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Abstract

The planar Ramsey number PR(H), H2) is the smallest integer n
such that any planar graph on n vertices contains a copy of H,
or its complement contains a copy of Hz. It is known that the
Ramsey number R(K4 — e, K — €) for k < 6. In this paper we
prove that PR(K, — e, K¢ — €) = 16 and show the lower bounds on
PR(K4s—e,Ki —e).
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1 Introduction

We consider only finite undirected graphs without loops or multiple edges.
For a graph G with vertex-set V(G) and edge-set E(G), we denote the
order and the size of G by p(G) = |V(G)| and ¢(G) = | E(G)|, respectively.
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A graph G will be called an (Hi, Ha)-graph if it does not contain a
subgraph isomorphic to H;, and its complement G has no subgraph iso-
morphic to Hy. An (Hy, H2;n)-graph is an (H,, Hz)-graph with order n.
The Ramsey number R(H1, H,) is the smallest integer n such that there is
no (Hi, Hz;n)-graph, or equivalently, it is the least positive integer n such
that every 2-coloring of the edges of K, contains a subgraph isomorphic to
H, in the first color or a subgraph isomorphic to Hs in the second color.

A graph is said to be embedded in a surface S when it is drawn on S
so that no two edges intersect. A graph is planar, if it can be embedded
in the plane; a plane graph has already been embedded in the plane. We
refer to the regions defined by a plane graph as its faces. A face is said to
be incident with the vertices and edges in its boundary. The length of a
face is the number of edges with which it is incident. If a face has length
a, we say it is an o-face. For a plane graph G, let f denote the number of
faces, and f. denote the number of a-faces.

A planar graph G will be called an (H, Hz)-P-graph if it does not con-
tain a subgraph isomorphic to Hj, and its complement G has no subgraph
isomorphic to Hy. An (Hy, Hp;n)-P-graph is an (H,, Ha)-P-graph with
order n. The planar Ramsey number PR(H;, H3) is the smallest integer n
such that there is no (Hy, Ha;n)-P-graph. So PR(H,, Hz) < R(Hi, Ha).

Let d(v) denote the degree of a vertex v € V(G), §(G) the minimum
degree of G. The neighborhood and the closed neighborhood of a vertex
v € V(G) are denoted by N(v) = {v € V(G)luv € E(G)} and N[v] =

N(v)U{v}, respectively. Let GUH denote a disjoint sum of G and H, and
nG is a disjoint sum of n copies of G. Let G(W) denote the subgraph of
G induced by W C V(G).

The Ramsey number R(K4 — e, Kg — €) = 17 was given by McNamara
and Radziszowskil®). The definition of planar Ramsey numbers was firstly

introduced by Walker®). Steinberg and Tovey[6] studied the case when
both H; and H are complete. They proved that

PR(K3,Kx) =k
PR(Ki,K2) =k, k<4,
PR(K3,Ki) =3k -3,
PR(Ky,Ki) =41 -3, k>4 and (k1) # (4,2).
For a connected graph H; with order at least 5, Gorgol[4] proved that
PR(H,,K;) =4k —3.
Bielak and Gorgollll also proved that
PR(C4,Ks) = 13.



Bielak(? determined that
PR(C4, Kg) = 17.

It is shown that
PR(Cy, K1) = 2081,

Dudek and Ruciriskil3] showed that
PR(K4 —ée, K5 - e) = 13.

It was shown that
PR(K4 —e,Ks) = 147,

In this paper, we study the case that (Hj, Hp) = (K4 — e, K — e).
we prove that PR(K, — e, Kg — ¢) = 16 and show the lower bounds on
PR(K4—e,Ki —e).

For a 3-connected planar graph, Whitney[m] showed that

Whitney’s Theorem. A 3-connected planar graph has a unique planar
embedding.

Hereafter, we discuss a 3-connected planar graph in its unique planar
embedding unless specified otherwise.

2 Preliminary results

Lemma 2.1. If G is a (K4 — e, K — e;n)-P-graph, then 6(G) > n -
PR(K4 - e,Kk_l - e).

Proof. We prove it by way of contradiction. Assume that §(G) < n —
PR(K4—e,Kir_1—e). Let v be a vertex of degree §(G) and H = G—N{v),
then p(H) =n—-6(G)—1>n—n+PR(Ks—e,Ky_1—e)—1> PR(K4~
e,Kir_1 —e). Since K4 —e ¢ H, we have Ki_, — e C H. The appropriate
k—1 vertices of H together with v would yield a K —e in G, a contradiction.
So, 5(0) Zn—PR(K.; —e, K1 —8). (]

Lemma 2.2.7 If G is a planar graph such that K4 — e ¢ G, then
(1) 4(G) < [12(p(G) - 2)/5}, and
(2) 29(G) —4p(G) +8 < f3 < ¢(G)/3.

