Super-Arc-Connected and Super-Connected Total Digraphs*

Juan Liu, Jixiang Meng[†]
College of Mathematics and System Sciences, Xinjiang University
Urumqi, Xinjiang, 830046, P.R.China

Abstract: Let D be a strongly connected digraph with order at least two, T(D) denote the total digraph of D, $\kappa(D)$ and $\lambda(D)$ denote the connectivity and arcconnectivity of D, respectively. In this paper we study super-arc-connected and
super-connected total digraphs. Following results are obtained:

- 1. T(D) is super-arc-connected if and only if $D \ncong \overrightarrow{K_2}$.
- 2. If $\kappa(D) + \lambda(D) > \delta(D) + 1$, then T(D) is super-connected.

Key words: Total digraph; Max-arc-connected; Super-arc-connected; Super-connected

1 Introduction

For graph-theoretical terminology and notation not defined here we follow Bondy and Murty [3]. We consider strict digraph D (digraph having no loops and no parallel arcs are allowed) with vertex set V(D) and arc set A(D). For a vertex $v \in V(D)$, we denote the indegree, the outdegree of v, the minimum indegrees and outdegrees in D by $d_D^-(v)$, $d_D^+(v)$, $\delta^-(D)$ and $\delta^+(D)$, respectively. We denote the minimum degree of D by $\delta(D) = \min\{\delta^-(D), \delta^+(D)\}$. $\overrightarrow{K_n}$ denotes the complete digraph of order n. Let D = (V(D), A(D)) be a digraph, |V(D)| = n, |A(D)| = m, V(D) = m.

Let D = (V(D), A(D)) be a digraph, |V(D)| = n, |A(D)| = m, $V(D) = \{v_1, v_2, \dots, v_n\}$. The line digraph of D, denoted by L(D), is the digraph with vertex set $V(L(D)) = \{a_{ij} | a_{ij} = (v_i, v_j) \text{ is an arc in } D\}$, and a vertex a_{ij} is adjacent to a vertex a_{st} in L(D) if and only if $v_j = v_s$ in D. The total

^{*}The research is supported by NSFC (No.10671165) and XJEDU (No.2004G05).

[†]Corresponding author. E-mail: mjx@xju.edu.cn (J.Meng); liujuan1999@126.com (J.Liu).

digraph of D, denoted by T(D), is a digraph with vertex-set $V(T(D)) = V(D) \cup A(D)$, there is an arc $(a, b) \in A(T(D))$ from vertex a to vertex b in T(D) if and only if one of following four cases holds:

- (1). If $a \in V(D)$ and $b \in V(D)$, then $(a, b) \in A(D)$.
- (2). If $a \in V(D)$ and $b \in A(D)$, then a is the tail of arc b in D.
- (3). If $a \in A(D)$ and $b \in V(D)$, then b is the head of arc a in D.
- (4). If $a \in A(D)$ and $b \in A(D)$, then the head of arc a is the tail of arc b in D.

In fact, the total digraph T(D) can be viewed as $V(T(D)) = V(D) \cup V(L(D))$ and $A(T(D)) = A(D) \cup A(L(D)) \cup A(D, L(D))$, where A(D, L(D)) denotes the arcs with one end in V(D) and the other end in V(L(D)). For each vertex $v \in V(D)$, $d_{T(D)}^+(v) = 2d_D^+(v)$, since there are $d_D^+(v)$ outarcs from v to vertices in V(D) and $d_D^+(v)$ outarcs from v to vertices in V(L(D)). For each vertex $a_{ij} \in V(L(D))$, $d_{T(D)}^+(a_{ij}) = d_D^+(v_j) + 1$, since $d_{L(D)}^+(a_{ij}) = d_D^+(v_j)$ and there are exactly one out-arc (a_{ij}, v_j) from a_{ij} to vertices in V(D). Similarly, $d_{T(D)}^-(v) = 2d_D^-(v)$, $d_{T(D)}^-(a_{ij}) = d_D^-(v_i) + 1$.

An arc-cut of a strongly connected digraph D is a set of arcs whose remove makes D no longer strongly connected. The arc-connectivity $\lambda(D)$ is the minimum cardinality of an arc-cut over all arc-cuts of D. The inequality $\lambda(D) \leq \delta(D)$ is immediate. We call a digraph D maximally arc-connected, for short $max-\lambda$, if $\lambda(D) = \delta(D)$.

For a vertex $v \in V(D)$, denote by $N_D^+(v)$ the set of out-neighbors of v, $N_D^-(v)$ the set of in-neighbors of v, $E_D^+(v)$ the set of out-arcs of v, $E_D^-(v)$ the set of in-arcs of v. A strongly connected digraph D is super-arc-connected, for short super- λ , if every minimum arc-cut is either $E_D^+(v)$ or $E_D^-(v)$ for some vertex v. The connectivity $\kappa(D)$, \max - κ , super- κ are similarly defined.

