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Abstract. We consider the lattice of order ideals of the union of an
n- element fence and an antichain of size i, whose Hasse diagram turns
out to be isomorphic to the i-th extended Fibonacci cube. We prove that
the Whitney numbers of these lattices form a unimodal sequence satisfying
a particular property, called alternating, we find the mazimum level of the
same sequence and determine the ezact values of these numbers.
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1 Introduction

We recall [10] that a ranked poset is a poset P with a function r:
P — N, called rank, such that r(y) =r(z)+1 for all elements z,y € P
with = covered by y. When P is finite, the function r is usually
chosen so that the minimal elements have rank 0. The height of P is its
maximum rank.

The Whitney number Wy (P) of a ranked poset P is the number
of elements of rank k and the rank polynomial of P is the polynomial
W(P;q) which has these numbers as coefficients, i.e.

W(Piq) = Wi(P) ¢*.
k>0

As it is well known, the set J(P) of all order ideals of a poset P,
ordered by inclusion, is a distributive lattice. If P is finite, then J(P)
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is ranked with height |P| and its rank polynomial is monic with degree
|P|.

We also recall that the fence, or zigzag poset, of order n is the poset
Zp = {z1,%2, -+ ,zp} inwhich z; < zo > z3 < --- are the cover relations.
Denote by Z: the poset formed by the union of an n-element fence and an
antichain of size i.

It is known [6] that the simple graph underlying the Hasse diagram of
J(Z,) isisomorphic with the Fibonacci cube Ty, , which is the graph whose
vertices are the binary strings of length n without two consecutive ones
and whose edges are the pairs of vertices with unitary Hamming distance.

The extended Fibonacci cubes, introduced by Wu [11], are constructed
by the same recursive relation as the Fibonacci cube, but with different
initial conditions. For positive i,n, with n > %, the ith extended Fi-
bonacci cube of order n, denoted by I, is an induced subgraph of Qy,
where V(i) = V;! is defined recursively by the relation

Vayz =0Va, +10V;

with initial conditions V;' = By, V;},| = Bi;1, where By denotes the set of
binary strings of length k. Thus I’} = Q;, '}, ; = Q41 and in general, when
n > i+ 2, the vertices of I'}, are (0,1)-strings in which last i positions are
vertices of Q; and the first n—: positions are vertices of I',_;. Therefore the
first n — ¢ and the following i positions of a vertex of I}, represent an order
ideal of F,,_; and an order ideal of an i-element antichain, respectively. As
a consequence, we obtain the following Proposition, where for convenience

of notation in the rest of the article, we consider I';,;, n > 0.

Proposition 1 The ith-eztended Fibonacci cube of order n+1i, n > 0, is
isomorphic to the Hasse diagram of the lattice of order ideals of Z:.

Another consequence is that we are able to determine the rank polyno-
mial of J(Zi), say F:, as product of the corresponding polynomials of
J(Z,) and J(iZ,).

Definition Let Cy, = {cg, ¢y, ..., cm } be a2 unimodal sequence of positive
real numbers having maximum at the | %] position.

We call C,,, right-alternating (also denoted r-alternating)

when, for n = | 2]

€pn 2Cnt1 2Cn1 2Cn42 2Cn—2 2Cn43 2 ... 2C0 2 Cm
and we call C,, left-alternating (l-alternating) when

Cn 2 Cn12Cntl 2Cn-2 2 Cn42 2 . 2 € 2 Cr.
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It is easy to see that Cy, is r-alternating if and only if the following two
inequalities are satisfied:

Ri:cnj < Cnyj (1)

and

R2:cn—j 2 Cnyjs1 (2)
foe every 0 < j < n and n = |%]. Similarly Cy, is l-alternating if and
only if the following two inequalities hold:
Ly:cnj 2 Cntj (3)
and
Ly :cn-j < cCnyj-1 (4)
where 0 < j < n.
In the case of m odd, say m =2n+1, n > 1, C,, is called reflective when

Cn—j = Catj+1

where 0 < j < n.

In this paper we prove that the Whitney numbers of the lattice J(Z}
of order ideals of the union of an n-element fence and an i- antichain form
an alternating unimodal sequence. Moreover we find the maximum level of
the same sequence and we determine the exact values of these numbers.
These results turn out to be a contribution to the study of unimodality
results for various posets.

