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Abstract

We calculate the norm of weighted composition operators uC, from
the Bloch space to the weighted space H:°(B) on the unit ball B.

1. INTRODUCTION

Let B be the open unit ball in C*, H(B) the class of all holomorphic func-
tions on the unit ball and H* = H%(B) the space of all bounded holomorphic
functions on B. For an f € H(B) we denote Vf = (2L,.. ,EL)

The Bloch space B = B(B), consists of all f € H (B’ such that

b(f) = sup(1 = [2[*) |V ()| < oo.
z€EB

A The Bloch space with the norm || f|ig = | f(0)]| + b(f), becomes a Banach space.
The little Bloch space By is a subspace of B consisting of all f € B such that
(1= 12?)IVf(2)] = 0, as |z] — 1.
The weighted space H3° = Hg°(B) consists of all f € H(B) such that

sup p(z)]f(2)| < oo,
z€B

where p(z) = p(|2]) and p is normal on the interval [0, 1) (see, for example, [4]).
Let u € H(B) and ¢ be a holomorphic self-map of B. For f € H(B) weighted
composition operator is defined by (uC, f)(2) = u(z)f(¢(z)). In the last four
decades experts in the area provide function theoretic characterizations when u
and ¢ induce bounded or compact weighted composition operators on spaces of
holomorphic functions. For some classical results in the topic, see, e.g., [2).

In [3], Ohno characterized the boundedness and compactness of the operator
uC, between H*°(D) and B(D) on the unit disk D. The results from [3] are
corrected, and extended in the setting of the unit polydisk in [5], and in the unit
ball setting in [7]. Closely related results can be found in (1, 4, 6, 9, 10, 11, 12].

In [7], among other results, we proved the following theorem, regarding the
boundedness of the operator uC,, : B(B) — H>®(B).
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Theorem A. Let ¢ be a holomorphic self-map of B and u € H(B). Then the
operator uC,, : B — H* is bounded if and only if uC : Bg — H® is bounded
if and only zfu € H*® and M :=sup,¢p |u(z)|In _M?ﬂ’ < o0.

Moreover, if uC, : B— H®™ is bounded, then |[uCypl||s—n= < M, where the
notation a < b means that there is a positive constant C such that b/C < a < Cb.

One of the interesting questions is to find the exact value of the norm of
weighted composition operators. Our aim here is to calculate [[uC, la—Hge-

We need the following lemma, which should be folklore and whose proof
follows from the next sequence of relations (compare with Lemma 2.2 in (8]):

d
1) - 101 = | [, <on [ T —ungm
Lemma 1. Let f € B(B). Then the followmg inequality holds
£ < 15O + b 1)

2. THE NORM OF THE OPERATOR uC, : B — H?®
Now we are in a position to formulate and prove the main result of this note.

Theorem 1. Assume u € H(B), ¢ is a holomorphic self-map of B and uCl, :
B— HP is bounded. Then

= = 1 1 +|(2)|
[Colla— e =luCllso—Hg —maX{lluIIH;, 5 SUp p(a) (@)l In T2 (2)

Proof. Since fo(z) =1 € By, we have
luCollgo—tge = lfollalluCollso—ng = 1uCo(fo)llng = llullrg. 3)

For w € B, set fy,(2) = §In 122 (with In1 = 0). Since f,,(0) = 0 and

1-(z,w)’

(1= |V fule)] = L2l L lel <min{1y—'l_I2|2},

T=(zwpl = 1-wPRP = 1 |wf?

it follows that sup,ep || fwllz < 1, and f,, € By for each fixed w € B.
From this and the boundedness of uC,, : By — HZ° we have that for p(w) # 0
and for every p € (0,1) the following inequahty holds

luCollzo—trze 2 NuCofoptw/ietwllrg
- L LEPle(2), e(w)/le(w))
= SO N T el ) e )
1 1 + plp(w)|
2 grw)l)lin T2 (4)
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Note that (4) obviously holds if ¢(w) =

Letting p — 1 in (4), we obtain that for each w € B

1
uCollzo— e 2 %u(w)|u(w)|1n ﬁ%-

From this and since w is an arbitrary element of B, it follows that

(1)

(2
(3]
4l
(5]
(6]
7]

8

(9
(10]
(11

(12]

Gyl > 5 sup ez in 1 2T, )

If f € B, then Lemma 1 and the definition of the norm || - ||z yield

luCofllue = Slelgu(Z)Iu(Z)f(w(Z))I
L+ fp()
< sup (waluta) (170001 + 203 10 HEA)
< Wl max (g 5 sup u@luta)iin 1A,

From (3)-(6) and since [|[uCy[l—tz 2 [[uCyp|l5— Hze, the result follows. O
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