, s, y_2, x_2\}$ and U-part of B_2 induce a subgraph which isomorphic to J_3 . By assertion 2, for each branch in $\mathcal{B} - \{B_1, B_2, B_3\}$ there is one edge joining one W-part and s. If there is one edge joining B_1 and X_3 , by putting X' and x_2 in D', then we can extend D' to an independent dominating set of G with at most $\gamma(G)+1$ vertices, a contradiction. If there is no edge joining B_1 and X_3 , then there are edges joining another part Y of B_3 and X_1 . Moreover, B_3 has (Q) with respect to (B_1, X_1) , for otherwise G contains an induced subgraph F_4 , a contradiction. Since $d(c) \leq 3$, all branches in $B - \{B_1, B_2, B_3\}$ have (Q) with respect to (B_1, X_1) . Thus, if B_2 also has (Q) with respect to (B_1, X_1) , then we similarly deduce a contradiction. If B_2 does not have (Q) with respect to (B_1, X_1) , then we can obtain an induced subgraph F_7 from B_1, B_2, B_3 , a contradiction.

Otherwise, let x_3, y_3 be a *w*-vertex and an *u*-vertex of B_3 , respectively. Then, there are three independent edges joining $N(y_3) - \{x_3\}$ and $N(y_2) - \{x_2\}$. For this case, we can similarly deduce a contradiction as above. This prove assertion 6.

By assertion 5 and 6, G contains only branches of type J_2, J_3 and $V(G) = D \cup P$.

Assertion 7 (1) Let B be a branch of type J_3 and X the W-part of B, then there is exactly one branch B' in $B - \{B\}$ which does not have (Q)

with respect to (B, X). (2) For each vertex $p \in P$, $d(p) \leq 4$.

Proof (1) As above shown, there is at least one branch in $\mathcal{B} - \{B\}$ which does not have (Q) with respect to (B,X). If there are $B_1, B_2 \in \mathcal{B} - \{B\}$ which do not have (Q) with respect to (B,X), then, for each i=1,2, either there are two edges joining one W-part of B_i and U-part of B, or there are three edges joining the U-part of B_i and U-part of B. For i=1,2, let $x_i \in V(B_i) \cap D$ not correspond to this part of B_i . We put the U-part and w-vertex of B and $\{x_1,x_2\}$ in D_1 . Then, D_1 dominates $V(B) \cup V(B_1) \cup V(B_2)$, and thus we can extend D_1 to a dominating set D' of G with $\gamma(G)$ vertices. Note that G[D'] contains isolated vertices, a contradiction.

(2) If $p \in P$ has degree at least 5, then d(x) = 3 for $x \in N(p) \cap D$. Let B be the branch of G containing x, p and $N(x) = \{p, q, y\}$ and $y \in V(B) \cap D$. If all branches in $B - \{B\}$ has (Q) with respect to (B, X), where $X = \{p, r\}$ is one W-part of B, then we can deduce a contradiction as above. So, there is one branch B' which does not have (Q) with respect to (B, X). Note that $(\{r, y, x, p\} \cup N(p)) - (N(p) \cap V(B'))$ induce a graph which is isomorphic to J_3 or J_4 , there is one edge joining V(B') - N(p) and $N(p) - \{x\}$, implying that $N(p) - \{x\}$ contains a vertex with degree at least 3, contradicting to Fact 2. Hence, $d(x) \leq 4$ for each vertex $x \in P$.

To complete the proof, we distinguish two cases.

Case 1 G contains at least one branch of J_3 . For this case, we distinguish three subcases.

Subcase 1.1 G has two branches B_1, B_2 of type J_3 such that there are three independent edges joining their U-parts.

For i = 1, 2, let x_i, y_i, X_i, Y_i be a w-vertex, an u-vertex, a W-part and an U-part of B_i , respectively. Note that $\mathcal{B} - \{B_1, B_2\} \neq \emptyset$. If there is one branch in $\mathcal{B} - \{B_1, B_2\}$ which does not have (Q) with respect to (B_1, X_1) , then we can similarly deduce a contradiction as in the proof of assertion 7(1). Thus, each branch in $\mathcal{B} - \{B_1, B_2\}$ has (Q) with respect to both (B_1, X_1) and (B_2, X_2) . Then, there is no edge joining X_1, X_2 .

If there is one branch $B' \in \mathcal{B} - \{B_1, B_2\}$ such that one W-part X' of B' satisfies $X' \subset N(X_1) \cup N(X_2)$, let y' correspond to another part of B', then $X_1 \cup X_2 \cup \{y_1, y_2, y'\}$ dominates $V(B_1) \cup V(B_2) \cup V(B')$. Thus, G

contains an independent dominating set with at most $\gamma(G)+1$ vertices, a contradiction. If any branch $B'\in\mathcal{B}-\{B_1,B_2\}$ has one W-part X' such that there are two edges joining a vertex of X' and $X_1\cup X_2$, then $\mathcal{B}-\{B_1,B_2\}$ has at least two branches. For i=1,2, let $B'_i\in\mathcal{B}-\{B_1,B_2\}$ and X'_i be W-part of B'_i such that $s_i\in X'_i$ are adjacent to two vertices in $X_1\cup X_2$. If $X_1\cup X_2\subset N(s_1)\cup N(s_2)$, then we can obtain a dominating set D' of G such that $|D'|=\gamma(G)$ and G[D'] contains isolated vertices, a contradiction. As G has girth at least six, s_1,s_2 share exactly one common neighbor. We assume that $X_2\subset N(s_1)\cup N(s_2)$ and $p\in X_1$ is adjacent to both s_1,s_2 . Let $q\in X_1-\{p\}$. Then, all branches in $\mathcal{B}-\{B_1,B_2,B'_1,B'_2\}$ have one W-part which contains a neighbor of q. From that, it is easy to see that G contains an independent dominating set with at most $\gamma(G)+1$ vertices, a contradiction.

