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Abstract: Let D be a strongly connected digraph with order at least two, T'(D)
denote the total digraph of D, k(D) and A(D) denote the connectivity and arc-
connectivity of D, respectively. In this paper we study super-arc-connected and
super-connected total digraphs. Following results are obtained:

1. T(D) is super-arc-connected if and only if D 2 K.

2. If k(D) + A(D) > §(D) + 1, then T'(D) is super-connected.
Key words: Total digraph; Max-arc-connected; Super-arc-connected ; Super-

connected

1 Introduction

For graph-theoretical terminology and notation not defined here we fol-
low Bondy and Murty [3]. We consider strict digraph D (digraph having
no loops and no parallel arcs are allowed ) with vertex set V(D) and arc
set A(D). For a vertex v € V(D), we denote the indegree, the outde-
gree of v, the minimum indegrees and outdegrees in D by dp(v), dB(v),
d~(D) and §*(D), respectively. We denote the minimum degree of D by
8(D) = min{é—(D),é*(D)}. I?n denotes the complete digraph of order n.

Let D = (V(D), A(D)) be a digraph, |V(D)| = n, |A(D)| = m,V(D) =
{v1,v2,--- ,vn}. The line digraph of D, denoted by L(D), is the digraph
with vertex set V(L(D)) = {aij|a:;; = (v:,v;) is an arc in D}, and a vertex
a;; is adjacent to a vertex a,; in L(D) if and only if v; = v, in D. The total
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digraph of D, denoted by T(D), is a digraph with vertex-set V(T'(D)) =
V(D)U A(D), there is an arc (a,b) € A(T(D)) from vertex a to vertex b in
T(D) if and only if one of following four cases holds:

(1). Ifa € V(D) and b € V(D), then (a,b) € A(D).

(2). If a € V(D) and b € A(D), then a is the tail of arc b in D.

(3). If a € A(D) and b € V(D), then b is the head of arc a in D.

(4). If a € A(D) and b € A(D), then the head of arc a is the tail of arc
bin D.

In fact, the total digraph T(D) can be viewed as V(T'(D)) = V(D) u
V(L(D)) and A(T(D)) = A(D)UA(L(D))UA(D, L(D)), where A(D, L(D))
denotes the arcs with one end in V(D) and the other end in V(L(D)). For
each vertex v € V(D), d T( py(v) = 2d}(v), since there are df(v) out-
arcs from v to vertices in V(D) and df(v) out-arcs from v to vertices in
V(L(D)) For each vertex a;; € V(L(D)), d;( D)(az:,) df(v;) + 1, since

L( D) (aij) = df(v;) and there are exactly one out-arc (aij,v;) from a;; to
vertices in V(D). Similarly, drpy(v) = 2dp(v), drpy(@ij) = dp(vi) + 1.

An arc-cut of a strongly connected digraph D is a set of arcs whose re-
move makes D no longer strongly connected. The arc-connectivity A(D) is
the minimum cardinality of an arc-cut over all arc-cuts of D. The inequality
A(D) < §(D) isimmediate. We call a digraph D mazimally arc-connected,
for short maz-A, if A\(D) = §(D).

For a vertex v € V(D), denote by N7 (v) the set of out-neighbors of v,
N5 (v) the set of in-neighbors of v, Ef(v) the set of out-arcs of v, Ep(v)
the set of in-arcs of v. A strongly connected digraph D is super-arc-
connected, for short super-, if every minimum arc-cut is either Ef(v)
or Ep(v) for some vertex v. The connectivity (D), maz-k, super-« are
similarly defined.

In [4], Chen characterized super-edge-connected undirected total graphs.
In this paper, we study super-arc-connected and super-connected total di-
graphs.

The following two lemmas (7] will be used in our discussions.

Lemma 1.1. Let D be a digraph with order at least two. Then D is strongly
connected if and only if the line digraph L(D) is strongly connected.

Lemma 1.2. Let D be a strongly connected digraph with order at least two.
Then the subdigraph with order at least two of L(D) is strongly connected
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if and only if the corresponding arc-induced subdigraph of D is strongly
connected.

2 Super-arc-connected total digraphs

Theorem 2.1. Let D be a strongly connected digraph with order at least
two. Then T'(D) is maz-A.

Proof. Clearly, §(L(D)) = &(D) 2 1, §(T(D)) = 6(D) + 1. In order to
prove T(D) is max-), it suffices to show that A(T(D)) > 6(T(D)) = 6(D)+
1. Let S be a minimum arc-cut of T(D), then there exists a nonempty
proper vertex subset X C V(T'(D)) such that there is no arc from X to X
in T(D) — S, where X = V(T(D))\X.

We consider three cases.

Case 1. X C V(D).

If | X| = 1, then |S| = 6(T(D)). f n =1 > |X| > 2, since D — S is
no longer strongly connected, and every vertex v € X has d}(v) > §(D)
out-neighbors in V(L(D)), we have

IS| = AM(D) + | X|-6(D) > §(D) + 1.
Finally, if | X| = n, then
|S| = né(D) 2 6(D) + 1. (1)

Case 2. X C V(L(D)).

