NORM OF WEIGHTED COMPOSITION OPERATORS FROM BLOCH SPACE TO H^{∞}_{μ} ON THE UNIT BALL

Stevo Stević

Mathematical Institute of the Serbian Academy of Science, Knez Mihailova 36/III, 11000 Beograd, Serbia E-mail: sstevic@ptt.yu; sstevo@matf.bg.ac.yu

Abstract

We calculate the norm of weighted composition operators uC_{φ} from the Bloch space to the weighted space $H^{\infty}_{\mu}(B)$ on the unit ball B.

1. Introduction

Let B be the open unit ball in \mathbb{C}^n , H(B) the class of all holomorphic functions on the unit ball and $H^{\infty} = H^{\infty}(B)$ the space of all bounded holomorphic functions on B. For an $f \in H(B)$ we denote $\nabla f = (\frac{\partial f}{\partial z_1}, \dots, \frac{\partial f}{\partial z_n})$. The Bloch space $\mathcal{B} = \mathcal{B}(B)$, consists of all $f \in H(B)$ such that

$$b(f) = \sup_{z \in B} (1 - |z|^2) |\nabla f(z)| < \infty.$$

The Bloch space with the norm $||f||_{\mathcal{B}} = |f(0)| + b(f)$, becomes a Banach space. The little Bloch space \mathcal{B}_0 is a subspace of \mathcal{B} consisting of all $f \in \mathcal{B}$ such that $(1-|z|^2)|\nabla f(z)| \to 0$, as $|z| \to 1$.

The weighted space $H^{\infty}_{\mu} = H^{\infty}_{\mu}(B)$ consists of all $f \in H(B)$ such that

$$\sup_{z\in B}\mu(z)|f(z)|<\infty,$$

where $\mu(z) = \mu(|z|)$ and μ is normal on the interval [0,1) (see, for example, [4]). Let $u \in H(B)$ and φ be a holomorphic self-map of B. For $f \in H(B)$ weighted composition operator is defined by $(uC_{\varphi}f)(z) = u(z)f(\varphi(z))$. In the last four decades experts in the area provide function theoretic characterizations when uand φ induce bounded or compact weighted composition operators on spaces of holomorphic functions. For some classical results in the topic, see, e.g., [2].

In [3], Ohno characterized the boundedness and compactness of the operator uC_{φ} between $H^{\infty}(\mathbb{D})$ and $\mathcal{B}(\mathbb{D})$ on the unit disk \mathbb{D} . The results from [3] are corrected, and extended in the setting of the unit polydisk in [5], and in the unit ball setting in [7]. Closely related results can be found in [1, 4, 6, 9, 10, 11, 12].

In [7], among other results, we proved the following theorem, regarding the boundedness of the operator $uC_{\omega}: \mathcal{B}(B) \to H^{\infty}(B)$.

Theorem A. Let φ be a holomorphic self-map of B and $u \in H(B)$. Then the operator $uC_{\varphi}: \mathcal{B} \to H^{\infty}$ is bounded if and only if $uC_{\varphi}: \mathcal{B}_0 \to H^{\infty}$ is bounded if and only if $u \in H^{\infty}$ and $M := \sup_{z \in B} |u(z)| \ln \frac{2}{1 - |\varphi(z)|^2} < \infty$.

Moreover, if $uC_{\varphi}: \mathcal{B} \to H^{\infty}$ is bounded, then $\|uC_{\varphi}\|_{\mathcal{B} \to H^{\infty}} \times M$, where the notation $a \times b$ means that there is a positive constant C such that $b/C \leq a \leq Cb$.

One of the interesting questions is to find the exact value of the norm of weighted composition operators. Our aim here is to calculate $\|uC_{\varphi}\|_{\mathcal{B}\to H_{\infty}^{\infty}}$.

We need the following lemma, which should be folklore and whose proof follows from the next sequence of relations (compare with Lemma 2.2 in [8]):

$$|f(z) - f(0)| = \left| \int_0^1 \langle \nabla f(tz), \overline{z} \rangle \right| \le b(f) \int_0^1 \frac{|z| dt}{1 - |z|^2 t^2} = b(f) \frac{1}{2} \ln \frac{1 + |z|}{1 - |z|}.$$

Lemma 1. Let $f \in \mathcal{B}(B)$. Then the following inequality holds

$$|f(z)| \le |f(0)| + b(f)\frac{1}{2}\ln\frac{1+|z|}{1-|z|}. (1)$$

2. The norm of the operator $uC_{\varphi}:\mathcal{B} \to H^{\infty}_{\mu}$

Now we are in a position to formulate and prove the main result of this note.

Theorem 1. Assume $u \in H(B)$, φ is a holomorphic self-map of B and $uC_{\varphi} : \mathcal{B} \to H_{u}^{\infty}$ is bounded. Then

$$\|uC_{\varphi}\|_{\mathcal{B}\to H^{\infty}_{\mu}} = \|uC_{\varphi}\|_{\mathcal{B}_{0}\to H^{\infty}_{\mu}} = \max\left\{\|u\|_{H^{\infty}_{\mu}}, \frac{1}{2}\sup_{z\in B}\mu(z)|u(z)|\ln\frac{1+|\varphi(z)|}{1-|\varphi(z)|}\right\}. (2)$$

Proof. Since $f_0(z) \equiv 1 \in \mathcal{B}_0$, we have

$$||uC_{\varphi}||_{\mathcal{B}_0 \to H^{\infty}_{\alpha}} = ||f_0||_{\mathcal{B}} ||uC_{\varphi}||_{\mathcal{B}_0 \to H^{\infty}_{\alpha}} \ge ||uC_{\varphi}(f_0)||_{H^{\infty}_{\alpha}} = ||u||_{H^{\infty}_{\alpha}}. \tag{3}$$

For $w \in B$, set $f_w(z) = \frac{1}{2} \ln \frac{1+\langle z,w \rangle}{1-\langle z,w \rangle}$, (with $\ln 1 = 0$). Since $f_w(0) = 0$ and

$$(1-|z|^2)|\nabla f_w(z)| = \frac{(1-|z|^2)|w|}{|1-\langle z,w\rangle^2|} \le \frac{1-|z|^2}{1-|w|^2|z|^2} \le \min\left\{1,\frac{1-|z|^2}{1-|w|^2}\right\},$$

it follows that $\sup_{w \in B} ||f_w||_{\mathcal{B}} \le 1$, and $f_w \in \mathcal{B}_0$ for each fixed $w \in B$.