Hence, $\mathcal{B} - \{B_1, B_2\}$ has a branch B' which has no W-part X' such that there are two edges joining X' and $X_1 \cup X_2$.

If B' is type of J_3 , without loss of the generality, we can assume that there is one edge joining its W-part X' and X_2 , and two edges joining its U-part Y' and X_1 . Let x', y' be a w-vertex and an u-vertex of B' and $a_3 \in Y' - N(X_1)$. If a_3 is adjacent to one vertex of Y_1 , then $X_1 \cup Y_1 \cup \{x_2, x'\}$ dominates $V(B_1) \cup V(B_2) \cup V(B')$, and thus $i(G) \leq \gamma(G) + 1$, a contradiction. If a_3 is adjacent to a vertex a_2 in Y_2 , let $a_1 \in Y_1 \cap N(a_2)$, then $(Y_1 - \{a_1\}) \cup \{a_2\} \cup X_1 \cup \{x_2, x'\}$ dominates $V(B_1) \cup V(B_2) \cup V(B')$, and thus, a contradiction. Thus, a_3 has no neighbor in $Y_1 \cup Y_2$. By assertion 1, 2, it is easy to check that among B_1, B_2, B' there is at most one more edge joining X', Y_1 and at most two more independent edges joining Y', Y_2 . And thus, by deleting one vertex properly from each of Y_1, Y_2, Y' , we can obtain an induced subgraph F_7 , a contradiction. If B' is type of J_2 , we can similarly deduce a contradiction.

Subcase 1.2 G has two branches B_1, B_2 of type J_3 such that there are two independent edges joining U-part of B_1 and W-part of B_2 .

We assume that there are no such two branches of type J_3 as in subcase 1.1. For i=1,2, let x_i,y_i,X_i,Y_i be a w-vertex, an u-vertex, a W-part and an U-part of B_i , respectively. Note that $B - \{B_1, B_2\} \neq \emptyset$ and each branch in $B - \{B_1, B_2\}$ has (Q) with respect to (B_1, X_1) . By assertion 7(1), there is exactly one branch B_3 in $B - \{B_1, B_2\}$ which does not have (Q) with respect

to (B_2, X_2) . So, there are two independent edges joining one W-part X_3 of B_3 and Y_2 . Let Y_3 be another part of B_3 . If there is no edge joining X_1 and X_3 , then we can similarly deduce that either $i(G) \leq \gamma(G) + 1$ or G has an induced subgraph F_7 , a contradiction. Thus, there is one edge joining X_3, X_1 . Let $X_1 = \{p_1, q_1\}$ and $p_1 \in N(X_3) \cap X_1$. If any branches in $\mathcal{B} - \{B_1, B_2, B_3\}$ has one W-part which contains a neighbor of q_1 , then we can similarly obtain $i(G) \leq \gamma(G) + 1$, a contradiction. Thus, there exists one branch B_4 in $\mathcal{B} - \{B_1, B_2, B_3\}$ such that no W-part of B_4 contain a neighbor of q_1 .

If B_4 is of type J_3 such that there are two independent edges joining its U-part Y_4 and X_1 , then, by assertion 7(1), there is one edge joining its W-part X_4 and X_2 . Let $p_3 \in N(p_1) \cap X_3, a_4 \in N(p_1) \cap Y_4$. Note that $\{q_1, x_1, y_1, p_1, p_3, a_4\}$ induces a subgraph J_2 . Let $a_2 = N(p_3) \cap Y_2$. Then, there is one edge joining this subgraph and $V(B_2) - \{a_2\}$. It is easy to see that only q_1 or a_4 may have neighbors in $V(B_3) - \{a_2\}$. Let $N(p_3)\cap D=\{x_3\}, y_3\in (V(B_3)\cap D)-\{x_3\}$. Clearly, q_1 is not adjacent to any vertex in X_2 . If q_1 is adjacent to a vertex in $Y_2 - \{a_2\}$, then $X_2 \cup Y_2 - \{a_2\} \cup \{a_2\}$ $\{p_3, y_1, y_3\}$ dominates $V(B_1) \cup V(B_2) \cup V(B_3)$, and thus $i(G) \leq \gamma(G) + 1$ vertices, a contradiction. If q_1 is adjacent to a_2 , then G has a cycle of length 5. Thus, q_1 has no neighbor in $V(B_2)$. If a_4 is adjacent to a vertex in X_2 , then $X_2 \subset N(a_4) \cup N(X_4)$, and thus $X_4 \cup Y_4 \cup \{y_1, y_2\}$ dominates $V(B_1) \cup V(B_2) \cup V(B_4)$, and hence $i(G) \leq \gamma(G) + 1$, a contradiction. Thus, a_4 has a neighbor in $Y_2 - \{a_2\}$. Let x_4, y_4 be a w-vertex and an u-vertex of B_4 , respectively and $c_4 \in Y_4 - N(X_1)$. Then, $\{y_1, x_2, y_3, x_4, q_1, a_4, c_4\} \cup Y_2 N(a_4)$ dominates $\bigcup_{i=1}^4 V(B_i)$. Now, if any branch B' in $\mathcal{B} - \{B_1, B_2, B_3, B_4\}$ has one W-part X' containing a neighbor of q_1 , then we can obtain that $i(G) \leq \gamma(G) + 1$, a contradiction. If B' has one W-part X' containing a neighbor p_1 , then we can similarly deduce that $p' \in N(p_1) \cap X'$ is adjacent to a vertex in $V(B_2) - \{a_2\}$. If p' is adjacent to a vertex in X_2 , then $\{q_1, x_1, y_1, p_3, a_4, p'\} \cup V(B_2) - \{a_2\}$ induces a subgraph F_4 , a contradiction. Thus, p' is adjacent to a vertex in $Y_2 - \{a_2, N(a_4) \cap Y_2\}$. By noting that $d(p_1) \leq 4$, all branches in $\mathcal{B} - \{B_1, B_2, B_3, B_4, B'\}$ have one W-part which contains a neighbor of q_1 . Thus, we can deduce that $i(G) \leq \gamma(G) + 1$, a contradiction. If there are two edges joining U-part of B' and X_1 , we can similarly deduce that $i(G) \leq \gamma(G) + 1$, a contradiction.