Observation 2.3. If G is a (K4 — ¢, K3 — €; 3)-P-graph, then K, 5 C G.
Observation 2.4. If G is a (K4 — e, K3 — e;4)-P-graph, then G = C;.
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Fig. 2.1 The graphs G7_¢ and G7-;

Let G7—o and G7_; be the graphs as shown in Fig. 2.1, we have

Lemma 2.5. If G is a (K4 — e, K4 — €;7)-P-graph, then G7_o C G or
G7-1CG.

Proof. Since PR(K4 —e,K3 —e) = 5, by Lemma 2.1, we have §(G) > 2.
By Lemma 2.2, we have ¢(G) < |12(7 — 2)/5] = 12, implying §(G) < 3.
So, 2 < §(G) < 3. Let v be a vertex with degree §(G) and H = G — N[v}.
There are two cases depending on §(G).

Case 1. Suppose that §(G) = 2, then p(H) = 4. By Observation 2.4,
we have H = Cj, denoted by ajazazas. Let N(v) = {u,uz}. If uy(uz)
is nonadjacent to both a; and asz(az and a4), then v,a1,a3(v,a2,a4) and
u;(uz) would yield a K4 — e in G, a contradiction. Hence u, is adjacent
to at least one vertex of {a;,a3} and at least one vertex of {a2,a4}, say
uia1,u1ag € E(G). And us is adjacent to at least one vertex of {a;,as}
and at least one vertex of {a,a4}. Since Ky — e € G, ug cannot adjacent
to both a; and az. If uyus & E(G), there are three subcases(see G7.1 —G7.3
in Fig. 2.2). Hence G7_o C G or G7-; C G. If ujus € E(G), there is only
one case(see G7.4 in Fig. 2.3). Hence G7_; C G.

Case 2. Suppose that §(G) = 3, then p(H) = 3. By Observation 2.3,

we have K)o C H, that is, H is isomorphic to K2 or Ks. Let N(v) =

{u1,u2,u3}. Assume H = K3. Thensince K4—e € G, we have |[E(G(N(v)))|
< 1 and each vertex of {u;,u2,us} is adjacent to at most one vertex of

V(H). Thus there is at least one vertex of {1, u2,u3} whose degree is at

most 2, a contradiction to 6(G) = 3. Hence, we have H = K 5.

Since §(G) = 3 and ¢(G) < 12, we have 11 < ¢(G) < 12. Assume that
¢(G) = 12. Then by Lemma 2.2, we have f3 = 4. Since Ky —e € G,
each edge of G belongs to one triangle. Since |E(G(N(v)))| < 1, we may
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Fig. 2.2 The graphs G7.1-G7.3

assume that ujug, uyu3z € E(G). Then the edge vu; does not belong to any
triangle, a contradiction. So, we have ¢(G) = 11. By Lemma 2.2, we have
2 < f3 £3. Let V(H) = {a1,a2,a3} and E(H) = {a;a2,az2a3}. There are
two subcases depending on |E(G{N(v)})|.

Case 2.1. Suppose that |[E(G(N(v)))| = 0. Since K4 — e ¢ G, we have
f3 = 2. Hence one vertex of {u1, us,us} together with a; and az(as and a3)
yield one triangle of G, say u;a;,u1a2 € E(G). Then one vertex of {uz, u3}
together with a; and a3 yield the other triangle of G, say usap,usa; €
E(G). Since d(u3) > 3 and K4 — e € G, u3 has to be adjacent to both a,
and a3, i.e., G7_o C G(see G735 in Fig. 2.3).
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Fig. 2.3 The graphs G 4-G7¢

Case 2.2. Suppose that [E(G(N(v)))| = 1, say uguz € E(G). Since §(G) =
3 and K4 — e € G, both a; and a3 have to be adjacent to u;. Then since
Ky —e & G, we have ujay; € E(G). Since fi > 2, there is at least one
vertex of {uz,u3} together with a; and az(az and a3) yield a triangle in
G, say uga),uzas € E(G). Since d(u3) >3 and K4 —e ¢ G, u3 has to be



adjacent to a3, i.e., G7—g C G(see G716 in Fig. 2.3). a

Corollary 2.6. If G is a (K4 — €, K4 — e; 7)-P-graph, then it is isomorphic
to one graph of {G7_¢, G7—o + v1v2, G7-1,G7-1 + v2v3} as shown in Fig.
2.1,

Fig. 2.4 The graph Gg_¢

Let Gg_o be the graph as shown in Fig. 2.4, we can notice that it is a
self-complement graph. And we have the following lemma:

