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1 Introduction

A generalised whist tournament design, as discussed in [1], is a schedule
of games for a tournament involving v players to be played in v — 1 or v
rounds (depending on the number of players involved). For the purposes
of this work, which will be dealing with tournaments on p elements, where
p = 7 (mod 12) is prime, the tournaments will be arranged into v rounds.
A game involves k players in a multi-team game with teams of ¢ players
competing, and a round consists of (v — 1)/k (or v/k) simultaneous games,
with a player playing in at most one of these. The schedule must also be
balanced in the sense that each pair of players play together as teammates
in (¢t — 1) games, and as opponents in (k —t) games. Such a schedule of
games will be denoted by (¢, k) GWhD(v).

Here, we will be looking at a specific type of (2,6) GWhD(6m + 1) on
6m + 1 players. (2,6) GWhD(v) are discussed in [2]. Such a design is a
schedule of games (or tables) (e, b;c, d;e, f) involving 3 teams of 2 players
competing against each other such that

i. the games are arranged into 6m + 1 rounds each of m games;
ii. each player plays in exactly one game in all but one round;
iii. each player partners every other player exactly once;
iv. each player opposes every other player exactly four times.

If we consider the players as being seated around a circular table, then we
can think of (a, b;c,d;e, f) as the ordered block {a,c,e,b,d, f}. Suppose
that (a,b;c, d;e, f) is a game in a (2,6) GWhD(6m + 1). Then we say
that the pairs {a,b}, {c,d}, {e, f} are pariners. {a,c}, {b, e}, {d, f} are
said to be pairs of opponents of the first kind. {a, e}, {b,d}, {c, f} are said
to be pairs of opponents of the second kind. {a, f}, {b,c}, {d, e} are said
to be pairs of opponents of the third kind. {a,d}, {b, f}, {c,e} are said
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to be pairs of opponents of the fourth kind. This (2,6) GWhD(6m + 1)
is described as a moore (2,6) GWhD(6m + 1) if every player has every
other player exactly once as an opponent of the first kind, opponent of the
second kind, opponent of the third kind and opponent of the fourth kind.
These are called moore tournaments because of E. H. Moore’s discussion of
a similar specialisation of whist tournaments in [7], and were first referred
to as such in [5]. If we consider our block {a,c,e,b,d, f} as players sitting
at a circular table in the given order, then we can refer to c as a's first left
hand opponent, e as a’s second left hand opponent, f as a’s first right hand
opponent and d as a’s second right hand opponent. We can make similar
definitions for each of b, c, d, e and f. A directed (2,6) GWhD(6m + 1) is
a (2,6) GWhD(6m + 1) in which each player is a first left hand opponent,
second left hand opponent, first right hand opponent and second right hand
opponent of every other player exactly once.

If the players are elements of Zgy, 1, and if the itk round is obtained from
the initial (first) round by adding i — 1 to each element (mod 6m + 1), then
we say that the tournament is Z-cyclic. By convention we always take the
initial round to be the round from which 0 is absent. The games (tables)

(al: bl; Ci, dl; €1, fl), seey (am: bm; cm;dm;emy frn)

form the initial round of a Z-cyclic moore (2, 6) generalised whist tourna-
ment design if

Q{ae,b,-;q,di;ei, fi} = Zemy1 — {0} (A)
g{i(af = bi), £(c; — di), £(ei = fi)} = Zem+1 — {0} (B)
Q{i(ai — ), £(b; — €:), £(di — f;)} = Zm+1 — {0} (C)
g{i(ai — &), £(bi — di), £(ci - fi)} = Zem+1 — {0} (D)
:l{i(ai = fi)y (b — i), £(d; — €:)} = Zem41 — {0} (E)
:{ﬂ:(af —di),£(b: — fi),£(ci - €)} = Zem+1 — {0} (F)
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These games form a directed (2,6) GWhD(6m + 1) if, in addition to sat-
isfying (A) and (B),

m

{(ei — @), (&5 = 1), (bs — €:), (di — bi), (fi — di), (e — fi)}
1

=

= Zem+1 — {0} (G)

U{(ei - ai), (bi — ci), (di — €;), (fi — b:), (a: — di), (ci — £i)}

i=1
= Zsm+1 — {0} (H)

We shall now show that a Z-cyclic directed moore (2,6) GWhD(v) exists
for all v whenever v is a prime p = 7 (mod 12), with the definite exception
of p =7, and the possible exception of p =19 and p = 31.