If |X| =1, then |S| > §(T(D)). If 6(D) > |X| > 2, since every vertex
a € X has at least §(L(D)) - (|X| — 1) = 6(D) — | X| + 1 out-neighbors in
V(L(D)) and exactly one out-neighbors in V(D), we have

IS 2 |X|(6(L(D)) — | X| + 1) + | X[ > 6(D) + 1.
Ifm~-12|X|> D), then
151 2 A(L(D)) + | X| > A(L(D)) + (D) > 6(D) + 1.

Finally, if |X| = m, then

S| = né(D) > 6(D) +1. @)
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Case 3. XNV(L(D)) # @ and X NV (D) # 2.

We may suppose that V(D) € X and V(L(D)) ¢ X. In fact, in the case
that V(D) C X or V(L(D)) C X, by considering X, the proof is analogous
to the proof of Case 1 or Case 2. For each arc (v;,v;) from X N V(D) to
X NV(D), if the corresponding vertex a;; € X N V(L(D)), then (v;, aij)
is an arc from X to X; if the corresponding vertex a;; € X N V(L(D)),
then (aij,v;) is an arc from X to X. Hence, if §(D) = 1, then |S| >
2MD)+ML(D)) =3 > §(D)+ 1. Now we consider the case that §(D) > 2.
Let | X NnV(D)| = ny and | X NV (L(D))| = ns.

If §(D) =2 ny 2 1, then |S| > 2n,(6(D) — ny + 1) + AM(L(D)) > §(D) + 1.
If 6(D) > ng 2> 1, then |S| > na(6(L(D)) —ng + 1)+ 2X(D) > 6(D) + 1. If
n—12>mn; > §(D) and §(D)(n1 — 1) > ny > §(D), then

IS 2 A(D) + ML(D)) + 8(D)n1 — e

> MD)+ML(D)) + 6(D)n1 — §(D)(ny ~ 1)

> 6(D)+1.

Finally, if n — 1> n; > §(D) and m - 1 > ng > §(D)(ny — 1)) , then

|51

\Y

AD) + ML(D)) +n2 —m

A(D) + ML(D)) + 6(D)(ny — 1) = my

A(D) + AL(D)) + n1(6(D) — 1) — (D)

A(D) + ML(D)) + (§(D) + 1)(8(D) — 1) — §(D)
A(D) + M(L(D)) + 8(D)(8(D) —1) ~ 1

8(D) +1.

v v

v

We thus conclude that A(T'(D)) 2 6(D)+1. Since A(T(D)) < §(T(D)) =
§(D) + 1, we have \(T'(D)) = 8(D) + 1 = 6(T(D)). Hence T(D) is max-A.
O

Theorem 2.2. Let D be a strongly connected digraph with order at least
—
two. Then T(D) is super-A if and only if D % K.

Proof. It is evident that if T(D) is super-A then D 2 I?; From the
proof of Theorem 2.1, the equality A(T'(D)) = 6(T(D)) may hold only in
the following two cases: (1). X C V(D) and |X| =1 or |X| = n; (2).
X CV(L(D)) and |X| =1 or |X| =m. If | X| =1, then we are done. If
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|X| = n in the first case or |X| = m in the second case, then the equality
holds if and only if

§(D) =1 and [V(D)| = 2 (see (1) and (2)), i.e. D= Ks.
Hence if D & I?; , then T'(D) is super-A. The proof is completed. O

3 Super-connected total digraphs

Theorem 3.1. Let D be a strongly connected digraph with order at least
two. Then x(T(D)) > min{6(T(D)),x(D) + A(D)} .

Proof. Let S be a minimum vertex-cut of T'(D). Then there exists a
nonempty proper vertex subset X C V(T(D)) such that there is no arc
from X to X in T(D) — 8, where X = V(T(D))\(X U S) and the induced
subdigraph of X in T'(D) is strongly connected.

We consider three cases.

Case 1. X C V(D).

If | X| =1, then |S| > 6(T(D)). If n — 1 > | X| > 2, by noting that either
N} (X) is a vertex cut of D or N (X) = V(D)\X, and no two vertices in
X may have a common out-neighbor in V(L(D)), we have

S| > min{x(D),n — | X[} +|X] - 6(D) > 5(D) + 1 = 6(T(D)).

Finally, if |X| = n, then for every vertex a;; of V(L(D)) , there exists an
arc (v;, a;;) from V(D) to V(L(D)) such that a;; is the head of the arc, so
S must contain all the vertices of V(L(D)). This case is impossible.

Case 2. X C V(L(D)).

Subcase 2.1. | X|=1. |S| = §(T(D)).

Subcase 2.2. m—-12> |X]| > 2.

Since the vertex-induced subdigraph of X in L(D) is strongly connected
and it has at least two vertices, we denote the set of vertices incident with
the arcs corresponding to X in D by Y, by Lemma 1.2, then Y is strongly
connected and it has at least two vertices. Thus each vertex of Y is the
head of one arc from X to Y.