Lemma 2.7. If G is a (K4 — e, K4 — €; 8)-P-graph, then G = Gs_o.
Proof. Since PR(K4 — e, K3 —€) = 5, by Lemma 2.1, we have §(G) > 3.
By Lemma 2.2, we have ¢(G) < [12(8 — 2)/5] = 14, implying §(G) < 3.
So, we have §(G) = 3. Let v be a vertex with degree §(G) and H =
G — N[v]. Then p(H) = 4. By Observation 2.4, we have H = Cy, denoted
by aiazasas. Let N(v) = {uy,u2,u3}. Assume that there is at least one
vertex of {u;,u2,us} which is adjacent to two inconsecutive vertices of
{a1,a2,a3,a4}, say uja1, ujaz € E(G). Then since §(G) =3 and Ky —e Z
G, each vertex of {a2,a4} has to be adjacent to at least one vertices of
{u2,u3}. In any case, G would contain a subgraph homeomorphic to K33,
a contradiction. Hence each vertex of {u;,u2,us} cannot be adjacent to
two inconsecutive vertices of {a1,az,a3,a4}. Since Ky — e € G, it follows
|E(G(N(v)))| < 1. Hence there are two subcases.

Case 1. Suppose that |[E(G{N(v)))| = 0. Since 6(G) = 3 and K4 —
e ¢ G, each vertex of {u1,uz,u3} has to be adjacent to two consecutive
vertices of {ay,a2,as,as}, say uiai,u182,u0e2, u2a3,u3as, uzeq € E(G).
Now, u1,u2,u3 and a4 would yield a K4 — e in G, a contradiction.

Case 2. Suppose that |E(G(N(v)))| = 1, say uouz € E(G). Since d(u;) >3
and K4 —e € G, u; has to be adjacent to two consecutive vertices of
{a1,a2,a3,a4}, 58y u1a1,u182 € E(G). Since K4 — e € G, v, is adjacent
neither to a3 nor to as. Therefore since d(asz) 2> 3, a3 has to be adjacent to
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Fig. 2.5 The graph Gg

one vertex of {uz,us}, say agup € E(G). Suppose that aqu3z € E(G), then
u1,u3, a3 and a4 would yield a K4 — e in G, a contradiction. So, we have
aquz € E(G). If ugaz(ugar) ¢ E(G), u1,a4,uz and aa(uy,as,us and a;)
would yield a K4 — e in G, a contradiction. So, we have usas, usa; € E(G),
i.e.,, G = Gg_g(see Gg; in Fig. 2.5). @]

Fig. 2.6 The graphs G119 and G11_;

Let Gi1-0 and Gy;_; be the graphs as shown in Fig. 2.6, we have

Lemma 2.8. If G is a (K4 — e, K5 — e;11)-P-graph, then G119 C G or
Gn-1<G.

Proof. Since PR(K; — e, K4 — ) = 9, by Lemma 2.1, we have §(G) > 2.
By Lemma 2.2, we have ¢(G) < |12(11 — 2)/5] = 21, implying 6(G) < 3.
Hence 2 < §(G) < 3. Let v be a vertex with degree §(G) and H = G~ N[v].
There are two cases depending on 6(G).

Case 1. Suppose that 6(G) = 2, then p(H) = 8. By Lemma 2.7, we



have H & Gg_o. Let N(v) = {uy,uz} and V(H) = {vs| 1 £ i < 8} as
shown in Fig. 2.4. By symmetry it is sufficient to consider that N [v] lie
in region I or IL If N[v] lie in region I, then since K4 — e € G, there is at
least one edge of {u1vs,u1vs, ua¥s, U} Which is not belong to E(G), say
u1vs € E(G), u1,v,vs,vq and vy would yield a K5 —ein G, a contradiction.
If N[v] lie in region II, then since K4 — e ¢ G, there is at least one edge
of {u1v3, u1v4, u2v3, ugvs} Which is not belong to E(G), say uvivs ¢ E(G),
uy,v,vs,vs and v; would yield a K5 — e in G, a contradiction too.

Case 2. Suppose that §(G) = 3, then p(H) = 7. Let N(v) = {1, u2,u3}.
Since K4 —e ¢ G, it follows |E(G(N(v)))| < 1. Without loss of generality,
we may assume that ujug,uius € E(G). Since d(u;) 2 3 and Ky-egG,
N[v] cannot lie in any triangle of H. By Corollary 2.6, we have H is
isomorphic to one graph of {G7-0, G7—0 +v1v2,G7-1, G7-1+vou3}. Hence
there are two subcases.

Case 2.1. Suppose that H is isomorphic to one graph of {G7-0,G7-0 +
vve}. Let V(H) = {v;| 1 <4 < 7} as shown in Fig. 2.1.