Thus, B_4 is type of $J_i(i=2 \text{ or } 3)$ such that there is one edge joining

its one W-part X_4 and p_1 . Denote $N(p_1) \cap X_4$ by p_4 and let Y_4 be another part of B_4 . We still use the notation for B_1, B_2, B_3 . If p_4 is adjacent to one vertex in $Y_2 - \{a_2\}$, then we can similarly deduce a contradiction as above. Thus, there is one edge joining p_4 and X_2 . Now we check the edges joining B_3 and B_4 . Note that there is no edge joining X_3 and X_4 , for otherwise G has a dominating set D' such that $|D'| = \gamma(G)$ and G[D'] has isolated vertices, a contradiction. If B_3 is type J_3 , then we can similarly deduce a contradiction as above. If B_4 is type of J_3 , then there are two edges joining Y_4 and X_3 or Y_3 . For either case we can easily deduce a contradiction. So, both B_3, B_4 are type of J_2 . Now, if there is one edge joining X_3 and Y_4 or X_4 and Y_3 , then we can similarly as above deduce that $i(G) \leq \gamma(G) + 1$, a contradiction. So, there is only one edge between $V(B_3)$ and $V(B_4)$ which joins Y_3, Y_4 . Let $a_3 \in Y_3, a_4 \in Y_4$ and a_3, a_4 be adjacent. Let $c_2 \in Y_2 - N(X_3)$. If c_2, a_4 are not adjacent, then we can deduce that G contains an induced subgraph F_7 , a contradiction. Thus, c_2 , a_4 are adjacent. Let $x_4 \in V(B_4) \cap D$ correspond to X_4 in B_4 . If $d(p_1) = 3$, then $X_3 \cup Y_4 \cup \{y_1, q_1, x_2, x_3, x_4\}$ dominates $\bigcup_{i=1}^4 V(B_i)$, and thus $i(G) \leq \gamma(G) + 1$, a contradiction. If there is one branch $B_5 \in \mathcal{B} - \{B_1, B_2, B_3, B_4\}$ such that $p_5 \in N(p_1) \cap V(B_5)$, then we can similarly deduce that B_5 is type J_2 and p_5 has one neighbor in X_2 . Let X_5 be W-part of B_5 containing p_5 and Y_5 another W-part of B_5 . Similarly, there is only one edge between $V(B_3)$ and $V(B_5)$ which joins Y_3 and Y_5 . Let $a_5 \in N(Y_3) \cap Y_5$. Then, c_2, a_5 are adjacent. Then, we can extend $\{y_1, q_1, x_2, c_2, y_3\} \cup X_3$ to an independent dominating set of G with at most $\gamma(G) + 1$ vertices, a contradiction.

Subcase 1.3 For any two distinct branches of type J_3 of G, there is one edge joining their W-parts.

Then, G contains at most two branches of J_3 . For otherwise, let B_1, B_2 , B_3 be three branches of type J_3 of G. As there are three edges joining among their W-parts, it is easy to verify that there are three vertices which dominate their W-parts. Thus, we can extend that to a dominating set D' of G such that $|D'| = \gamma(G)$ and G[D'] contains isolated vertices, a contradiction.

First we assume that G has two branches B_1, B_2 of type J_3 . For i = 1, 2, let x_i, y_i, X_i, Y_i be w-vertex, u-vertex, W-part and U-part of B_i , respectively. By assertion 7(1), for i = 1, 2 there is one branch B'_i of such that

 B_i' does not have (Q) with respect to (B_i, X_i) . By direct checking, we can show that B_1', B_2' are distinct. For i = 1, 2, we assume that there are two edges joining the W-part Y_i' of B_i' and Y_i , and X_i' is another W-part of B_i' . Let $X_1 = \{p_1, q_1\}, X_2 = \{p_2, q_2\}$ and p_1, p_2 be adjacent. If there is one edge joining $V(B_2')$ and q_1 , as any branch in $\mathcal{B} - \{B_1, B_2, B_2'\}$ has (Q) with respect to (B_2, X_2) , then $i(G) \leq \gamma(G) + 1$, a contradiction. We can similarly deduce that no edge joins $V(B_1')$ and q_2 . As there is one edge joining $X_1' \cup Y_1'$ and X_2 and one edge joining $X_2' \cup Y_2'$ and X_1 , by symmetry, we consider three cases.