From this and the boundedness of $uC_{\varphi}: \mathcal{B}_0 \to H_{\mu}^{\infty}$ we have that for $\varphi(w) \neq 0$ and for every $\rho \in (0,1)$ the following inequality holds

$$\|uC_{\varphi}\|_{\mathcal{B}_{0}\to H^{\infty}_{\mu}} \geq \|uC_{\varphi}f_{\rho\varphi(w)/|\varphi(w)|}\|_{H^{\infty}_{\mu}}$$

$$= \sup_{z\in B} \mu(z) \left| u(z) \frac{1}{2} \ln \frac{1+\rho\langle\varphi(z),\varphi(w)/|\varphi(w)|\rangle}{1-\rho\langle\varphi(z),\varphi(w)/|\varphi(w)|\rangle} \right|$$

$$\geq \frac{1}{2}\mu(w)|u(w)| \ln \frac{1+\rho|\varphi(w)|}{1-\rho|\varphi(w)|}. \tag{4}$$

Note that (4) obviously holds if $\varphi(w) = 0$.

Letting $\rho \to 1$ in (4), we obtain that for each $w \in B$

$$||uC_{\varphi}||_{\mathcal{B}_0 \to H^{\infty}_{\mu}} \ge \frac{1}{2}\mu(w)|u(w)|\ln \frac{1+|\varphi(w)|}{1-|\varphi(w)|}.$$

From this and since w is an arbitrary element of B, it follows that

$$||uC_{\varphi}||_{\mathcal{B}_0 \to H_{\mu}^{\infty}} \ge \frac{1}{2} \sup_{z \in B} \mu(z) |u(z)| \ln \frac{1 + |\varphi(z)|}{1 - |\varphi(z)|}.$$
 (5)

If $f \in \mathcal{B}$, then Lemma 1 and the definition of the norm $\|\cdot\|_{\mathcal{B}}$ yield

$$\|uC_{\varphi}f\|_{H^{\infty}_{\mu}} = \sup_{z \in B} \mu(z)|u(z)f(\varphi(z))|$$

$$\leq \sup_{z \in B} \left(\mu(z)|u(z)|\left(|f(0)| + b(f)\frac{1}{2}\ln\frac{1 + |\varphi(z)|}{1 - |\varphi(z)|}\right)\right)$$

$$\leq \|f\|_{\mathcal{B}} \max \left\{ \|u\|_{H^{\infty}_{\mu}}, \frac{1}{2}\sup_{z \in B} \mu(z)|u(z)|\ln\frac{1 + |\varphi(z)|}{1 - |\varphi(z)|} \right\}. \quad (6)$$

From (3)-(6) and since $||uC_{\varphi}||_{\mathcal{B}\to H^{\infty}_{u}} \geq ||uC_{\varphi}||_{\mathcal{B}_{0}\to H^{\infty}_{u}}$, the result follows. \square

REFERENCES

- D. Clahane and S. Stević, Norm equivalence and composition operators between Bloch/ Lipschitz spaces of the unit ball, J. Inequal. Appl. Vol. 2006, Article ID 61018, (2006), 11 pages.
- [2] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, FL, 1995.
- [3] S. Ohno, Weighted composition operators between H[∞] and the Bloch space, Taiwanese J. Math. 5 (2001), 555-563.
- [4] S. Li and S. Stević, Weighted composition operators from Bergman-type spaces into Bloch spaces, Proc. Indian Acad. Sci. Math. Sci. 117 (3) (2007), 371-385.
- [5] S. Li and S. Stević, Weighted composition operators from α-Bloch space to H[∞] on the polydisk, Numer. Funct. Anal. Optimization 28 (7) (2007), 911-925.
- [6] S. Li and S. Stević, Weighted composition operators from H[∞] to the Bloch space on the polydisc, Abstr. Appl. Anal. Vol. 2007, Article ID 48478, (2007), 12 pages.
- [7] S. Li and S. Stević, Weighted composition operators between H^{∞} and α -Bloch spaces in the unit ball, *Taiwan. J. Math.* (to appear).
- [8] S. Stević, On an integral operator on the unit ball in Cⁿ, J. Inequal. Appl. 1 (2005), 81-88.
- [9] S. Stević, Composition operators between H[∞] and the α-Bloch spaces on the polydisc, Z. Anal. Anwendungen 25 (4) (2006), 457-466.
- [10] S. Stević, Weighted composition operators between mixed norm spaces and H[∞]_α spaces in the unit ball, J. Inequal. Appl. Vol. 2007, Article ID 28629, (2007), 9 pages.
- [11] X. Zhu, Generalized weighted composition operators from Bloch-type spaces to weighted Bergman spaces, *Indian J. Math.* 49 (2) (2007), 139-149.
- [12] X. Zhu, Products of differentiation, composition and multiplication from Bergman type spaces to Bers spaces, Integral Transform. Spec. Funct. 18 (3) (2007), 223-231.