If §(D) = 1, then

S| > min{k(L(D)),m — | X|} +2 =3 > 6(D) + 1.
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If 8(D) > 2, we consider the following two subcases:

Subcase 2.2.1. m — k(L(D)) > | X| > 2.

Suppose a;; € X is a vertex such that there is at least one arc from a;; to
SNV (L(D)). Denote by d = d"L'(D)(a,-j)(= dE(v;) = 6(D)). Then there are
d vertices {a;c € V(L(D))|t = 1,2,---,d} such that (ai;,a;) € A(L(D)).
Write P = {a,—l,ajg, cee ,ajz} - SﬂV(L(D)) and @ = {aj,1+1,aj,[+2, ey a,-d}
C XNV(L(D)), where 1 <1 <d—1 ( note that if |P| = d, then X can
not be strongly connected) Thus

. Y]> Q]+ 1.
If d > 6(D), then
IS] > |QI + 1+ |P| > (D) + 1 = §(T(D)).

Now we consider the case that d = §(D).
If Y| > |Q| + 1, then

ISt 2 |P| + Y| > |P| +|Q| + 1 = §(D) + 1 = §(T(D)).

If |Y] = |Q| + 1, since |Q| < (D) — 1, then each vertex vy € Y \ v;
is the tail of one arc (wn,vy) from Y to V(D) — Y. Then ap, ¢ P, but
apg € SNV(L(D)) and (ajr,ang) € A(L(D)). Thus

IS| = |P|+2|Q| + 1> &(D) + 1 =4§(T(D)).

Subcase 2.2.2. m — 1 > |X| > m — &(L(D)).

Since there are m — | X| arcs from SNV (L(D)) to V(D), then there is a
set Y with at most m — | X| vertices in V(D) which are the heads of these
arcs. If [Y] = m — |X|, since 6(D) > 2, there must exist a vertex v; € Y
which is the head of one arc from X to v;. Thus,

IS|2m—|X|+(®—-(m—|X]))+1=n+1>8D)+1=5T(D)).

If Y] < m — | X|, the above inequality obviously holds.

Subcase 2.3. | X|=m.

For every vertex v; of V(D) , there exists an arc (aij,v;) from V(L(D))
to V(D) such that v; is the head of the arc, so § must contain all the
vertices of V(D). This case is impossible.
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Case 3. XNV(L(D)) # @ and XNV (D) # 2.

Ifn>|XNV(D)| >n-x&(D)orm>|XnV(L(D))| = m-— «x(L(D)),
then the argument is similar to that of Case 1 or Case 2. If n— (D) > | XN
V(D)| = 1 and m — s(L(D)) > | X nV(L(D))| > 1, since s(L(D)) = A(D),
then

S| 2 K(D) + s(L(D)) 2 (D) + A(D).

The proof is completed. O

Remark. Let D be a strongly connected digraph with order at least two,
and k(D) + A(D) < &(D) + 1. Let S be a minimum arc-cut set such
that every component in D — S has at least two vertices. If there exists a
minimum vertex-cut set S such that the heads(or tails) of all arcs of S are
in S, then k(T(D)) = (D) + MD).

Corollary 3.2. Let D be a strongly connected digraph with order at least
two. If k(D) + A(D) = 6(D) + 1, then T(D) is maz-k.

Theorem 3.3. Let D be a strongly connected digraph with order at least
two. If k(D) + A(D) > §(D) + 1, then T(D) is super-x.

Proof. From the proof of Theorem 3.1, only when |X| =1, or n — x(D) >
X nV(D)| > 1 and m — &(L(D)) > | X NV(L(D))| =2 1, the equality
AMT(D)) = 6(T(D)) may hold. If | X| = 1, then we are done. If n — k(D) >
|X NV (D)| 21 and m — &(L(D)) > | X NV (L(D))| 2 1, then the equality
cannot hold when x(D)+A(D) > 6(D)+1. Hence if k(D)+A(D) > 6(D)+1,
then T'(D) is super-. The proof is completed. O

References

(1] J.Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Appli-
cations, Athenaum Press Ltd, 2001.

[2] D.Bauer, R.Tindell, The Connectivities of Line and Total Graphs,
Journal of Graph Theory, 6 (1982), 197-203.

[3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmil-
lan, London, Elsevier, New York, 1976.

103



[4] J. Chen, J. Meng , Super Edge-Connectivity of Total Graph, Graph
Theory Note of New York, XLIX (2005), 14-16.

(5] D. T. Hamada, T. Nonaka, and I. Yoshimura, On the Connectivities
of the Total Graph, Math.Ann. 196 (1972) 30-38.

[6] J.M.S. Simdes-Pereira, Connectivity, Line-Connectivity, and J-
Connection of the Total Graph, Math.Ann. 196 (1972) 48-57.

[7] M.Lii, J.M. Xu, Super Connectivity of Line Graphs and Digraphs,
Acta Mathematicae Applicatae Sinica,English Series, 22 (1) (2006),
43-48.

104