The proof which follows will involve using ideas first discussed by Buratti
in [4], and also used in [3]. The theorem of Weil on multiplicative character
sums [6, Theorem 5.41] is used. Iere is the statement of Weil’s theorem, in
which the convention is understood that if ¥ is a multiplicative character
of GF(q), then ¥(0) = 0. Adopting this convention we have ¥(zy) =
¥(z)(y) for all (z,y) € CF(g) x GF(g).

Theorem 1.1 Let v be a character of order m > 1 of the finite field GF(q).
Let f be a polynomial of GF(q)[x] which is nol of the form kg™ for some
k € GF(q) and some g € GF(q)[z]. Then we have

> $(f(=)

zEGF(q)

<(@-1vq

where d is the number of distinct roots of f in its splitting field over GF(q).

Notation. Any nonzero element k of Z, can be expressed as 6™ where @ is
a primitive root of p. If b | p — 1 and if m = a (mod b), we say that k € CS.

2 The Existence Theorem

We now take a close look at a construction and find the conditions which
must be satisfied for it to produce a directed moore (2,6) GWhD(6m +1).
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So let p = 12t 4+ 7 be prime and let 6 be a primitive root of p. We now
present a construction.

Construction 1 (1, -1;z, —z;22, —z2) x 1,0, ..., 0'%

It can be seen that this is a suitable construction if z is not a cube since
if 1, -1, z, —z, 2 and —z2 are expressed in terms of @, multiplying by
0% for appropriate values of i gives all of the nonzero elements of Z, as
required. First we find the conditions under which this forms a Z-cyclic
moore (2,6) GWhD(6m + 1). The partner differences are +2, +2z, +2x2.
Looking at these in conjunction with (B) we see that, as above, they give
every nonzero element of Z, when z is not a cube. The differences involving
opponents of the first kind are +(z —1), £(z2+1), £z(z —1). Considering
these in conjunction with (C) allows us to conclude that if (z2+1)/z%(zx—1)
is a cube, then the differences give every nonzero element of Z,. The
differences involving opponents of the third kind are +(z? + 1), (z + 1),
+z(z+1). Considering these in conjunction with (£) allows us to conclude
that (z? + 1)/z2(z + 1) being a cube suffices. Combining these two pieces
of information it can now be seen that (z — 1)/{z + 1) is a cube. The
differences involving opponents of the second kind are +(z2 — 1), £(z — 1),
+z(z + 1). But we can now express these as *(z2 — 1), £(z + 1)y where
y € C3, z(z + 1). Considering these in conjunction with (D) it can be
seen that it is sufficient to require that

(z? = 1)/z%*(z + 1) is a cube
ie. (x—1)/z?is a cube
ie. (z+1)/z? is a cube.

The differences involving opponents of the fourth kind are +(z2? - 1),
+(z + 1), £z(z —1). We can express these as #(z? — 1), £(z — 1)y where
y € C3, £z(z — 1). Considering these in conjunction with (F) allows us to
see that again it is sufficient for (z — 1)/z2 to be a cube.

So we can now see that Construction 1 gives us the initial round tables of
a Z-cyclic moore (2,6) GWhD(6m + 1) when

z is not a cube,
(z —1)/z?is a cube i.e. z(z —1)is a cube,
(z+1)/z%is a cube ie. z(z +1)is a cube,
(z2+1)/z isacube ie. z%(z?+1)isa cube.