- (i) There is one edge joining Y'_1 and p_2 and one edge joining Y'_2 and p_1 . For this case, if there is one edge joining X_2' and Y_1' , let $a_1' \in N(p_2) \cap Y_1'$. If $|N(a_1')| \geq 4$, then for any branch in $\mathcal{B} - \{B_1, B_2, B_1', B_2'\}$ there is one edge joining its W-part and q_2 , and thus we can extend $Y_1' \cup \{q_2\}$ to an independent dominating set with at most $\gamma(G) + 1$ vertices, a contradiction. If $Y_1' \subset N(X_2') \cup N(X_2)$, we can extend $X_2 \cup X_2'$ to an independent dominating set with at most $\gamma(G) + 1$ vertices, a contradiction. We can similarly deduce that there is no edge joining Y'_1 and Y'_2 . Thus, by symmetry, there is only one edge between $V(B'_1)$ and $V(B'_2)$ which joins X'_1 and X_2' . Let $a_1 \in Y_1 - N(Y_1')$. Note that if there is no edge joining a_1 and X_2' , then G contains an induced subgraph F_7 , a contradiction. Otherwise, a_1 is adjacent to a vertex in X_2' . Let $a_2 \in Y_2 - N(Y_2')$. Similarly, we have that a_2 is adjacent to a vertex in X_1' . Let $p_1' \in X_1', p_2' \in X_2'$ be adjacent and $x_1' \in N(p_1') \cap D, x_2' \in N(p_2') \cap D$. If a_1 is not adjacent to p_2' , then we can extend $X_1' \cup Y_1' \cup \{a_1\}$ to an independent dominating set with at most $\gamma(G) + 1$ vertices, a contradiction. Thus, a_1 is adjacent to p'_2 and a_2 is adjacent to p_1' . Now, it is easy to verify that $\{x_1, p_1, N(p_1) \cap Y_2', p_2, x_2, N(p_2) \cap Y_1'\}$ and $\{a_1, p'_2, x'_2, p'_1, x'_1, a_2\}$ induce a subgraph F_3 , a contradiction.
- (ii) There is one edge joining X_1' and p_2 and one edge joining Y_2' and p_1 . We can similar deduce that there is no edge joining $V(B_1')$ and Y_2' . If there is one edge joining X_2', Y_1' , let $V(B_1') \cap D = \{x_1', y_1'\}$ and $Y_1' = \{a_1', b_1'\}$, and $c_1 \in Y_1, p_2' \in X_2'$ such that $\{c_1, p_2'\} \subset N(a_1')$, then $\{x_1', y_1', a_1', b_1', p_2', c_1\}$ induce a subgraph J_2 . It is easy to see that there is no edge joining this subgraph and X_2 . Thus, there are two edges joining Y_2 and $\{p_2', c_1\}$. Then, $a_2 \in Y_2 N(Y_2')$ is adjacent to p_2' , and hence $i(G) \leq \gamma(G) + 1$, a contradiction. Thus, there is only one edge between $V(B_1')$ and $V(B_2')$ which joins X_1' and X_2' . Let $p_1' \in X_1'$ be adjacent to p_2 . We can similarly deduce

that p_1' is adjacent to $p_2' \in X_2'$ and $a_1 \in Y_1 - N(Y_1')$ is adjacent to p_2' . Let $V(B_2') \cap D = \{x_2', y_2'\}$, $Y_2' = \{a_2', b_2'\}$ and $a_2' \in N(p_1), c_2 \in N(a_2')$ and y_2' correspond to Y_2' . Note that $\{x_2', y_2', b_2', a_2', p_1, c_2\}$ induces a subgraph J_2 , there is one edge joining this subgraph and B_1' , and thus c_2 is adjacent to one vertex a_1' in Y_1' . Now, both $Y_2 \cup \{y_2, a_1', a_2'\}$ and $\{a_1, p_1', x_1', p_2', x_2', p_2\}$ induces a subgraph J_2 . Thus, a_1 is adjacent to one vertex in Y_2 . Clearly, a_1 is not adjacent to c_2 , for otherwise G has a cycle of length 5, a contradiction. Let $b_2 \in N(a_1) \cap Y_2$. Then, $(V(B_1) - X_1) \cup \{p_2', b_2\}$ induces a subgraph J_3 . So, for any branch B' in $B - \{B_1, B_2, B_1', B_2'\}$, if there is no edge joining B' and b_2 , then B' contains a neighbor p' of p_2' , and thus p' is adjacent to a_2' . Hence, we can extend $(Y_2 - \{c_2\}) \cup Y_1'$ to an independent dominating set of G with at most $\gamma(G) + 1$ vertices, a contradiction.

(iii) There is one edge joining X_1' and p_2 and one edge joining X_2' and p_1 . Clearly, there is no edge joining X_1', X_2' , for otherwise we can deduce that $i(G) \leq \gamma(G) + 1$. If there is one edge joining Y_1', Y_2' , by assuming $a_1' \in Y_1', a_2' \in Y_2'$ and $a_1'a_2' \in E(G)$, then $N(a_1') \cup N(a_2')$ induces a subgraph J_2 , and thus $N(a_1') \cup N(a_2') \cup N(p_1) \cup N(p_2)$ induces a subgraph F_3 , a contradiction. For otherwise, we may assume that there is one edge joining Y_1', X_2' . Let $N(a_1') \cap (Y_1 \cup X_2') = \{c_1, q_2'\}$. As there is no edge joining X_2' and Y_2 , if a_1' has no neighbor in Y_1' , then $V(B_2) \cup \{x_1', y_1', a_1', b_1', q_2', c_1\}$ induce a subgraph F_3 , a contradiction.

Next we assume that G has only one branch B_1 of type J_3 . Let x_1, y_1, X_1, Y_1 be a w-vertex, an u-vertex, a W-part and an U-part of B_1 . Let B_2 be the only branch of type J_2 that there are two edges joining one W-part Y_2 of B_2 and Y_1 . Let X_2 another W-part of B_2 and $x_2 \in V(B_2) \cap D$ correspond to X_2 and $y_2 \in V(B_2) \cap D$ correspond to Y_2 . By assertion T(2), G has at most 8 branches. Let $X_1 = \{p_1, q_1\}$. If $p_1 \in X_1$ has degree 4, then $N(p_1) \cup N(x_1)$ induce a subgraph J_3 , and thus there are two independent edges joining one W-part of B_2 and $N(p_1)$. If G has at least 6 branches, then there is one more branch G that there are two edges joining G and this G has one more branch G that there are two edges joining G and this G has only 5 branches. Let G be a contradiction. Thus, G has only 5 branches. Let G has an G has only 5 branches. Let G has an G has only 5 branches. Let G has an G has only 5 branches. Let G has an G has only 5 branches. Let G has an G has only 5 branches. Let G has an G has only 5 branches. Let G has an G has only 5 branches. Let G has an G has only 5 branches. Let G has an G has only 5 branches. Let G has an G has only 5 branches. Let G has an G has an G has only 5 branches. Let G has an G ha