In [4], Chen characterized super-edge-connected undirected total graphs. In this paper, we study super-arc-connected and super-connected total digraphs.

The following two lemmas [7] will be used in our discussions.

Lemma 1.1. Let D be a digraph with order at least two. Then D is strongly connected if and only if the line digraph L(D) is strongly connected.

Lemma 1.2. Let D be a strongly connected digraph with order at least two. Then the subdigraph with order at least two of L(D) is strongly connected

if and only if the corresponding arc-induced subdigraph of D is strongly connected.

2 Super-arc-connected total digraphs

Theorem 2.1. Let D be a strongly connected digraph with order at least two. Then T(D) is $max-\lambda$.

Proof. Clearly, $\delta(L(D)) = \delta(D) \geq 1$, $\delta(T(D)) = \delta(D) + 1$. In order to prove T(D) is max- λ , it suffices to show that $\lambda(T(D)) \geq \delta(T(D)) = \delta(D) + 1$. Let S be a minimum arc-cut of T(D), then there exists a nonempty proper vertex subset $X \subseteq V(T(D))$ such that there is no arc from X to \overline{X} in T(D) - S, where $\overline{X} = V(T(D)) \setminus X$.

We consider three cases.

Case 1. $X \subseteq V(D)$.

If |X| = 1, then $|S| \ge \delta(T(D))$. If $n - 1 \ge |X| \ge 2$, since D - S is no longer strongly connected, and every vertex $v \in X$ has $d_D^+(v) \ge \delta(D)$ out-neighbors in V(L(D)), we have

$$|S| \ge \lambda(D) + |X| \cdot \delta(D) > \delta(D) + 1.$$

Finally, if |X| = n, then

$$|S| \ge n\delta(D) \ge \delta(D) + 1. \tag{1}$$

Case 2. $X \subseteq V(L(D))$.

If |X|=1, then $|S| \geq \delta(T(D))$. If $\delta(D) \geq |X| \geq 2$, since every vertex $a \in X$ has at least $\delta(L(D)) - (|X|-1) = \delta(D) - |X|+1$ out-neighbors in V(L(D)) and exactly one out-neighbors in V(D), we have

$$|S| \ge |X|(\delta(L(D)) - |X| + 1) + |X| > \delta(D) + 1.$$

If $m-1 \ge |X| > \delta(D)$, then

$$|S| \ge \lambda(L(D)) + |X| > \lambda(L(D)) + \delta(D) \ge \delta(D) + 1.$$

Finally, if |X| = m, then

$$|S| \ge n\delta(D) \ge \delta(D) + 1.$$
 (2)

Case 3. $X \cap V(L(D)) \neq \emptyset$ and $X \cap V(D) \neq \emptyset$.

We may suppose that $V(D) \nsubseteq X$ and $V(L(D)) \nsubseteq X$. In fact, in the case that $V(D) \subseteq X$ or $V(L(D)) \subseteq X$, by considering \overline{X} , the proof is analogous to the proof of Case 1 or Case 2. For each arc (v_i, v_j) from $X \cap V(D)$ to $\overline{X} \cap V(D)$, if the corresponding vertex $a_{ij} \in \overline{X} \cap V(L(D))$, then (v_i, a_{ij}) is an arc from X to \overline{X} ; if the corresponding vertex $a_{ij} \in X \cap V(L(D))$, then (a_{ij}, v_j) is an arc from X to \overline{X} . Hence, if $\delta(D) = 1$, then $|S| \geq 2\lambda(D) + \lambda(L(D)) = 3 > \delta(D) + 1$. Now we consider the case that $\delta(D) \geq 2$. Let $|X \cap V(D)| = n_1$ and $|X \cap V(L(D))| = n_2$.

If $\delta(D) \geq n_1 \geq 1$, then $|S| \geq 2n_1(\delta(D) - n_1 + 1) + \lambda(L(D)) > \delta(D) + 1$. If $\delta(D) \geq n_2 \geq 1$, then $|S| \geq n_2(\delta(L(D)) - n_2 + 1) + 2\lambda(D) > \delta(D) + 1$. If $n-1 \geq n_1 > \delta(D)$ and $\delta(D)(n_1-1) \geq n_2 > \delta(D)$, then

$$|S| \geq \lambda(D) + \lambda(L(D)) + \delta(D)n_1 - n_2$$

$$\geq \lambda(D) + \lambda(L(D)) + \delta(D)n_1 - \delta(D)(n_1 - 1)$$

$$> \delta(D) + 1.$$

Finally, if $n-1 \ge n_1 > \delta(D)$ and $m-1 \ge n_2 > \delta(D)(n_1-1)$, then

$$|S| \geq \lambda(D) + \lambda(L(D)) + n_2 - n_1$$
> $\lambda(D) + \lambda(L(D)) + \delta(D)(n_1 - 1) - n_1$
= $\lambda(D) + \lambda(L(D)) + n_1(\delta(D) - 1) - \delta(D)$
\geq \lambda(D) + \lambda(L(D)) + (\delta(D) + 1)(\delta(D) - 1) - \delta(D)
= \lambda(D) + \lambda(L(D)) + \delta(D)(\delta(D) - 1) - 1
\geq \delta(D) + 1.