Case 2.1.1. Suppose that H & G7_g + v1v2. By symmetry it is sufficient
to consider that N[v] lie in region I or IL If Nfv] lie in region I, then
vs, Vg, U1, Uz and uz would yield a K5 — e(or Ks) in G, a contradiction.
Hence N[v] have to lie in region II.

If |E(G{N(v)))| = 0, then uy, u2,u3,v4 and vg would yield a K5 — e in
G, a contradiction. So, we have |E(G{N(v)))| = 1, that is, upuz € E(G).
Since K4 — e € G, u; is nonadjacent to at least one vertex of {vs,vs}, say
v3. And vs is nonadjacent to at least one vertex of {u2,u3}, say uz. Then
uy, g, v3,v4 and v would yield a Ks —e in G, a contradiction too.

Case 2.1.2. Suppose that H & G7_¢. Since d(v;) > 3 and d(v2) > 3,
N[v] have to lie in the 6-face of H. There are two subcases depending on
|E(G(N(v)))]-

Case 2.1.2.1. Suppose that |E(G(N(v)))| = 0. Assume that there is at
least one vertex of {vs,vs}, say vs which is nonadjacent to any vertex
of {u1,u2,u3}. Then uy,u2,us,v3 and v7 would yield a K5 — e in G, a
contradiction. Hence each vertex of {vs,vs} is adjacent to at least one
vertex of {uy,u2,u3}. Since K4y—e € G, there is a perfect matching between
vertices of {vs,vs} and two vertices of {u1, ug,us}, say vau1, vsuz € E(G).
Similarly, there is a perfect matching between vertices of {v4,v6} and two
vertices of {u1,u2,u3}. By symmetry, we may assume that vquy,veus €
E(G) or vqu;,veus € E(G)(see Gy1.1 and G112 in Fig. 2.7). Then since
K4 —e ¢ G and the planarity of G, we have d(v;) = 2, a contradiction.
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Fig. 2.7 The graphs G1;; and Gy1.2

Case 2.1.2.2. Suppose that |[E(G(N(v)))| = 1, that is, uous € E(G). If
uz(u3) is nonadjacent to any vertex of {vy,v2}, then vy, vo, v7, v and ua(us)
would yield a K5 — e in G, a contradiction. Hence each vertex of {ug,u3}
is adjacent to one vertex of {v;,v2}. Since K4 — e € G, there is a perfect
matching between vertices of {v1,v2} and {ug, u3}, say vyug, vaus € E(G).

Since d(u;) > 3, u, is adjacent to at least two vertices of {v;, v, v3,vs}(or
{v1,v2,v4,v6}). By symmetry it is sufficient to consider that v, is adjacent
to at least two vertex of {v1, v, v3,vs}. Since K4y—e € G, u; is nonadjacent
to at least one vertex of {vs,vs}, say vs.

If uyv; € E(G), then vy, vs,vs,u; and v would yield a K5 — e in G, a
contradiction. So, we have ujv; € E(G). If uguy & E(G), then vs, v3, vq, uo
and v would yield a K5 — e in G, a contradiction. Hence uyvs € E(G).
Assume that u3 is nonadjacent to any vertex of {vs,ve}, then vy, vs,ve, us
and v would yield a K5 — e in G, a contradiction. Hence u3 is adjacent to
one vertex of {vs,vg}.

Suppose that uavs € E(G). If ujvz € E(G), then vp,v3,v4,u; and v
would yield a K5 — e in G, a contradiction. Hence we have uv3 € E(G),
i.e., G11-1 € G(see G113 in Fig. 2.8). Suppose that uzvg € E(G). If
uyv3 € E(G), then since d(u;) > 3, u; has to be adjacent to vo. Now,
uy, U3, V4,3 and vs would yield a K5 —e in G, a contradiction. So, we have
ujvs € E(G), i.e., G110 C G(see G11.4 in Fig. 2.8).

Case 2.2. Suppose that H is isomorphic to one graph of {G7-1,G7-; +
vovz}. Let V(H) = {v;] 1 <4 < 7} as shown in Fig. 2.1. If H & G7_,,

11
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Fig. 2.8 The graphs G11_3 and G11,4

then since d(v;) > 3, N[v] have to lie in region I or II. By symmetry it is
sufficient to consider that N[v] lie in region I. If H 2 G7_; + vvus, then
since d(v;) > 3, N[v] have to lie in triangle vjvpvs or region L. If N[v] lie
in triangle vyvous, then vs,vs, u1,u2 and ug would yield a K5 — e(or Ks)
in G, a contradiction. Hence N{v] have to lie in region L.