2 Whitney numbers of the Fibonacci lattices
In [6] it is proved that the simple graph underlying the Hasse diagram

of J(Z,) is isomorphic to the Fibonacci cube I'y,. Recall that the rank
polynomial of the Fibonacci cube is

Fo(@)=)_ fakd"
k=0

where fnx = Wi(J(Z,)). It is proved [7] that the polynomials Fy(g) are
unimodal, symmetric whenever n is even, having the maximum level in the
|n/2]-th position. Moreover they satisfy the recurrences

Fotni1y(@) = Fant1(9) + ¢*-F2a(q)
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and
Fony1)+1(9) = ¢.Fany1) + Fony1(g).
which imply the following recurrences for the Whitney numbers

Sont2.642 = font1k+2 + fonk (5)
and
Jon+3k+2 = fons2,k41 + font1 k42 (6)

In Fig. 1 we represent the sequences of the coefficients of F,(gq) for the
first values of n.

n\k|01 2 3 45 6 7 8 9

111

21111

3121 1

4 1122 21

51133 3 21

6 (134 5 4 3 1

71146 7 75 31

8 11471011107 4 1

9 |151014 171613 8 4 1

10 (151118 24 26 24 1811 5 1

11 {1 6 15 25 3540 39 3222125 1
Fig. 1

Proposition 2 The elements of the sequence {font+3x,0 < k < 2n + 3}
satisfy the inequalities:
font3mi1-i 2 foni3nsis2 (M

where 0 <z < n.

Proof.
In [7] it is proved that the sequence {f2n+3 k}« is unimodal, with max-
imum at k = n + 1. By (6), the inequality (7) is equivalent to

Jonton—i + font1n+1-i 2 font2,n41+i + font1nt24ie

Because n—i = n+1—(i+1), by the symmetry of the sequence fan2k, it
follows fant2,n—i = font2n+i+2 aNd font2n+14i = fon+2,n+1-i; then from

(5)

font1n+24it fonntit fonsint1-i 2 fontinti-it fonn—io1+ fons 1nt2+i
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Since fonn—i-1 = fonn+i+1, it remains

f2'n,n+‘i 2 f2n,n+i+l

which is satisfied by the unimodality of the sequence { fon i}« having max-
imum at k = n. Thus the result follows. o

Proposition 3 The elements of the sequence {font+3x,0 < k < 2n + 3}
satisfy the inequalities:

Sont3n+1-i < font3nt14i (8)
where 0 <1 <mn.
Proof. By (6), the inequality (8) is equivalent to
Jont2,m—i + fonsrnr1-i £ font2nti + fondtntitr
By the symmetry of the sequence {fant+2,k}, We obtain fon 2 nt1—(i+1) =

Sontomtit2 and fonion+i = foni2,n-i+2; then, by (5) and (6)

Fontintit2 + fonnti + fonn—i + fon—1n41-4
< fonstm—it2 + fonn—i + fonnti + fon—1ntit
and
Ponnrititfon—1ntit2tfon—1n+1-i  Ponp—iv1+fon—1n—iv2+fon-1,n+i+1-
Applying again (5) we obtain
Son—intit1 + fon—2n4i-1 + fon—1ntiv2 + fon—1n41-i S

< fon—1n-it1 + fon—2n—-i-1 + fon—1,n—i+2 + fon—1n+14i-

By the symmetry of {fan—2x}x With respect to the (n —1)-position it is
fon-2.n+i—1 = fan—2,n—i—1. Moreover by Proposition 2 and the unimodal-
ity of the sequence {fon—1,}, we have

Jfon—tn-1-(i-3) 2 fon—1n-14i-3+1 = fon—1,n-1+i-2+5

which proves the result. m]

Proposition 4 Forn odd, the sequence { fn i} is unimodal, has mazimum
at | ) and it is r-alternating.

Proof. 1t follows from (1), {(2) and Propositions 2 and 3. m]
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3 Rank-polynomial of J(I')

_ Let F3(q) be the rank polynomial of the lattice J(T'%); thus, by setting
fax = Wi(J(Z}) ), we have

Fi@=F -0+ =Q_fild)1+a =) fid

and ' ) _
k= fak + Fais (9)
where f3 0= fo' and F(g) = Fa(9)-

Lemma 1 The sequence {f, ,,0 < k < n} is unimodal and has mazimum
atk = [%ij ; for n odd it is l-alternating, while for n even it is reflective.

Proof. The result is true for every n < 7. Assume n > 8. Recall the
sequence {fn i}« is unimodal and its maximum is at the position k = [}].
Thus

Jan £ fantr

for 0<h<|%] -1 Then fon-1 < fan,forl1 <h<|%] -1, and by
(9) it follows

1 1
ah S fant1-

for0<h<|3] -1
On the other hand, for A > |3| + 1, far—1 = fan and also fnn >
fn,h+1; then again by (9) it follows

Jan 2 fans
Now we prove that, for n odd,
1 1
Jaig) S famp

that is
falg1+ faigi-r S Sanpr + fo o0
It suffices to show that the inequality

fn,[i‘-_]—l < fn,[n;lj

is satisfied, but this follows immediately from Proposition 3.
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Now, let n = 2m, m > 1, be even; then from the condition that fn x is
symmetric, having maximum at k = m we obtain

fn,m—j + fn,m—j—l = fn.m+j+l + fn,m+j

which is equivalent to
1 3 |
nm—j = fn,rn+j+l'

]

In Fig. 2 we display the sequences of the coefficients of F(q) for the
first values of n.