Now we want to look at the conditions under which such a Z-cyclic moore
(2,6) GWhD(6m + 1) will also be directed. In order to find the conditions
under which it would also satisfy (G), the differences we’re interested in
are
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z-—-1,
2 -—z=z(z-1),
—1-22=—(z%2+1),
—z4+1=—(z—-1),
-2 +z=—(22 - 1) = —z(z - 1),
2 +1.

It can be seen that these are the same as the differences involving opponents
of the first kind (as seen above). In order to find the conditions under which
this construction would also satisfy (H), the differences we’re interested in
are

2 -1=(z-1)(z+1),
—(:t-l- 1)’

—(z? +z) = -z(z +1),
—z24+1=—(22-1)=—(z-1)(z+1),
z+1,
z+z?=z(z+1).

Here, it can be seen that these are the same as the differences involving
opponents of the second kind (as seen above).

This means that if the conditions are satisfied such that Construction 1
gives us the initial round tables of a Z-cyclic moore (2,6) GWhD(6m +1),
the resulting design is also directed.

Thus the following theorem is established.

Theorem 2.1 Let p = 12t + 7 be prime. If there ezists an element x of
ZE such that = is not a cube, z(z + 1) is a cube, z(z — 1) is a cube and
z%(z2 + 1) is a cube, then a directed moore (2,6) GWhD(p) exists.

It therefore remains to show that a value of x which satisfies the conditions
of Theorem 2.1 can be obtained.

Let x be the character of order 3 exactly which is defined by
x(y) =w’ ify €CF,
where w = %",

If we now let %(y) = 1+ x(y) + x(¥%) and §(y) = 2 - x(y) — x(¥?), then it
follows that 5 i c3

_ Ly €Cp;
vly) = { 0 otherwise,
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and o if c3
- Ity € (p;
8(v) = { 3 otherwise.

Consider the sum,

S= 3 @) . ¥z -1)) . ¥(=(z +1)) . $(=*(= + 1)),

z€Z,

After multiplying this out and making the appropriate substitutions (using
Theorem 1.1), it can be seen that,

S >2p - 288\/p

It is also clearly the case that,
S =81|A| +2,
where elements in A are of the form given in Theorem 2.1.

Thus, S > 2 for p > pp = 20,738. Since S = 81|A| + 2, we may claim
that A is not empty for p > pp.

It was then checked by computer that appropriate values of z existed for all
primes p < 20,738 where p = 7 (mod 12), excluding p = 7, 19, 31, 43, 79,
127, 139, 199, 271, 283, 463. Here, we list (p, z,) where p is the prime and
zp is a suitable value of z for that prime for all relevant primes p < 5, 000.

(67,29), (103,46), (151,22), (163,50), (211,32), (223, 19), (307, 14),
(331,42), (367,33), (379,19), (439, 39), (487, 69), (499, 45), (523, 132),
(547,12), (571,33), (607,13), (619, 67), (631, 16), (643, 115), (691, 58),
(727,51), (739,44), (751,12), (787,11), (811,23), (823, 53), (859, 51),

(883,15), (907, 37), (919, 44), (967,47), (991, 11), (1039, 85), (1051, 22),
(1063, 30), (1087,230), (1123,53), (1171, 74), (1231,29), (1279,4),
(1291,11), (1303, 13), (1327,23), (1399, 111), (1423, 76), (1447,112),
(1459, 166), (1471,82), (1483, 145), (1531, 30), (1543, 45), (1567, 5),
(1579,47), (1627, 35), (1663, 14), (1699, 36), (1723, 77), (1747, 24),