If |E(G{N (v)))| = 0, then u;, uz, u3,v4 and vg would yield a Ks—e in G,
a contradiction. Hence we have |E(G(N(v)))| = 1, that is, uousz € E(G).
Suppose that vyu; ¢ E(G). Since K4 — e € G, vy is nonadjacent to at
least one vertex of {us,us}, say ug. Then uy,us,v1,v4 and vg would yield
a Ks — e in G, a contradiction. So, we have v u; € E(G).

Fig. 2.9 The graphs G115 and Gii6

If up(u3) is nonadjacent to any vertex of {v;,vs}, then v, vs,vs, v and

12



u2(us) would yield a K5 — e in G, a contradiction. Hence each vertex of
{u2,u3} is adjacent to at least one vertex of {v;,vs}. Since Ky —e ¢ G,
there is a perfect matching between vertices of {v1,vs} and {uz,us}, say
nug, vsug € E(G).

If v;us € E(G), then v;,v4,v7,us and v would yield a K5 — e in G, a
contradiction. Hence we have v;us € E(G). If u; is adjacent to one vertex
of {vs,v7}, say vr, then vs,vq,u;,us and uz would yield a K5 —e in G, a
contradiction(see G1,.5 in Fig. 2.9). Hence u; is nonadjacent to any vertex
of {'05,’07}.

If H = G7_; + vaus, then we have d(u;) = 2, a contradiction. Hence
H 2 G7_;. Since d(u;) > 3 and K4 — e ¢ G, v is adjacent to just one
vertex of {vz,v3}, say vs. If vous € E(G), then vo, vg, u;, up and uz would
yield a K5 — e in G, a contradiction. Hence we have vous € E(G), ie.,
Gn-] C G(see Gu_s in Fig. 29) O

Corollary 2.9. If G is a (K4 —e, K5 —e; 11)-P-graph, then it is isomorphic
to one graph of {G11_0, G11-0+v2v3, G11—0+vs5vs, G11-1 } as shown in Fig.
2.6.

Gia-o

Flg. 2.10 The graph 012_.0

Let Gi3-0 be the graph as shown in Fig. 2.10, we have

Lemma 2.10. If G is a (K4 — e, K5 — €; 12)-P-graph, then G 22 Gj2—o.
Proof. Since PR(K4 — e, K4 — €) =9, by Lemma 2.1, we have §(G) > 3.
By Lemma 2.2, we have ¢(G) < [12(12 — 2)/5] = 24, implying §(G) < 4.
Hence 3 < 6(G) < 4. Let v be a vertex with degree §(G) and H = G- N|[v].
There are two cases depending on §(G).

Case 1. Suppose that §(G) = 3, then p(H) = 8. By Lemma 2.7, we

I3



have H & Gg—o. Let N(v) = {u1,u2,u3} and V(H) = {wi] 1 €1 <L
8} as shown in Fig. 2.4. Since K4y —e ¢ G, it follows |E(G(N(v)})| <
1. Without loss of generality, we may assume that ujug,u1u3 ¢ E(G).
Therefore since d(u;) > 3 and K4 — e € G, N[v] cannot lie in any triangle
of H. By symmetry it is sufficient to consider that N [v] lie in region II.
Then u;, ug,v1,v7 and vg yield a K5 —e in G, a contradiction.

Case 2. Suppose that 8(G) = 4, then p(H) = 7. Let N(v) = {u1,u2, u3, ug}.
Since K4 — e € G, it follows |E(G{N(v)))| < 2. Therefore since d(u;) > 4
and K4 — e ¢ G, N[v] cannot lie in any triangle of H. By Corollary 2.6,
we have H is isomorphic to one graph of {G7-0, G7-0+ V12, G7-1,G71 +
vaus}.

Case 2.1. Suppose that H is isomorphic to one graph of {G7-0,G7-0 +
vve}. Let V(H) = {vil 1 < i < 7} as shown in Fig. 2.1. If H=
G7_o +v1v2, by symmetry, it is sufficient to consider that N [v] lie in region
I or II. No matter N[v] lie in which region, there is at least one vertex of
{vs3,v4,vs,ve} Whose degreeis 3, a contradiction. Hence we have H & G7_;.
Since §(G) = 4, N[v] have to lie in the 6-face of H.

Since 6(G) = 4 and ¢(G) < 24, we have ¢(G) =24 and G is a 4-regular
graph. By Lemma 2.2, we have f3 = 8. Hence every edge of G belong to
one triangle, it is forced that G(N(v)) = 2K3. Without loss of generality,
we may assume that ujug, uguq € E(G). Since d(v;) =4 and Ky —e ¢ G,
v; has to be adjacent to one vertex of {u;,u2} and one vertex of {us,us},
say vyuy, v1us € E(G).