are two edges joining the part of B_3 which does not contain p_3 to Y_1 , a contradiction. Thus, $\{p_4, p_5\} \subset N(X_2)$. Then, there is no edge joining X_2 and $V(B_3)$, for otherwise we can deduce that $i(G) \leq 11$, a contradiction. So, the edges between B_2 , B_3 must join to Y_2 . Then, at least one of B_4 , B_5 , saying B_4 , does not have (Q) with respect to (B_2, Y_2) . Let $X_3 = \{p_3, q_3\}$ and $Y_3 = \{a_3, b_3\}$ be two W-parts of B_3 . Clearly, q_3 has no neighbor in B_3 . If p_3 has a neighbor in Y_2 , by checking the edges among B_2, B_3, B_4, B_5 , we can deduce that either G contains an induced subgraph F_7 or $i(G) \leq 11$, a contradiction. So, there is one edge joining Y_2 and Y_3 . Let a_2, a_3 be adjacent. If a_3 is adjacent to a vertex in $V(B_4)$, then this vertex is in the W-part Y_4 of B_4 which does not contain p_4 . Then, $N(a_2) \cup N(a_3)$ and $N(p_1) \cup N(p_4)$ induce a subgraph F_3 , a contradiction. If b_3 has neighbors in both B_4, B_5 , then we can obtain $i(G) \leq 11$, a contradiction. If b_3 has no neighbor in B_4 , then there is one edge joining X_3 and Y_4 , and thus B_2, B_3, B_4 induce a subgraph F_7 , a contradiction. Then, there is one edge joining X_3 and $V(B_5)$. Clearly, this edge must join to the part Y_5 of B_5 which does not contain p_5 . If there is no edge joining Y_2 and Y_5 , then B_2, B_3, B_5 induce a F_7 , a contradiction. Otherwise, by choosing $Y_2 \cup \{b_3\}$, we can deduce that $i(G) \leq \gamma(G) + 1$, a contradiction. Similarly we can show that $d(q_1) \leq 3$. So, each vertex in X_1 has degree at most 3. Thus, G has at most 6 branches.

We still use above notation for B_1, B_2 . If G has 6 branches, then $d(p_1) = d(q_1) = 3$. For i = 3, 4, 5, 6, let X_i be the W-part of B_i which contains a neighbor of p_1 or q_1 , and Y_i another W-part of B_i . Assume that $N(p_1) = \{p_3, p_4, x_1\}$ and $N(q_1) = \{p_5, p_6, x_1\}$. If p_3 is adjacent to one vertex a_2 in Y_2 , then $N(p_3) \cup N(a_2)$ induce a subgraph J_2 , and thus either $d(p_3) = 4$ or $d(a_2) = 4$. By using above skill, we can similarly deduce a contradiction. So, there is no edge joining Y_2 and $\{p_3, p_4, p_5, p_6\}$. Clearly, there are at most two independent edges joining X_2 and $\{p_3, p_4, p_5, p_6\}$. Thus, we may assume that p_3 is adjacent to a_2 and a_3 is adjacent to a_4 and a_4 is adjacent to a_4 and thus we can similarly deduce a contradiction. If a_4 is joins one edge to a_4 , or two edges to a_4 and thus we can similarly deduce a contradiction. If a_4 is joins one edge to a_4 , or two edges to a_4 and thus we can obtain a_4 if a_4 is a contradiction.

If G has 5 branches, for i = 3, 4, 5 let X_i be one W-part of B_i which contains a neighbor of p_1 or q_1 and Y_i another W-part of B_i , and x_i correspond

to X_i and y_i correspond to Y_i . Assume that $N(p_1) = \{p_3, p_4, x_1\}, N(q_1) = \{p_5, x_1\}$. Then, there is no edge joining X_5 and B_2 .

If there is one edge joining Y_5 and Y_2 , then there is no edge joining B_5 and X_2 . If p_3 is adjacent to one vertex p_2 in X_2 , then $N(p_3) \cup N(x_3)$ induce a graph J_2 . Thus, there is one edge joining Y_5 and X_3 . Clearly, this edge is incident to p_3 . Then, $N(p_3) \cup N(x_3)$ induces a graph J_3 . If there is one edge joining X_4 and $N(p_3) \cap Y_5$, then either G has an induced subgraph F_1 or $i(G) \leq 11$, a contradiction; otherwise there are two independent edge joining Y_4 and $N(p_3) - \{p_1\}$, then we can also deduce that $i(G) \leq 11$, a contradiction. So, there is no edge joining $\{p_3, p_4\}$ and X_2 . We may assume that p_3 joins one edge to Y_2 . Then, there is no edge joining Y_2 and B_4 . Let $a_5 \in Y_5$ be adjacent to a vertex $a_2 \in Y_2$. If $p_3 \in N(a_2)$, then $N(a_2) \cup N(y_2)$ induce a graph J_3 . Thus, there are two edges joining Y_4 and $N(a_2) - \{p_3\}$. Note that there is no edge joining X_2 and X_4 , X_2 joins one edge to Y_4 . If Y_3 joins one edge to X_4 , then B_2, B_4, B_5 induce a subgraph F_7 . If X_3 joins one edge to Y_4 , we can easily obtain $i(G) \leq 11$ vertices. Thus, Y_3 joins one edge to Y_4 . If $N(Y_3) \cap N(Y_5) \cap Y_4 \neq \emptyset$, then we can extend $Y_4 \cup (Y_1 - N(Y_4))$ an independent dominating set with at most 11 vertices; otherwise $N(Y_3) \cap N(Y_1) \cap Y_4 \neq \emptyset$, then we can extend $Y_5 \cup (Y_2 - N(Y_3))$ an independent dominating set with at most 11 vertices, a contradiction. Thus, p_3 is adjacent to b_2 . If there is no edge joining B_4 and Y_5 , then we can deduce that there are two edges joining Y_4 and Y_1 , a contradiction; otherwise, we can extend $X_3 \cup Y_5$ to an independent dominating set with at most 11 vertices, a contradiction.