We thus conclude that $\lambda(T(D)) \geq \delta(D) + 1$. Since $\lambda(T(D)) \leq \delta(T(D)) = \delta(D) + 1$, we have $\lambda(T(D)) = \delta(D) + 1 = \delta(T(D))$. Hence T(D) is max- λ . \Box

Theorem 2.2. Let D be a strongly connected digraph with order at least two. Then T(D) is super- λ if and only if $D \ncong \overrightarrow{K_2}$.

Proof. It is evident that if T(D) is super- λ then $D \ncong \overrightarrow{K_2}$. From the proof of Theorem 2.1, the equality $\lambda(T(D)) = \delta(T(D))$ may hold only in the following two cases: (1). $X \subseteq V(D)$ and |X| = 1 or |X| = n; (2). $X \subseteq V(L(D))$ and |X| = 1 or |X| = m. If |X| = 1, then we are done. If

|X| = n in the first case or |X| = m in the second case, then the equality holds if and only if

$$\delta(D) = 1$$
 and $|V(D)| = 2$ (see (1) and (2)), i.e. $D \cong \overrightarrow{K_2}$.

Hence if $D \ncong \overrightarrow{K_2}$, then T(D) is super- λ . The proof is completed. \square

3 Super-connected total digraphs

Theorem 3.1. Let D be a strongly connected digraph with order at least two. Then $\kappa(T(D)) \geq \min\{\delta(T(D)), \kappa(D) + \lambda(D)\}$.

Proof. Let S be a minimum vertex-cut of T(D). Then there exists a nonempty proper vertex subset $X \subseteq V(T(D))$ such that there is no arc from X to \overline{X} in T(D) - S, where $\overline{X} = V(T(D)) \setminus (X \cup S)$ and the induced subdigraph of X in T(D) is strongly connected.

We consider three cases.

Case 1. $X \subseteq V(D)$.

If |X| = 1, then $|S| \ge \delta(T(D))$. If $n - 1 \ge |X| \ge 2$, by noting that either $N_D^+(X)$ is a vertex cut of D or $N_D^+(X) = V(D) \setminus X$, and no two vertices in X may have a common out-neighbor in V(L(D)), we have

$$|S| \ge \min\{\kappa(D), n - |X|\} + |X| \cdot \delta(D) > \delta(D) + 1 = \delta(T(D)).$$

Finally, if |X| = n, then for every vertex a_{ij} of V(L(D)), there exists an arc (v_i, a_{ij}) from V(D) to V(L(D)) such that a_{ij} is the head of the arc, so S must contain all the vertices of V(L(D)). This case is impossible.

Case 2. $X \subseteq V(L(D))$.

Subcase 2.1. |X| = 1. $|S| \ge \delta(T(D))$.

Subcase 2.2. $m-1 \ge |X| \ge 2$.

Since the vertex-induced subdigraph of X in L(D) is strongly connected and it has at least two vertices, we denote the set of vertices incident with the arcs corresponding to X in D by Y, by Lemma 1.2, then Y is strongly connected and it has at least two vertices. Thus each vertex of Y is the head of one arc from X to Y.

If
$$\delta(D) = 1$$
, then

$$|S| \ge min\{\kappa(L(D)), m - |X|\} + 2 = 3 > \delta(D) + 1.$$

If $\delta(D) \geq 2$, we consider the following two subcases:

Subcase 2.2.1. $m - \kappa(L(D)) \ge |X| \ge 2$.

Suppose $a_{ij} \in X$ is a vertex such that there is at least one arc from a_{ij} to $S \cap V(L(D))$. Denote by $d = d^+_{L(D)}(a_{ij}) (= d^+_D(v_j) \ge \delta(D))$. Then there are d vertices $\{a_{jt} \in V(L(D)) | t = 1, 2, \cdots, d\}$ such that $(a_{ij}, a_{jt}) \in A(L(D))$. Write $P = \{a_{j1}, a_{j2}, \cdots, a_{jl}\} \subseteq S \cap V(L(D))$ and $Q = \{a_{j,l+1}, a_{j,l+2}, \cdots, a_{jd}\} \subset X \cap V(L(D))$, where $1 \le l \le d-1$ (note that if |P| = d, then X can not be strongly connected) Thus

$$|Y| \ge |Q| + 1.$$

If $d > \delta(D)$, then

$$|S| \ge |Q| + 1 + |P| > \delta(D) + 1 = \delta(T(D)).$$

Now we consider the case that $d = \delta(D)$.