If v, is adjacent to at least one vertex of {u,, ug}, say u;. Then there is
at least one vertex of {vs, v, vs, ve} Whose degree is 3, a contradiction. (see
G2, in Fig. 2.11). Hence v; is adjacent neither to uy nor to us. Therefore
since d(v2) = 4, v2 has to be adjacent to both u, and uy.

Since d(v3) = 4, v3 has to be adjacent to just one vertex of {u1,uz, us, us}.
Assume that v is adjacent to one vertex of {uz, us}, say ug, then we have
d(u1) = 3, a contradiction. Hence v3 has to be adjacent to one vertex of
{u1,us}, say u;. Since d(uz2) =4 and K4 —e ¢ G, us has to be adjacent
to vs. Similarly, we have vqus, veus € E(G), ie., G = Gia—o(see Gi2.2 in
Fig. 2.11).

Case 2.2. Suppose that H is isomorphic to one graph of {G7-1,G7-1 +
vovz}. Let V(H) = {v;| 1 <4 < 7} as shown in Fig. 2.1. No matter N[v|
lie in which region, there is at least one vertex of {v1,v4,vs,v6,v7} Whose
degree is 3, a contradiction. O
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Fig. 2.11 The graphs G2 and Gig.2

3 The main results

Lemma 3.1. There is no (K4 — e, K¢ — €; 16)-P-graph.

Proof. By contradiction, suppose that G is a (K4 — e, Kg — e; 16)-P-
graph. Since PR(K4 — e, K5 — e) = 13, by Lemma 2.1, we have §(G) > 3.
By Lemma 2.2, we have ¢(G) < [12(16 — 2)/5] = 33. Hence 6(G) < 4. Let
v be a vertex with degree 6(G) and H = G — N[v]. There are two cases
depending on 6(G).

Case 1. Suppose that 6(G) = 3, then p(H) = 12. By Lemma 2.10, we
have H = G12_¢. Let N(v) = {u;,uz,u3} and V(H) = {v;| 1 £i < 12} as
shown in Fig. 2.10. Since Ky—e € G, it follows |[E(G(N (v)))| < 1. Without
loss of generality, we may assume that ujug, ujus € E(G). Since d(u;) > 3
and K4 — e ¢ G, N[v] cannot lie in any triangle of H. By symmetry it is
sufficient to consider that N(v] lie in region I. Then u, u3, vs, vs, v7 and vg
would yield a Kg in G, a contradiction.

Case 2. Suppose that §(G) = 4, then p(H) = 11. Let N(v) = {u1, u2, u3, u4}.
By Corollary 2.9, we have H is isomorphic to one graph of {G1;_0, G110+
v2u3, G11-0 + Usv6, G11-1}.

Case 2.1. Suppose that H is isomorphic to one graph of {G11-0,G11-0 +
vou3, G11-0 + vsvs}. Let V(H) = {v;| 1 < ¢ < 11} as shown in Fig. 2.6.
If H is isomorphic to one graph of {G11-0 + vov3, G110 + vs¥s}, then no
matter N[v] lie in which region, there is at least one vertex of {v1,v2, va, vq}
whose degree is 3, a contradiction. Hence we have H = G;;_o.

Since d(v;) > 4 for 1 < i < 4, N[v] have to lie in the 6-face of H. Assume
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that there is one vertex of {1, u2,u3,us} which is adjacent to at least one
vertex of {vs, v}, say u1vs € E(G). Since K4—e ¢ G, uy is adjacent neither
to v; nor to vs. Therefore since d(u;) > 4, u; has to be adjacent to one
vertex of {vz, V4, V6 }, say v2. Then no matter N [v]={u1} lie in which region,
there is at least one vertex of {v;,v3} whose degree is 3, a contradiction(see
Fig. 3.1). Hence each vertex of {u1, u2,u3,u4} is nonadjacent to any vertex
of {vs,vg}. Then since K4 — ¢ ¢ G, vs,vs,v11,u1,u2 and ug would yield a
Kg — e(or Kg) in G, a contradiction.

Case 2.2. Suppose that H & Gyj—;1. Let V(H) = {v| 1 <i < 11} as shown
in Fig. 2.6. No matter N{v] lie in which region, there is at least one vertex
of {v1,v2,v3,v4} wWhose degree is 3, a contradiction. D

Lemma 3.2. If k > 5, then PR(K4 —e, Ky —¢€) > 3k — 2.
Proof. Let Gx_1 be a 4-regular planar graph, where

V(Gr-1) = {aibi,ci: 0<i<k—2},
E(Gi-1) = {ai@i—1,aiGi41,CiCi-1, CiCi+1, biai, biditr, bici—1, bic;
:0<i<k-2}
( subscrips module k —1).