If $a_5 \in Y_5$ joins one edge only to X_2 , then we can similarly deduce that $c_1 \in Y_1 - N(Y_2)$ is adjacent to a_5 . If p_3 joins one edge to Y_2 , by noting that there is no edge joining X_5 and B_4 , then B_4 joins one edge to Y_5 . Thus, we can extend $Y_2 \cup Y_5$ to an independent dominating set with at most 11 vertices, a contradiction. So, both p_3, p_4 have no neighbors in Y_2 . We may assume that p_3 joins one edge to X_2 . We can similarly deduce that $N(Y_5) \cap N(p_3) \cap X_2 \neq \emptyset$. Let $p_2 \in N(Y_5) \cap N(p_3) \cap X_2$. It is easy to see that there is no edge joining X_2 and X_3 , and thus no edge joining B_2 and X_3 . If $a_4 \in Y_4$ is adjacent to a_4 or a_5 , a contradiction. If a_4 is adjacent to another vertex a_2 in a_3 , by noting that a_4 is also adjacent to a_4 , and thus we can extend $a_4 \cap X_2 \cap X_3 \cap X_4 \cap X_4 \cap X_4 \cap X_5 \cap X_4 \cap X_5 \cap X_4 \cap X_5 \cap X_4 \cap X_5 \cap$

vertices, a contradiction. So, there is no edge joining X_2, Y_4 . Then, there is one edge joining Y_2, Y_4 . Note that $N(p_2) \cup N(x_2)$ induce a graph J_2 , B_4 joins one edge to a_5 . Thus, $N(a_5) - \{c_1\} \cup N(y_5)$ induce a graph J_2 . Then, there is one edge joining $V(B_1) - \{c_1\}$ and this subgraph. It is easy to see that this edge must join $Y_1 - \{c_1\}$ and $N(a_5) \cap B_4$, implying G has a cycle of length 5, a contradiction.

If G has only 4 branches, We still use above notation for B_3 , B_4 . First let $N(p_1) \cap X_3 = \{p_3\}$, $N(q_1) \cap X_4 = \{p_4\}$. Then, there is no edge joining $X_3 \cup X_4$ and B_2 . So, at least one of Y_3, Y_4 joins one edge to X_2 , we can similarly as above deduce a contradiction. Hence, we may assume $N(p_1) \cap X_3 = \{p_3\}$ and $N(p_1) \cap X_4 = \{p_4\}$. We assume that B_3 does not have (Q) with respect to (B_2, Y_2) . Then, there is one edge joining X_2 and B_3 .

If $p_2 \in X_2$ is adjacent to $a_3 \in Y_3$, then $c_1 \in Y_1 - N(Y_2)$ is adjacent to a_3 . Now, if B_4 joins one edge to $V(B_2) - N(a_3)$, then we can extend $X_2 \cup Y_2 - \{p_2\} \cup \{a_3\}$ to an independent dominating set with at most 9 vertices, a contradiction. Thus, p_2 has one neighbor in B_4 . If p_2 is adjacent to a vertex in Y_4 , then we can easily deduce a contradiction. So, p_2 is adjacent to p_4 . Thus, the edge between B_3, B_4 must join between X_3, Y_4 . If p_3 is adjacent to a vertex in Y_4 , then $N(p_3) \cup N(x_3)$ induce a graph J_2 , and thus there is one more edge joining Y_2, Y_4 , implying $i(G) \leq 9$, a contradiction. Thus, the vertex q_3 is adjacent to Y_4 . Moreover, any more edge among B_1, B_2, B_3, B_4 implies $i(G) \leq 9$, a contradiction. Otherwise, by deleting a vertex in $Y_1 - \{c_1\}$ we obtain an induced subgraph F_8 , a contradiction.

If there is no edge joining X_2, Y_3 , then p_3 is adjacent to a vertex $p_2 \in X_2$. Now, it is easy to see that there is no edge joining X_2, X_4 . If there is one edge joining Y_2 and Y_4 , then this edge is the only edge between B_2, B_4 . Clearly, there is no edge joining X_4, Y_3 , for otherwise, G has an induced subgraph F_7 . Thus, there exists one edge (or exactly one edge) from Y_4 to Y_3 . let $a_2 \in Y_2, a_4 \in Y_4$ be adjacent. If a_4 has one neighbor in Y_3 , then $N(a_4) \cup N(a_2)$) induce a graph J_2 , which joins no edge to the subgraph induced by $N(p_1) \cup N(p_3)$, implying that G has an induced subgraph F_3 , a contradiction. If b_4 has one neighbor, we can deduce that $i(G) \leq 9$ vertices, a contradiction. Hence, there is no edge joining Y_2, Y_4 . Clearly, if there is only one edge between B_2, B_4 which joins X_2, Y_4 , then we can deduce a

contradiction as above. Thus, p_4 is adjacent to a vertex $a_2 \in Y_2$. Note that $N(a_2) \cup N(y_2)$ induce a graph J_2 , there is one edge joining a vertex $a_3 \in Y_3$ and $a_1 \in N(a_2) \cap Y_1$. Now, it is easy to see that the edge between B_3, B_4 must join Y_3, Y_4 , and thus there is one more edge joining X_2, Y_4 . If the edge between Y_3, Y_4 is not incident to a_3 , then we can extend $Y_1 \cup Y_3 - \{a_3\}$ to an independent dominating set of G with at most 9 vertices. If the edge between X_2, Y_4 is not incident to p_2 , then we can extend $X_3 \cup X_2 - \{p_2\}$ to an independent dominating set of G with at most 9 vertices, a contradiction. Hence, a_3 joins one edge to Y_4 and p_2 joins one edge to Y_4 . If these two edges are independent, by direct checking, we deduce that there is no edge joining $N(a_1) \cup Y_1$ and $N(p_2) \cup N(p_3)$, implying that G has an induced subgraph F_3 , a contradiction. Thus, these two edges are incident to the same vertex in Y_4 . Moreover, there is no edge joining Y_1 and Y_4 , for otherwise we have $i(G) \leq 9$ a contradiction. Now, by deleting the vertex in $N(Y_2) \cap Y_1 - \{a_1\}$, we obtain an induced subgraph F_9 , a contradiction.