A\k[01 2 3 4 56789

11121

2112 2 1

3133 21

41134 4 3 1

51146 6 5 31

61147 9 9 741

7115101314 12841
Fig. 2

Denote by Ri, Ri and Li, L} the inequalities (1), (2) and (3), (4)
respectively when they involve the sequence of the coefficients of the rank-
polynomial of the i-th extended Fibonacci cube.

Theorem 1 Let n =2m + 1 be odd, m > 1. Then the sequence {f,‘;,k;O <
k < n,0 < i} is unimodal, has mazimum at k = |2}] and it s right or
left alternating depending on 1 even or odd respectively.

Proof. The proof is by induction on i. The result is true for : = 0,1

from Proposition 4 and Lemma 1. Let us assume it is true for every integer

lesser than 7 and we prove for 7.

Let i = 2t, ¢t > 0; then i—1 is odd and by assumption, the sequence { f:‘:l‘; 1

is unimodal, has maximum at k = (m +t) and it is left-alternating.
First we prove that { f:;_ .} is unimodal, having maximum at k = (m-+t).

For 1 < j € m + ¢ the inequality

i 1
n,m+tt—j < fn,m+t—j+l

is equivalent to the inequality

i-1 i—1 i-1 i-1
Somrt—i T famit—im1 S famat—jer + Frmae—;
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which is satisfied by the inductive hypothesis. Moreover by the same reason
and the same values of j, it is possible to prove

1
fn mtt+j = fn m+t+j+1

It remains to find an order relation between f} .., and fi .., ;. The
inequality ] '

Jamst 2 famies
is equivalent to

m+t + nm+t—l > f‘,m+t+l + nm+t

which is satisfied by L{~!’s assumption.
Now we prove the given sequence is right-alternating, that is R} and R}
are satisfied. We may see that R} coincides with the inequality

f:a TMmtt—j = f'n. m+t+j

that is
i i1 i1 i1
nmtt—j T Snmit—ic1 < famieri T Frnmttioa
which is satisfied by the assumption of L™ !.
R}, coincides with the inequality
f:u gntt—j = fn wmt+t+ji+1
equivalent to

i—1 i1 i-1 i1
nmtt—i T Inmat—j—1 2 Jamirrinr ¥ Fameess

which is satisfied by the assumption of L'i'l.

Now consider the case of 1 odd, say i =2t +1,¢ > 0. Theni—1 is even
and by assumption f:;",cl is unimodal, has maximum in position m + ¢t and
is right-alternating.

Proving that f:;,k is unimodal is essentially identical to the case of i even.
Our aim now is to prove that the maximum is in position m+ ¢+ 1 and it
is l-alternating. Indeed the inequality

n mtt = < fn m+t+1

is equivalent to

m+t+ nm+t— < fn m+t+1 +f ,m+t

112



which is satisfied by the assumption of Ri™'. Moreover L} is satisfied;

indeed
i i
Jamiteioj 2 fomttritj

is equivalent to

i—1
nm+t+1-3 + 'n. m+t—J = f ,m+t+_1+l + ﬂm+t+_7

which holds by Rs~!.
Finally L coincides with the inequality
f'rix,m+t+l—j < f'lil,m+t+j

equivalent to

i—1 i— i—1
n,m+t+1—j + n m+t—J i f .m+t+_7 + j:,m+l+j—l

satisfied by the assumption of Ril_l.
(m}

Notice that the unimodality’s property of Theorem 1 is also a conse-
quence of the condition that the product of a log-concave polynomial and
a unimodal polynomial remains unimodal.

For example, consider the case of n» = 5. In Fig. 3 we display the
sequences of the values of fj , for the first values of i.

\Nkj01 2 3 45 6 7889

0]133 3 21

1/]146 6 5 31

215101211 8 4 1

3161522231912 5 1

4 11 7213745423117 61
Fig. 3

Theorem 2 Let n = 2m be even, m > 1. Then the sequence {f} ;0 <
k < n,0 < i} is unimodal, has mazimum at k = [ﬁ,f—‘] and it is symmelric
or reflective depending on i even or odd respectively.