For instance, G4 is isomorphic to Gi2-o as shown in Fig. 2.10. Let Y; =
{ai,bi,c;} for 0 < i < k—2. Since no two triangles of Gk..; have a common
edge, it follows K4 —e ¢ Gi—,. Now, we will prove that Ki —e ¢ Gk—1 by
contradiction. Suppose that there exists a K — e in Gi_1 denoted by H,
then |E(Gr—1{V(H)))| < 1. There are two subcases depending on k — 1.

Case 1. Suppose that k — 1 is even. We can notice that there are k —1 tri-
angles which have no common vertex, say boaoai, bicoca, baasas, bacacs . . .,
bi—3Gk—3ak—2, be—2Ck—3Ck—2, marked them with T in Fig. 3.2. Let S de-
note the set of these triangles, then |S| = k — 1. Since |V(H)| = k and
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Ck—6 Ck—5 Ck—4 Ck—-3 Ck—2 Cp 4] c2 c3

Fig. 3.2 The graph G—; for k — 1 being even

|E(Gr-1(V(H)))] < 1, there is just one triangle of S, say boaga; whose
two vertices belong to V(H). And there is just one vertex which belongs
to V(H) in each triangle of S — {boaoa1}. By symmetry, it is sufficient to
consider that ag, by € V(H) or ag,a;, € V(H).

Case 1.1. Suppose that ap,bp € V(H). Since |E(Gx-1(V(H)))| < 1, we
have ax_3,bx—2,ck—2 &€ V(H)(namely Yi_2 NV(H) = 0). It is forced that
the remaining vertex of the triangle bx_scr_3cr_2, namely cx_3 has to
belong to V(H). And since |E(Gk-1{V(H)})| < 1, we have by_3 ¢ V(H).
Hence the remaining vertex of the triangle by_3ax_3ax—_2, namely ax_3 has
to belong to V(H). Then since |E(Gr-1{V(H)))| < 1, we have (Yi_o U
Yi_3)NV(H) = {ak_3,ck—3}. We can prove that (Yi_4UYi_5)NV(H) =
" {ak-s,ck-s},...,(Y3UY2) NV(H) = {az,c2} by analogy. Therefore since
|E(Gr-1(V(H)))| < 1, we have by,c1 € V(H). So, the remaining vertex
of the triangle byc;c, namely ¢ has to belong to V(H). Hence, we have
{ao,bo,co} C V(H), that is, |E(Gk-1(V(H)))| = 2, a contradiction.

Case 1.2. Suppose that ap,a; € V(H). Since |E(Gr-1(V(H)))| < 1, we
have b; ¢ V(H). Hence there is just one vertex of {cg,c;} which belongs
to V(H).

Case 1.2.1. Suppose that ¢ € V(H). Since |E(Gk-1{V(H)))| < 1,
we have Yi_o € V(H). It is forced that the remaining vertex of the
triangle bx_2ck_3ck—3, namely cx_3 has to belong to V(H). And since
|E(Gk-1(V(H)))| <1, we have bx_3 ¢ V(H). Hence the remaining vertex
of the triangle bx_3ax_3ar—2, namely ax—3 has to belong to V(H), i.e.,
(Ye—2UYr_3)N V(H) = {a,k_g, ck_3}. We can prove that (Yik—aUYes)N
V(H) = {ak-s,ck-5},...,(Y3UYa) N V(H) = {az,c2} by analogy. Hence,
we have {ao,a1,a2} C V(H), that is, |[E(Gr_1(V(H)))| = 2, a contradic-
tion.
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Case 1.2.2. Suppose that ¢; € V(H). Since |E(Gr—1{V(H)))| < 1, we
have Y2 ¢ V(H). It is forced that the remaining vertex of the triangle
boasas, namely as has to belong to V(H). And since |[E(Gk-1{V(H)))| < 1,
we have b3 ¢ V(H). Hence the remaining vertex of the triangle bscacs,
namely cs has to belong to V(H), i.e., (Y2UYs) N V(H) = {a3,c3}. We
can prove that (YU Ys) NV (H) = {as,cs},...,(Ye-3 U Yi—2)NV(H) =
{ak—-2,ck—2} by analogy. Hence, we have {ao,a1,ar-2} C V(H), that is,
|E(Gr-1(V(H)})| = 2, a contradiction.