Case 2 All branches in G are type J_2 .

Note that if one branch B_1 joins two edge from one W-part to another branch B_2 , then we choose all vertices in $V(B_2) \cap P$ and one vertex in $V(B_1) \cap D$. As any branch joins one edge to B_2 , $i(G) \leq \gamma(G) + 1$, a contradiction. Hence, there are at most two edges joining any two distinct branches, and if there are two edges, then the two edges must join to different W-part for each branch. Obviously, G has at least 4 branches for otherwise we can easily deduce a contradiction. In the follow, We first show that each vertex in P has degree at most 3.

If not, let X_1 be W-part of a branch B_1 which contains a vertex p_1 with degree 4. For i=3,4,5, Let $N(p_1)\cap V(B_i)=\{p_i\}$ and p_i belongs to W-part X_i of B_i . For i=1,3,4,5, let Y_i be another W-part of B_i , and x_i correspond to X_i and y_i correspond to Y_i . Assume that B_2 does not have (Q) with respect to (B_1,X_1) . Let x_2 correspond to W-part X_2 of B_2 and y_2 correspond to W-part Y_2 of B_2 , respectively. We assume that there is one edge joining Y_1 and Y_2 . Note that $N(x_1) \cup N(p_1)$ induces a subgraph J_3 , there are two independent edges joining $\{p_3,p_4,p_5\}$ to X_2 or Y_2 .

We first assume that there are two independent edges joining $\{p_4, p_5\}$ and X_2 . If $\mathcal{B} - \{B_1, \dots, B_5\} \neq \emptyset$, by noting that $N(p_1) \cup N(p_4) - \{p_3\}$ induces a subgraph J_2 , then there is one edge joining B' in $\mathcal{B} - \{B_1, \dots, B_5\}$.

By Fact 1, $d(p_4) \leq 3$ and $d(p_5) \leq 3$. Then, B' must join one edge to $N(p_4)\cap X_2$. Similarly, B' joins one edge to $N(p_5)\cap X_2$. By above statement, a contradiction. So, $\mathcal{B} - \{B_1, \dots, B_5\} = \emptyset$. Now, if X_4 joins one edge to Y_5 , then, by choosing $X_5 \cup Y_5 \cup (X_2 - N(p_5))$, we can deduce that $i(G) \leq 11$, a contradiction. Similarly, there is no edge joining X_5 and Y_4 . As there is no edge joining X_4, X_5 , there is one edge joining Y_4, Y_5 . Note that there is no edge joining X_4 and $V(B_3)$ and no edge joining X_5 and $V(B_3)$, for otherwise, by choosing $X_4 \cup X_5$, we can also deduce that $i(G) \leq 11$, a contradiction. As Y_3 can join edges to at most one of Y_4, Y_5 , we may assume that there is one edge joining X_3 and Y_5 . If X_3 joins one edge to B_2 , then this edge is incident to p_3 . As $d(p_3) < 4$, $p_3 \notin N(Y_5)$. Then, by choosing $Y_5 \cup \{p_3\}$, we can obtain that $i(G) \leq 11$ vertices, a contradiction. If Y_3 joins one edge to X_2 , let $p_2 \in N(Y_3) \cap X_2$. If $p_5 \in N(p_2)$, then $\{p_2, p_4\}$ can be extended an independent dominating set with at most 11 vertices, otherwise, $p_4 \in N(p_2)$ and thus $\{p_2, p_5\}$ can be extended an independent dominating set with at most 11 vertices, a contradiction. Thus, there is only one edge between B_2 and B_3 which joins Y_2 and Y_3 . If there is only one edge between B_2 and B_5 , then B_2, B_3, B_5 induce a subgraph F_7 . Thus, there is one edge joining Y_5 and Y_2 . If $N(Y_4) \cap N(Y_2) \cap Y_5 \neq \emptyset$, then we can similarly deduce that G has an induced subgraph F_3 , otherwise, by choosing $Y_2 \cup Y_5 - N(Y_2) \cap Y_5$, we can deduce that $i(G) \leq 11$, a contradiction.

Next we assume that there are two independent edges joining $\{p_4, p_5\}$ to Y_2 . For this case, we can similarly deduce that G has only 5 branches and there is only edge between B_4 , B_5 which joins Y_4 , Y_5 , and there is no edge joining X_4 and B_3 and no edge joining X_5 and B_3 . We still assume that there is one edge joining X_3 and Y_5 . As B_1 , B_4 , B_5 join the edges to Y_2 , only X_2 joins one edge to B_3 . If X_2 joins one edge to X_3 , then $p_3 \in N(X_2)$, and thus $p_3 \notin N(Y_5)$. Then, we can similarly deduce that $i(G) \leq 11$ vertices, a contradiction. Thus, X_2 joins one edge to Y_3 . As G contains no induced subgraph F_7 , F_3 joins one edge to F_3 . Clearly, F_3 and F_4 join edges to same vertex F_4 in F_4 join edges to same vertex F_4 in F_4 joins one edge to F_4 , then F_4 joins one edge to F_4 , and thus there are three edge among F_4 , F_4 , then F_4 joins one edge to F_4 , and thus there are three edge among F_4 , F_4 , then F_4 joins one edge to F_4 , and thus there are three edge among F_4 , then F_4 joins one edge to F_4 , and thus there are three edge among F_4 , F_4 , then F_4 joins one edge to F_4 , and thus there are three edge among F_4 . For this

situation, we can easily deduce that $i(G) \leq 11$ vertices, a contradiction. This prove that each vertex in P has degree at most 3.