Proof. The proof of the unimodality and the position of the maximum
is practically identical to the odd case; now we want to prove that it is
symmetric or reflective depending on ¢ even or odd respectively.
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We proceed by induction on the value of i. Let 7 even, say i = 2¢, ¢t > 1.
The condition of simmetry

4 1
nm+t—j = Inm+t+j

where 0 < j < m + ¢, is equivalent by (9) to the equality

i— i—1
f ,m+t—_1+ nm-H.—J 1= nm+t+_7+ nm+t+J 1

By assumption the sequence n ,c is reflective with maximum in positions
m+t—1and m+ ¢t Thus

i-1 _ i1
nam+t—1-3j = Inm+t+j

and
i—1 _ fi-1
f;,m-i-t—l—(j—-l) = :z,m+t+j—l
and the result follows. Now, let us assume that ¢ is odd, say i = 2¢ + 1,

t > 0; our aim is to prove that the sequence f,‘;'k is reflective with maximum
at m+t and m + ¢+ 1. The equality

:l.m-H-j = f:t,m+t+l+:i
where 0 < j < m + ¢, is equivalent to the equality

i—1 -1
fnm+¢—J+f nm+t—j—1 = fnm+t+.1+l+ nm+t+j°

By assumption f,’;"kl is symmetric with maximum at k = m+¢; this implies
i—1 _ gim1 i1
:n,'m.+t-—j - :&,m-{-t-*-J a'nd n m+t (G+1) = nym+t+i4+1° Then the I'esult
follows. O

As an example of the above property, consider the case of n = 4. In
Fig. 4 we display the sequences of the values of fj' & for the first values of i.

A\k[01 2 3456789

2 1
4 3
7 7

[

1
51
661

SN =O
[ S —ry
Sy On s W N

—

2
4
8
15
26

N
D =
[u—y

5
0

O =

1
6

Fig. 4
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4 Whitney numbers of J(Z%)

The aim of this section is determining an explicit expression for the
Whitney numbers of J(Z%). First we consider a combinatorial interpreta-
tion of the Whitney numbers of J(Z2n+1) and find their exact value, using
the corresponding values of J(Z25), calculated in [7].

Recall some basic definitions. A multiset on aset Sisa functionp:S — N,
where N is the set of the natural numbers; p(z) is the multiplicity of the
element = € S; the order of u is the sum of all the multiplicities, that is

ord(p) =Y p(z).

z€ES

A 2-filtering multiset on S is a multiset z such that u(z) < 2, for
each z € S. We write M,(“",)c for the set of all the 2-filtering multisets on
[7] :=1{1,2,...,n} of order k.

The size of M) is given by the trinomial coefficient (™3) ; clearly,

n,

from the combinatorial meaning of these coefficients, it follows the equality

(1+q+¢)" = i (n;c3) q*.

k=0

First we give a combinatorial interpretation of the ideals of the fence
Zon41 in terms of a suitable kind of multisets on [n +1].

For simplicity we write zj,...,Zn41 for the elements of rank 0 of
Zon+1 and yi,...,yn for those of rank 1, so that y; covers z; and
Tit+1 for 1§z§n.

To an ideal I of Zzn,t+1 we associate the multiset p on [n+ 1]
defined by

0 if IiQI, ygéf
p(i):{l ifziel, yu &l
2 ifz;€l, y;€l.
with the condition that wu(zn+1) # 2. Clearly [ is an ideal of Zsn4)
if and only if u is a 2-filtering multiset on [n + 1] where u(n + 1) can
not be 2. Thus we consider all the multisets 2-filtering on [n + 1] of order
k which satisfy the condition that if u(i) = 2, then u(i + 1) # 0, where
1 <1 < n and we delete all the multisets which have last element equal to
2, which can be considered as all the possible multisets 2-filtering on [r] of
order k — 2. By using the identity proved in [7], we obtain the following

Proposition 5 The Whitney numbers of J(Zan+1) have the explicit ez-
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pression

122 .
font1,6 = fonsok — fon k-2 = Z (n+: z) (n +kl 21’ )( 1)'—
= (10)

i(n:z) (:—_22: :231) (-1)". (1)

Now let I be an order ideal of Z} of order k. It is easy to see that [ is
formed by an order ideal of Z, of order r and an order ideal of i copies of
Z, of order s, such that r 4+ s = k; moreover the number of similar ideals
is obtained as a product of the numbers of order ideals of Z,, of order r by
the number of order ideals of i copies of Z; of order s. This implies that

k=Y fnr()

r+s=k

where 0 <7 <nand 0 < s <i. In the case of n = 2m even, m > 1,

e EE (7))o ()

r+s=k j=0

while for n = 2m + 1, we have

Fomire= D (L§J (m+1— )(mtl % )( 1)?

r+s=k j=0

BT ()
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