Case 2. Suppose that k—1is odd. Since |V (H)| = kand |E(Gr-1{(V(H)))| £
1, there exists a Y;, say Yo whose two vertices belong to V(H). By sym-
metry, it is sufficient to consider that ao,bo € V(H ) or ag,co € V(H). If
ao,bo € V(H), then since | E(Gi—1{V(H)))| < 1, we have Yz _oNV(H) = 0.
If ag, co € V(H), then since |E(Gk—1{V(H)))| < 1, we have iNV(H) =0
or Ys_oNV (H) = 0, say Yx—2NV (H) = 0. We can notice that there are k—2
triangles which have no common vertex in Gx—1(V(Gk-1) — Yi-2), namely
boaoay, bicocy, baazas, bacacs . . . , br—4@k—4@k—3, be-3Ck—ack—3, marked them
with T in Fig 3.3. Let S denote the set of these triangles, then |S| = k —2.
And since |E(Gk-1{V(H)))| < 1, there is at most one triangle of S whose
two vertices belong to V(H). So, we have |V (H)| < k — 1, a contradiction.

Ck—6 Ck-5 Ck—4 Ck—3 Ck-2 Cp 4] C2 C3

Fig. 3.3 The graph G- for k — 1 being odd

From Case 1-2, we have that the assumption does not hold, that is,
Ki—e ¢ Gk_1. So, Gx_, isa (Ks—e, Ki—e;3k—3)-P-graph, ie., PR(K4—
e,Kr—e)>3k-2. m]

Lemma 3.3. If & > 3, then PR(K4 — e, Ky —e€) > 3k + | (k — 2)/4] — 5.

Proof. Let Gi3_¢ be the graph shown in Fig. 3.4. It was proved that G13—¢
isa (K4—e, Ks;13)-P-graph in [7]. Suppose that G is a planar graph which
is a union of | (k—2)/4] copies of G13_o and (k—4 x | (k—2)/4] - 2) copies
of a triangle, then Ky —e ¢ G. Since K5 € Gia_o, the cardinality of
independent set of G is at most 4 x |(k—2)/4] +(k—4x [(k—2)/4] -2) =
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Fig. 3.4.

k — 2, that is, Kx—1 ¢ G. So, we have K; — e ¢ G. Hence G is a
(K4 — e, K} — e;n)-P-graph, where n = 13 x [(k — 2)/4] + 3 x (k — 4 x
[(k—2)/4] —2) =3k + [(k —2)/4] — 6. The lemma holds. m]

By Lemma 3.2 and 3.3, we have

Theorem 3.4. If k£ > 5, then PR(K4 — e, K — €) > max{3k — 2, 3k +
[(k —2)/4] - 5}.

By Lemma 3.1 and Theorem 3.4 setting k = 6, we have
Theorem 3.5. PR(K4 —e, K¢ —e) = 16.

By Dudek and Ruciriskil® and Theorem 3.5, we have

PR(K;—e,K3—¢) =5,
PR(K;—e,K4—€) =9,
PR(K4 — €, Ks - e) = 13,
PR(K; - e,Kg — €) = 16.

The problem of determining the values of PR(K4 — e, Kj. — e) is still re-
maining open for k > 7.

Acknowledgments

We would like to thank the referees for their helpful comments and sugges-
tions which led to the improvement of the present version.

19



References

(1] H. Bielak, I. Gorgol, The planar Ramsey number for C4 and K is 13,
Discrete Mathematics 236 (2001) 43-51.

(2] H. Bielak, A note on the Ramsey number and the planar Ramsey num-
ber for C4 and complete graphs, Discussiones Mathematicae Graph
Theory 19 (1999) 135-142.

[3] A. Dudek, A. Ruciniski, Planar Ramsey numbers for small graphs,
Congressus Numerantium 176 (2005) 201-220.

(4] I. Gorgol, Planar Ramsey numbers, Discussiones Mathematicae Graph
Theory 25 (2005) 45-50.

[5] J. McNamara and S.P. Radziszowski, The Ramsey numbers R(K4 —
e, K¢ —e) and R(K4 —e, K7 —e), Congressus Numerantium 81 (1991)
89-96.

[6] R. Steinberg, C. A. Tovey, Planar Ramsey number, Journal of Com-
binatorial Theory Series B 59 (1993) 288-296.

[7] Sun Yongqi, Yang Yuansheng, Lin Xiaohui, Qiao Jing, The planar
Ramsey number PR(K4 — e, Ks), Discrete Mathematics 307 (2007)
137-142.

[8] Sun Yongqi, Yang Yuansheng, Lin Xiaohui, Song Yanan, The planar
Ramsey number PR(C,, K7), To appear in Discrete Mathematics.

[9] K. Walker, The analog of Ramsey numbers for planar graphs, The
Bulletin of the London Mathematical Society 1 (1969) 187-190.

[10] H. Whitney, Non-separable and planar graphs, Transactions of the
American Mathematical Society 34 (1932) 339-362.

20