Let B be a branch of $G, V(B) \cap D = \{x, y\}, X, Y$ be two W-parts of B which correspond to x, y, respectively. If each vertex in $X \cup Y$ has degree at most two, then G has at most 5 branches. If X has one vertex p with degree 3, then $\{x,y\} \cup X \cup N(p)$ induce a graph J_2 . Let $N(p) = \{x,p_1,p_2\}$ and $p_1 \in V(B_1), p_1 \in V(B_2)$. As there is at least one branch B_3 of G which does not have (Q) with respect to (B,X), B_3 joins one edge to p_1 or p_2 . We may suppose that B_3 joins one edge to p_1 . Thus, $\{x, p, p_2, p_1\} \cup N(p_1)$ induces a graph J_2 . As each branch in $\mathcal{B} - \{B, B_1, B_2, B_3\}$ joins one edge to $N(p_1) \cap V(B_3)$ or p_2 , $\mathcal{B} - \{B, B_1, B_2, B_3\}$ has at most two branches. If $\mathcal{B}-\{B,B_1,B_2,B_3\}$ has two branches B_4,B_5 , then at least one of B_4,B_5 has (Q) with respect to (B, X). For otherwise, we can deduce that $d(p_1) = 4$ or $d(p_2) = 4$, a contradiction. Let X_4, Y_4 be two parts of B_4 and X_4 join one edge to X. If B_5 joins one edge to $N(p_1) \cap V(B_3)$, then B_4 joins one edge to p_2 . Clearly, this edge joins Y_4 and p_2 . Let $N(p_1) \cap V(B_1) \cap D = \{x_1\}$. Note that $N(x_1) \cup N(p_1)$ induce a graph J_2 , Y_4 joins one edge to $N(x_1)$ – $V(B_1) \cap D$. From that, we can deduce that $i(G) \leq 13$, a contradiction. Thus, B_5 does not have (Q) with respect to (B, X) and B_4 joins one edge to $N(p_1) \cap V(B_3)$. Then, B_5 joins one edge to p_2 and B_4 joins one edge to $N(p_2) \cap V(B_5)$. Note that $N(x_1) \cup N(p_1)$ induce a graph J_2 , B_5 joins one edge to $N(x_1) - V(B_1) \cap D$. Let $N(p_2) \cap V(B_2) \cap D = \{x_2\}$. We can similar deduce that B_3 joins one edge to $N(x_2) - V(B_2) \cap D$. From that, we can easily deduce that $i(G) \leq 13$, a contradiction. Hence, G has at most 5 branches.

If G has 5 branches and each vertex in P has degree 2, then we can easily deduce that $i(G) \leq 11$, a contradiction. Assume that P has a vertex with degree 3, we still use above notation. We first assume that B_4 joins one edge from X_4 to X and B_3 joins one edge to p_1 . Now we can deduce that Y_4 joins one edge to $N(p_1) \cap V(B_3)$. We denote the part of B_3 containing $N(p_1) \cap V(B_3)$ by X_3 and another part by Y_3 . If X_3 joins one edge to Y_3 , then B_2 does not have (Q) with respect to (B_3, X_3) . We denote the part of B_2 containing p_2 by X_2 and another part by Y_2 . If X_2 joins one edge to Y_3 , then this edge is incident to p_2 , and thus Y_4 joins one edge to $N(p_2) \cap Y_3$, a contradiction. So, Y_2 joins one edge to Y_3 . As G has no induced subgraph F_3 , Y_2 joins one edge to Y. From that we can deduce that $i(G) \leq 11$,

a contradiction. If Y_3 joins one edge to Y, then Y_4 joins one edge to Y. Clearly, there is no edge joining X_2 and B_3 . Now, if Y_2 joins one edge to X_3 , we can also deduce that $i(G) \leq 11$, a contradiction. Thus, there is no edge joining B_2 and X_3 . We denote $N(X_3) \cap Y_4$ by a_4 . Then, a_4 is not adjacent to p_2 , for otherwise there is a cycle of length 5. If a_4 is adjacent to another vertex in X_2 , then G has an independent dominating set with at most 11 vertices, a contradiction. Thus, a_4 joins one edge to Y_2 . Then, another vertex b_4 in Y_4 joins one edge to Y. As B, B_2, B_3 join edges to Y_4 , B_2 joins one edge to X_4 . Clearly, there is no edge joining X_2, X_4 , thus Y_2 joins one edge to X_4 . Now we check edges between B_1, B_2 . Clearly, there is no edge between X_2 and X_3 , thus there is only one edge joining X_3 , X_4 , then X_4 joins one edge to X_4 . If X_4 joins one edge to X_4 , then X_4 joins one edge to X_4 and X_4 induce a subgraph X_4 joins one edge to X_4 . If X_4 joins one edge to X_4 then X_4 joins one edge to X_4 and thus we can obtain an independent dominating set with at most 11 vertices, a contradiction.

Hence, G has 4 branches. If there is only one edge joining any two branches, then it is easy to obtain an induced subgraph F_7 . We assume that there are two edges joining B, B_1 . If G has a branch B' such that there are two branches that both of them join two edges to B', then G contains an independent dominating set with at most 9 vertices, a contradiction. So, each branch of B_2, B_3 joins only one edge to each of B, B_1 . Now, if there is only one edge joining B_2, B_3 , then we can deduce that G is isomorphic to F_8 . If there are two edges between B_2, B_3 , then we can deduce that G is isomorphic to F_9 or F_{10} , a contradiction. This complete the proof of Theorem 3.

References

- [1] L. Dohmen, D. Rautenbach, L. Volkmann, $i\gamma(1)$ -perfect graphs, Discrete Math. 234 (2001), 133-138.
- [2] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [3] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.

- [4] D. Summer, J.I. Moore, Domination perfect graphs, Notices Am. Math. Soc. 26 (1979) A-569.
- [5] I.E. Zverovich, k-Bounded classes of dominant-independent perfect graphs, J. Graph theory 32 (1999) 303-310.
- [6] I.E. Zverovich, V.E. Zverovich, An induced subgraph characterization of domination perfect graphs, J. Graph Thoery 20 (1995), 375-395.