(1759, 140), (1783,17), (1831, 22), (1867, 30), (1879, 19), (1951, 37),

(1987,93), (1999, 60), (2011,70), (2083, 54), (2131,45), (2143, 118),

(2179, 38), (2203,70), (2239, 67), (2251, 40), (2287, 220), (2311, 87),

(2347,10), (2371, 85), (2383, 119), (2467,47), (2503, 49), (2539, 59),

(2551, 34), (2647, 24), (2659,21), (2671,75), (2683, 22), (2707,43),
(2719, 60), (2731, 20), (2767,83), (2791, 14), (2803, 67), (2851, 47),
(2887,5), (2971,79), (3019, 33), (3067, 11), (3079,13), (3163, 25),
(3187,14), (3259, 91), (3271,97), (3307,5), (3319, 15), (3331, 35),
(3343, 20), (3391, 6), (3463,41), (3499, 22), (3511, 83), (3547, 67),
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(3559, 74), (3571, 95), (3583,32), (3607, 176), (3631, 70), (3643, 55),
(3691, 59), (3727,56), (3739,17), (3823, 118), (3847,17), (3907, 11),
(3919, 25), (3931,12), (3943,49), (3967,17), (4003, 61), (4027,21),
(4051, 37), (4099, 74), (4111, 22), (4159,200), (4219, 16), (4231, 29),
(4243,116), (4327, 57), (4339, 14), (4363, 143), (4423,97), (4447, 30),
(4483, 66), (4507,194), (4519, 76), (4567, 45), (4591, 21), (4603, 12),
(1639,109), (4651, 58), (4663,47), (4723, 14), (4759, 123), (4783, 141),
(4831, 14), (4903, 18), (4951,22), (4987,71), (4999, 12)

A computer programme was then constructed using the Magma computa-
tional algebra package, and the following examples were found for 8 of the
11 remaining values of p.

Ezample 2.1. A Z-cyclic directed moore GWhD(43) is given by the
initial round (1, 39; 19, 6; 36,28) x 1,3, ..., 3%6.

Ezample 2.2. A Z-cyclic directed moore GWhD(79) is given by the
initial round (1,15;29, 23; 55, 35) x 1,29, ...,2972.

Ezample 2.3. A Z-cyclic directed moore GWhD(127) is given by the
initial round (1, 63;56,115;17,90) x 1,56°%, ...,56120.

Ezample 2.4. A Z-cyclic directed moore GWhD(139) is given by the
initial round (1, 95;110,67;4,102) x 1,25, ...,2132,

Ezample 2.5. A Z-cyclic directed moore GWhD(199) is given by the
initial round (1,147;71,180;70,113) x 1,225, ..., 22192,

Example 2.6. A Z-cyclic dirccted moore GWhD(271) is given by the
initial round (1, 30; 26,20; 77, 226) x 1,265, ..., 26264,

Ezample 2.7. A 7-cyclic directed moore GW hD(283) is given by the
initial round (1, 156;20, 11;121,220) x 1,46, ..., 4627,

Ezample 2.8. A Z-cyclic directed moore GW hD(463) is given by the
initial round (1, 366;245,371;316,369) x 1, 2455, ..., 245%%6,

It was also verified by computer that there is not a Z-cyclic moore GW hD(7),
and so it follows that there also isn’t a design of this type which is directed
in addition.

Thus the following theorem is established.

Theorem 2.2 A Z-cyclic directed moore (2,6) GWhD(p) exists for all
primes p=7 (mod 12), p > 43.
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It is shown in [2] that the existence of a homogeneous (p,6,1) difference
matrix follows from the existence of a Z-cyclic directed (2,6) GWhD(p).

The following product theorem is also given in [2], and can be used to prove
the existence of a great many further generalised whist designs which are
Z-cyclic, directed and moore.

Theorem 2.3 If ny and ny are positive integers of the form 6m + 1 such
that there exist Z-cyclic directed (alt. moore) (2,6) GWhD(n;), i = 1,2
and if there exisls a homogeneous (n1,6,1) difference matriz then there
erists a Z-cyclic directed (alt. moore) (2,6) GWhD(nyns).

Clearly it follows that our Z-cyclic directed moore (2,6) GWhD(p) can be
combined in this way to generate others.

Corollary 2.4
There exists a Z-cyclic directed moore (2,6) GWhD(p{' p32...) foralla; > 1
and p; = 7 (mod 12), p; > 43.
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