If |Y| > |Q| + 1, then

$$|S| \ge |P| + |Y| > |P| + |Q| + 1 = \delta(D) + 1 = \delta(T(D)).$$

If |Y| = |Q| + 1, since $|Q| \le \delta(D) - 1$, then each vertex $v_h \in Y \setminus v_j$ is the tail of one arc (v_h, v_g) from Y to V(D) - Y. Then $a_{hg} \notin P$, but $a_{hg} \in S \cap V(L(D))$ and $(a_{jh}, a_{hg}) \in A(L(D))$. Thus

$$|S| \ge |P| + 2|Q| + 1 > \delta(D) + 1 = \delta(T(D)).$$

Subcase 2.2.2. $m-1 \ge |X| > m - \kappa(L(D))$.

Since there are m-|X| arcs from $S \cap V(L(D))$ to V(D), then there is a set Y with at most m-|X| vertices in V(D) which are the heads of these arcs. If |Y| = m - |X|, since $\delta(D) \geq 2$, there must exist a vertex $v_i \in Y$ which is the head of one arc from X to v_i . Thus,

$$|S| \geq m - |X| + (n - (m - |X|)) + 1 = n + 1 > \delta(D) + 1 = \delta(T(D)).$$

If |Y| < m - |X|, the above inequality obviously holds.

Subcase 2.3. |X| = m.

For every vertex v_j of V(D), there exists an arc (a_{ij}, v_j) from V(L(D)) to V(D) such that v_j is the head of the arc, so S must contain all the vertices of V(D). This case is impossible.

Case 3. $X \cap V(L(D)) \neq \emptyset$ and $X \cap V(D) \neq \emptyset$.

If $n \geq |X \cap V(D)| \geq n - \kappa(D)$ or $m > |X \cap V(L(D))| \geq m - \kappa(L(D))$, then the argument is similar to that of Case 1 or Case 2. If $n - \kappa(D) > |X \cap V(D)| \geq 1$ and $m - \kappa(L(D)) > |X \cap V(L(D))| \geq 1$, since $\kappa(L(D)) \geq \lambda(D)$, then

$$|S| \ge \kappa(D) + \kappa(L(D)) \ge \kappa(D) + \lambda(D).$$

The proof is completed. \square

Remark. Let D be a strongly connected digraph with order at least two, and $\kappa(D) + \lambda(D) < \delta(D) + 1$. Let S be a minimum arc-cut set such that every component in D-S has at least two vertices. If there exists a minimum vertex-cut set S' such that the heads(or tails) of all arcs of S are in S', then $\kappa(T(D)) = \kappa(D) + \lambda(D)$.

Corollary 3.2. Let D be a strongly connected digraph with order at least two. If $\kappa(D) + \lambda(D) \geq \delta(D) + 1$, then T(D) is max- κ .

Theorem 3.3. Let D be a strongly connected digraph with order at least two. If $\kappa(D) + \lambda(D) > \delta(D) + 1$, then T(D) is super- κ .

Proof. From the proof of Theorem 3.1, only when |X|=1, or $n-\kappa(D)>|X\cap V(D)|\geq 1$ and $m-\kappa(L(D))>|X\cap V(L(D))|\geq 1$, the equality $\lambda(T(D))=\delta(T(D))$ may hold. If |X|=1, then we are done. If $n-\kappa(D)>|X\cap V(D)|\geq 1$ and $m-\kappa(L(D))>|X\cap V(L(D))|\geq 1$, then the equality cannot hold when $\kappa(D)+\lambda(D)>\delta(D)+1$. Hence if $\kappa(D)+\lambda(D)>\delta(D)+1$, then T(D) is super- κ . The proof is completed. \square

References

- [1] J.Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, Athenaum Press Ltd, 2001.
- [2] D.Bauer, R.Tindell, The Connectivities of Line and Total Graphs, Journal of Graph Theory, 6 (1982), 197-203.
- [3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, Elsevier, New York, 1976.

- [4] J. Chen, J. Meng, Super Edge-Connectivity of Total Graph, Graph Theory Note of New York, XLIX (2005), 14-16.
- [5] D. T. Hamada, T. Nonaka, and I. Yoshimura, On the Connectivities of the Total Graph, Math.Ann. 196 (1972) 30-38.
- [6] J.M.S. Simöes-Pereira, Connectivity, Line-Connectivity, and J-Connection of the Total Graph, Math.Ann. 196 (1972) 48-57.
- [7] M.Lü, J.M. Xu, Super Connectivity of Line Graphs and Digraphs, Acta Mathematicae Applicatae Sinica, English Series, 22 (1) (2006), 43-48.